
AutoML Two-Sample Test

Jonas M. Kübler1, Vincent Stimper1, Simon Buchholz1, Krikamol Muandet2, and
Bernhard Schölkopf1

1Max Planck Institute for Intelligent Systems, Tübingen, Germany
2CISPA - Helmholtz Center for Information Security, Saarbrücken, Germany
{jmkuebler,vstimper,sbuchholz,bs}@tue.mpg.de, muandet@cispa.de

Abstract

Two-sample tests are important in statistics and machine learning, both as tools
for scientific discovery as well as to detect distribution shifts. This led to the
development of many sophisticated test procedures going beyond the standard
supervised learning frameworks, whose usage can require specialized knowledge
about two-sample testing. We use a simple test that takes the mean discrepancy
of a witness function as the test statistic and prove that minimizing a squared loss
leads to a witness with optimal testing power. This allows us to leverage recent
advancements in AutoML. Without any user input about the problems at hand,
and using the same method for all our experiments, our AutoML two-sample test
achieves competitive performance on a diverse distribution shift benchmark as well
as on challenging two-sample testing problems.
We provide an implementation of the AutoML two-sample test in the Python
package autotst.

1 Introduction

Testing whether two distributions are the same based on data is a fundamental problem in data science.
A classical application is to test whether two differently treated groups have the same characteristics
or not [Student, 1908, Welch, 1947, Golland and Fischl, 2003]. Testing independence of two random
variables can also be phrased as a two-sample problem by testing whether the joint distribution equals
the product of the marginal distributions [Gretton et al., 2005]. A more recent application in machine
learning is to detect distribution shifts, i.e., whether the distribution a model was trained on equals the
distribution the model is deployed on [Lipton et al., 2018, Rabanser et al., 2019, Koch et al., 2022].

Classical methods have a fixed test statistic that makes strong parametric assumptions. For example,
Student’s two-sample t-test only tests whether the distributions have equal mean, assuming both
distributions follow a normal distribution with the same (but unknown) variance. With modern
datasets, which are often high-dimensional, such test cannot be applied because the strong assumptions
are often not justified. Nonparametric kernel-based test such as the Maximum Mean Discrepancy
(MMD) [Gretton et al., 2012a] are very flexible and, theoretically, can detect differences of any kind
given enough data. However, this generality often harms test power at finite data size. This can
simply be understood in terms of a classical bias-variance tradeoff. To mitigate this, it has become
common to optimize the test statistic first on a held-out dataset and then apply the test only on the
other part of the data [Sutherland et al., 2017, Liu et al., 2020]. However, the derived objective as
well as optimizing a kernel function are no standard tasks in machine learning and no automated
packages exist, making it hard for practitioners to apply them.

Tests that fit well into the standard machine learning pipeline are based on the classification accuracy.
First, a classifier is trained to detect the difference between the two samples, and then its accuracy on
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Figure 1: AutoML two-sample test: SP , SQ denotes the available data from P and Q, which is
first split into two parts of equal size. A witness h : X → R is trained using a (weighted) squared
loss Eq. (6), denoted by MSE, and using AutoML to maximize predictive performance. Users can
easily control important properties, for example the maximal runtime tmax. The test statistic τ is the
difference in means on the test sets. Permuting the data and recomputing τ allows the estimation of
the p-values. The null hypothesis P = Q is rejected if p ≤ α.

a held-out set is taken as a test statistic [Golland and Fischl, 2003, Lopez-Paz and Oquab, 2017, Kim
et al., 2021, Cai et al., 2020, Hediger et al., 2022]. Liu et al. [2020] argued, however, that optimizing
classification accuracy does not directly optimize test power and considered this one reason why
kernel-based test outperform classifier tests. Kübler et al. [2022] challenged this and considered the
mean of an optimized witness function as test statistic finding that kernels are not necessary for good
performance. Generally, such two-stage procedures are very intuitive and arguably also how a human
would approach the two-sample problem on complicated data. One could look at some part of the
data, try to come up with a simple hypothesis, and then try to test its significance on held-out data.

Despite the recent progress in the theoretical understanding of machine learning-based two sample
tests [Kim et al., 2021, Liu et al., 2020], there is still little guidance on how to apply these tests in
practice and a substantial amount of engineering and expertise is required to implement them. On
the contrary, in supervised learning, namely regression and classification, the past years have shown
tremendous advancements in making machine learning models applicable essentially without any
expert knowledge leading to the field of Automated Machine Learning (AutoML) [Feurer et al., 2015,
Hutter et al., 2019, He et al., 2021]. The goal of AutoML is to automate the full machine learning
pipeline: Data cleaning, feature engineering and augmentation, model search, hyperparameter
optimization, and model ensembling [Dietterich, 2000]. All of it with the goal of achieving the best
possible predictive performance on unseen data.

The goal of our work is to bring the advancements of AutoML research to the field of two-sample
testing. Our main contributions are:

1. We prove that minimizing a squared loss is equivalent to maximizing the unwieldy signal-
to-noise ratio, which determines the asymptotic test power of a witness two-sample test
(Section 3.1).

2. Thanks to the former result we can use AutoML to learn the test statistic, thereby harnessing
the power of many advancements in machine learning such as hyperparameter optimization,
bagging, and ensemble learning in a user-friendly manner (Section 3.2).

3. Our test is usable without any specific knowledge and skills in two-sample testing. Users
can easily specify how many resources they want to use when learning the test, for example
the maximal training time (Section 3.2 and Section 5). Furthermore, one can easily interpret
the results (Section 3.3).

4. We extensively study the empirical performance of our approach first by considering the
two low-dimensional datasets Blob and Higgs followed by running a large benchmark on a
variety of distribution shifts on MNIST and CIFAR10 data. We observe very competitive
performance without any manual adjustment of hyperparameters. Our experiments also
show that a continuous witness outperforms commonly used binary classifiers (Section 5).

5. We provide the Python Package autotst implementing our testing pipeline.
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The proposed testing pipeline is described in Fig. 1: First, the two samples are split into training and
test sets. Then a witness function h is trained by first labeling samples in Str

P with 1 and samples from
Str
Q with 0 and then minimizing a (weighted) Mean Squared Error (MSE) to maximize test power,

see Section 3 for further details. To maximize the predictive performance and to require as little
user input as possible, we use AutoGluon [Erickson et al., 2020], an existing AutoML framework,
when optimizing the witness. Our test statistic is then simply the difference in means of the test sets
Ste
P , S

te
Q, see Section 2. p-values are computed via permutation of the samples [Golland and Fischl,

2003], which is a standard technique in two-sample testing.

2 Preliminaries

Notation. We consider the non-empty set X ⊆ Rd as the domain of our data. We are given samples
SP = {x1, . . . , xn} and SQ = {y1, . . . , ym}, which are i.i.d. realizations of the random variables
X and Y distributed according to P and Q. Let us define c = n

n+m . The proposed approach splits
the data into disjoint training and test sets of size ntr, nte,mtr,mte that we denote Str

P , S
te
P and Str

Q, S
te
Q.

Unless otherwise stated, we assume that the data is split in equal halves, which is the default approach
[Lopez-Paz and Oquab, 2017, Liu et al., 2020].

Our goal is to test the null hypothesis H0 : P = Q against the alternative hypothesis P ̸= Q. Our
hypothesis test rejects when the observed value of the test statistic is significantly larger than what
we would expect if the null hypothesis were true. Naturally, such tests can make two types of errors:

Type-I: The test rejects the null hypothesis, although it is true.
Type-II: The test fails to reject, although the null hypothesis is false.

Our goal is to design a test that controls the rate of Type-I errors at a given significance level
α ∈ (0, 1), and maximizes the test power defined as 1 minus the probability of a Type-II error.

Witness two-sample test. We consider a witness-based hypothesis test [Cheng and Cloninger,
2019, Kübler et al., 2022]. Given a function h : X → R, called witness, the mean discrepancy is

τ(P,Q | h) = EX∼P [h(X)]− EY∼Q [h(Y )], (1)

and we use its empirical estimate on the test set as test statistic

τ(Ste
P , S

te
Q | h) = 1

nte

∑
x∈Ste

P

h(x)− 1

mte

∑
y∈Ste

Q

h(y). (2)

As we show in Section 4, this test statistic can be seen as a continuous extension of classifier two-
sample tests [Lopez-Paz and Oquab, 2017]. We assume that c = nte

nte+mte
converges to a constant

as n,m → ∞. With σ2
c (h) =

(1−c)VarX∼P [h(X)]+cVarY ∼Q[h(Y )]
c(1−c) we have that the test statistic is

asymptotically normally distributed [Kübler et al., 2022, Theorem 1]
√
nte +mte

[
τ(Ste

P , S
te
Q | h)− τ(P,Q | h)

] d→ N
(
0, σ2

c (h)
)
. (3)

Let us for now assume that we know σc(h). For any level α ∈ (0, 1) we can set the analytic test
threshold to tα = σc(h)√

nte+mte
Φ−1(1− α), where Φ denotes the CDF of a standard normal and Φ−1 its

inverse. We can then compute the asymptotic probability of rejecting as:

Pr [reject] = Pr
[
τ(Ste

P , S
te
Q|h) > tα

]
→ Φ

(√
nte +mte

τ(P,Q | h)
σc(h)

− Φ−1(1− α)

)
. (4)

Under the null hypothesis P = Q we have τ(P,Q | h) = 0. Therefore, Eq. (4) reduces to
Φ
(
−Φ−1(1− α)

)
= 1−Φ

(
Φ−1(1− α)

)
= α. Hence, the asymptotic test correctly controls Type-I

error. On the other hand, for given P ̸= Q, Eq. (4) corresponds to the test power. Since Φ is a
monotonically increasing function, the test power is maximized by the witness h that maximizes

SNR(h) =
τ(P,Q | h)

σc(h)
, (5)
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where SNR is the Signal-to-Noise Ratio. From Eq. (4) it follows that the overall testing pipeline is
consistent (approaches power 1) if we find a witness function with SNR > ε > 0 with probability
going to 1 as the training data set size grows (see Appendix B.2 for more discussion). Kübler et al.
[2022] showed the optimal witness can be learned when using kernel methods (using kernel Fisher
Discriminant Analysis), but it was left open how this can be done efficiently with other machine
learning frameworks. Such an SNR is not commonly implemented and also common approaches like
mini-batching are not easily adapted, as a plug-in estimate of the SNR based on a mini batch would
be a biased estimate. In the next section, we show how to circumvent this and optimize a squared loss
instead.

3 The AutoML two-sample test

3.1 Equivalence of squared loss and signal-to-noise ratio

Since it is known for linear models that minimizing a squared loss over two labelled samples is
equivalent to Fisher Discriminant Analysis [Duda et al., 2001, Mika, 2003], we attempt to find a
more general relation between the squared loss and the SNR. Our goal is to use the squared loss as
the optimization objective when learning the witness. Let c = ntr

ntr+mtr
analogously to the above. Let

us mark all data from P with a label ’1’ and all data from Q with a label ’0’. We define the following
(weighted) squared loss

LP,Q,c(h) = (1− c)EX∼P

[
(1− h(X))2

]
+ cEY∼Q

[
(0− h(Y ))2

]
. (6)

Note that the weights (1− c) and c are swapped as it will be more important to fit the set with fewer
samples. Given a function h, notice that shifting and scaling it leaves the SNR (5) invariant. We can
then show the following relationship of its squared loss and its SNR.
Lemma 1. Let the function h be fixed. We apply the linear transformation h → γh+ ν with γ ∈ R
and ν ∈ R. Let (γ∗, ν∗) be the minimum of the quadratic function (γ, ν) 7→ LP,Q,c(γh+ ν). Then,
the following holds true (Proof in Appendix A):

LP,Q,c(γ
∗h+ ν∗) =

c(1− c)

1 + SNR(h)2
.

Let us assume that the supports of the two distributions P,Q overlap. Hence, for any function h
the loss LP,Q,c is strictly positive. Assume that h∗ is the function that minimizes the loss over all
possible functions. This implies that γ∗ = 1 and ν∗ = 0, as otherwise one could still improve the
loss by scaling or shifting. Thus, by Lemma 1 we have:
Proposition 1. Assume that h∗ minimizes the squared loss (6). Then h∗ maximizes the signal-to-noise
ratio, i.e.,

L(h∗) = min
h

L(h) ⇒ SNR(h∗) = max
h

SNR(h).

Proof. A solution that minimizes the loss has EX∼P [h∗(X)] ≥ EY∼Q [h∗(Y )] and hence a non-
negative SNR. Assume there exists h̃ such that SNR(h̃) > SNR(h∗). Then Lemma 1 implies the
existence of γ̃, ν̃ such that L(γ̃h̃+ ν̃) < L(h∗), which is a contradiction.

We can further derive a closed-form solution for the population optimal witness:
Proposition 2 (Optimal Witness). Assume P and Q have densities p(x) and q(x). The function
minimizing Eq. (6) is

h∗(x) =
(1− c)p(x)

(1− c)p(x) + c q(x)
. (7)

Proof. We rewrite Eq. (6) as L(h) =
∫
X (1− c)p(x)(1− h(x))2 + c q(x)h2(x) dx. Minimizing the

integrand for each x yields the claimed result. A similar result was obtained by Mao et al. [2019].

Remark 1. Consider the balanced case c = 1/2, i.e., equal prior probabilities of labels ’1’ and ’0’.
Then h∗(x) is the posterior probability that the example x came from P , or, using our defined labels,
h∗(x) = Pr [1|x]. Thus, minimizing a log loss, i.e. the binary cross-entropy, and using its output
probability for class 1 as witness function also maximizes test power.
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Notice that for c ̸= 1/2, we need to weight our samples with the inverse weights, i.e., it is more
important to get the less frequent samples right.

Proposition 1 and Remark 1 lead to our main conclusion: To find an optimal witness, we can simply
optimize the (weighted) squared error or a cross-entropy loss. This allows us to seamlessly integrate
existing AutoML frameworks, which are designed to solve this task in an automated fashion, to learn
powerful witnesses. In the following we mainly focus on the squared error.

3.2 Practical implementation

Stage I - optimization. In the first stage, we optimize the witness function to minimize the MSE
via the training data Str

P and Str
Q, as motivated in the previous section. We simply label the data with

1 or 0 depending on whether they come from P or Q. We can then use any library that implements
an optimization of a squared loss. If c ̸= 1/2 we additionally need to specify weights according
to Eq. (6). Note that, unsurprisingly, the relevant quantity for the test power is the loss on the test
data and not on the training data. Thus, it is of crucial importance to find a witness with good
generalization performance. To make this as simple as possible for practitioners, we propose to use
an AutoML framework. This also has the advantage that users can specify runtime and memory
limits, and can explicitly trade computational resources for better statistical significance.

Although we strongly argue towards using AutoML for the test, this can of course not circumvent
the no-free-lunch theorem. Thus, whenever users have good intuition about how their two samples
might differ, we strongly encourage taking this into account when designing the test. To put it to
the extreme: If one knows that their (one-dimensional) data follows a normal distribution and only
differs in mean (if at all), one should use a classic t-test rather than our approach.

Stage II - testing. Given a witness function h learned as detailed in the previous section, we compute
the test statistic as in Eq. (2). To compute a p-value or decide whether to reject the null hypothesis P =
Q, we can either approximate the asymptotic distribution or use permutations [Kübler et al., 2022].
To estimate an asymptotically valid p-value1 we first estimate σ2

c (h) (see Eq. (3)) based on Ste
P , S

te
Q,

which we denote as σ̂2
c (h). The p-value is then given as 1− Φ

(√
nte +mteτ(S

te
P , S

te
Q|h)/σ̂c(h)

)
.

For two-sample tests, a cheap alternative that guarantees correct Type-I error control even at finite
sample size is based on permutations [Golland and Fischl, 2003]. In case of witness functions, one
can simply permute the values h(x1), . . . , h(xnte), h(y1), . . . , h(ymte) and split them in two sets of
size nte and mte, respectively. One then recomputes the test statistic over B ∈ N iterations. When
the permuted test statistic was T times at least as extreme as the original, one needs to use a biased
estimator p = T+1

B+1 to control the Type-I error [Phipson and Smyth, 2010]. We reject whenever
p ≤ α. We emphasize that we do not need to retrain the model, and it even suffices to evaluate the
witness once on all elements of the test sets. We can then directly permute the witness’ values.

Runtime. The overall runtime of the AutoML based witness test is the sum of the runtimes of the
training phase, the evaluation of the witness, and the evaluation of the test statistic. We denote the
scaling of the former by strain[ntr +mtr], where the square brackets indicate a functional dependency.
It will depend on the AutoML framework but can usually be controlled by setting a time limit.
Even with a limit of one minute or less AutoGluon can already train powerful models on large
datasets and even performs model-selection, hyperparameter optimization, and so on. In contrast,
deep kernel-based methods typically train a neural network with a fixed architecture, which can
be expensive. Although neural networks belong to the suite of models AutoGluon trains, they are
optimized for speed and if the runtime limit does not permit training them another faster model will
be selected.

The scaling of evaluating h, denoted by seval[ntr + mtr], is usually linear in the dataset size, but
it can be sublinear if the evaluation is parallelized. It can also be controlled with AutoGluon
by using different hyperparameter presets which might optimize the model selection towards fast
inference times. Compared to that, kernel-based tests have a quadratic runtime. Furthermore, the test
statistic has to be evaluated on the original partition of the data as well as B permutations requiring
(ntr +mtr)(B + 1) steps. In practice, this is usually the cheapest step, but it could also be further

1Asymptotic p-values are strictly speaking only valid for fixed h as the size of S te
P , S

te
Q goes to infinity.
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Figure 2: Testing MNIST against shifted MNIST with ’0’s knocked out. The optimized witness
assigns the highest values to the images on the left, and lowest values to the images on the right,
allowing us to interpret the difference.

reduced by parallelization. The overall runtime is given by

O (strain[ntr +mtr] + seval[nte +mte] + (nte +mte)(B + 1)) . (8)

Generally, training the witness will be the most expensive step of our test. A main advantage of
our test over others is that practitioners can easily trade-off spending more time and resources on
the training phase to potentially get a better witness and thus to more significant results. Thanks to
AutoML, specifying the time and resources does not require any detailed knowledge of the underlying
algorithm and is hence easily done.

3.3 Interpretability

Suppose our test finds a significant difference between SP and SQ. An additional task would be
to interpret how the distributions differ. This is particularly simple in our framework and shown in
Fig. 2: We can check which examples attained the highest value of the witness to find which inputs
are much more likely under P than under Q. On the other hand, inputs with small witness values are
more likely under Q. Similar procedures were used in Jitkrittum et al. [2016], Lopez-Paz and Oquab
[2017], Rabanser et al. [2019]. An additional advantage of using the AutoML framework AutoGluon
is that it allows to compute feature importance values easily. Therefore, for datasets which are hard
to visualize the important features of data points with high or low witness values can be identified.

4 Relation to prior work

Gretton et al. [2012a] introduced the maximum mean discrepancy as a test statistic for two-sample
testing. For a given reproducing kernel Hilbert space H, the maximum mean discrepancy is

MMD = max
h∈H,∥h∥≤1

EX∼P [h(X)]− EY∼Q [h(Y )]. (9)

Commonly an empirical estimate of the squared MMD is taken as test statistic and thresholds
estimated via permutations. The connection to our test is quite apparent, since both use the mean
discrepancy as test statistic - solely that the MMD optimizes the function over the RKHS unit ball,
and the witness test tries to maximize the test power when learning the function on a held-out data
set. The past years have shown that learning the kernel in a data-driven manner improves testing
performance [Gretton et al., 2012b, Sutherland et al., 2017, Liu et al., 2020, Kübler et al., 2020, Liu
et al., 2021].

Schrab et al. [2021] test with a finite collection of different kernels and reject if one of these MMD-
based tests rejects. To ensure correct Type-I error control, they need to aggregate the test and modify
the test thresholds to account for the multiple testing (MMDAgg). This allows them to use the full
dataset, without having to split in train and test sets, but in turn this only enables using a countable
candidate set. Other approaches rely on data splitting: Liu et al. [2020] proposed to learn a deep
kernel, by using an asymptotic test power criterion [Sutherland et al., 2017] and considering a rather
involved kernel function (MMD-D), see their Eq. (1). They concluded that this is often better than
learning a one-dimensional representation, like a classifier does. In Appendix B.1 we show that our
results in Section 3.1 similarly apply to learning kernels. Concretely, one can also use a squared loss
or cross-entropy loss when optimizing the kernel and the asymptotically optimal kernel is given as

k∗(x, x′) = h∗(x)h∗(x′), (10)

with h∗ given in Eq. (7).

Kübler et al. [2022] questioned the insight of Liu et al. [2020] that one should learn a kernel, by
showing that learning a simple witness function via a test power criterion often suffices. They showed
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how to use cross-validation and kernel Fisher Discriminant Analysis (kfda) to find powerful witness
functions (kfda-witness), which serves as the blueprint for our more general approach. Chwialkowski
et al. [2015] proposed another kernel-based fast two-sample test with smooth characteristic functions
(SCF) and projected mean embeddings (ME), which was refined by Jitkrittum et al. [2016] who
optimized this test statistic in the first stage. Kirchler et al. [2020] trained a deep multidimensional
representation and used its mean distance as test statistic. Recently, Zhao et al. [2022] proposed a
general framework that also includes MMD and Shekhar et al. [2022] proposed another variant of
MMD two-sample tests.

Classifier two-sample tests (C2ST) also rely on a data splitting approach and have extensively been
studied in the literature [Friedman, 2003, Golland and Fischl, 2003, Lopez-Paz and Oquab, 2017,
Kim et al., 2021, Cai et al., 2020, Hediger et al., 2022]. For simplicity, we focus on the balanced case.
A C2ST trains a classifier with Str

P , labelled with ’1’ and Str
Q labelled with ’0’ and then estimates its

classification accuracy on Ste
P , S

te
Q. If the estimated accuracy is significantly above chance (that’s

what it would be under the null hypothesis), the test rejects. Let f : X → {0, 1} denote the binary
classifier, then we can write the accuracy as 1

2 + ε and estimate it as

1

2
+ ε̂ =

1

2

(
1

nte

nte∑
i=1

f(xi) +
1

nte

nte∑
i=1

(1− f(yi))

)
=

1

2
+

1

2

(
1

nte

nte∑
i=1

f(xi)−
1

nte

nte∑
i=1

f(yi)

)

=
1

2
+

1

2
τ(Ste

P , S
te
Q | f).

Thus using the classification accuracy as test statistic is equivalent to using the mean discrepancy
as test statistic with the binary classifier f as witness function in Eq. (2). However, using binary
classifiers is quite limiting and results in quite high variance. Using continuous witness functions
allows for higher power.2 An alternative to using the mean discrepancy is to rank the test data under
the witness function and apply a Mann-Whitney test [Vayatis et al., 2009]. Some might also speak
of ’classifier’ test when referring to a witness test, but using the term ’witness’ emphasizes that it is
continuous.

Lipton et al. [2018] proposed to use a pretrained classifier to detect label shift. Rabanser et al. [2019]
extended this to detect covariate shift. They investigate different ways of reducing the dimensionality
and then applying different (classical) hypothesis test on them. While they also consider a basic C2ST,
their best performing method uses the softmax outputs of a pretrained image classifier. They then run
a univariate Kolmogorov-Smirnov test on each of the output ’probabilities’ separately and correcting
via Bonferroni correction. We refer to this as (univariate) BBSDs (black box shift detection - soft).
For more details on their other methods, we refer the reader to their work directly.

5 Experiments

To show the power of utilizing AutoML we use the same setup for all datasets we consider. The
data is split into two equally sized parts since this is the standard approach [Lopez-Paz and Oquab,
2017, Liu et al., 2020, Rabanser et al., 2019]. We label data from P with ’1’, data from Q with ’0’
and fit a least square regression with AutoGluon’s TabularPredictor [Erickson et al., 2020].3 We
use the configuration presets=’best_quality’ and by default optimize with a five-minute time
limit. For more details, we refer to the AutoGluon documentation. We run all experiments with
significance level α = 5%. Results of correct Type-I error control are provided in Appendix C. The
sample size we report is always the size of the datasets before splitting, i.e, n = m, since we only
consider balanced problems.

All experiments were done on servers having only CPUs and we spend around 100k CPU hours on
doing all the experiments reported in the paper, which is mainly because we did various configurations
and many repetitions for all the test cases we consider. Further details are given in Appendix C.

Blob & Higgs. We first compare the performance on two low-dimensional datasets used to examine
the power of two-sample tests. Following Liu et al. [2020] we consider the Blob dataset, which is a

2Lopez-Paz and Oquab [2017] also observe that using a binary classifier might be too restrictive (see their
Remark 2), but they did not investigate this in detail.

3We also run one experiment with Auto-Sklearn, see Table 5. A recent benchmark of AutoML frameworks
can be found in Gijsbers et al. [2022].
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Figure 3: Experiments on low dimensional problems. The simple approach of learning a one-
dimensional witness function with AutoML or optimizing a witness via kfda and a grid search can
outperform more involved approaches. Left: Blob, Right: Higgs.

Table 1: Shift detection on MNIST and CIFAR10 based on Rabanser et al. [2019].

(a) Test power across all simulated shifts on MNIST
and CIFAR10. We propose the AutoML methods, and
additionally run new baselines (MMDAgg, MMD-D).

Test DR
Number of samples from test

10 20 50 100 200 500 1,000 10,000

U
ni

v.
te

st
s

NoRed 0.03 0.15 0.26 0.36 0.41 0.47 0.54 0.72
PCA 0.11 0.15 0.30 0.36 0.41 0.46 0.54 0.63
SRP 0.15 0.15 0.23 0.27 0.34 0.42 0.55 0.68
UAE 0.12 0.16 0.27 0.33 0.41 0.49 0.56 0.77
TAE 0.18 0.23 0.31 0.38 0.43 0.47 0.55 0.69

BBSDs 0.19 0.28 0.47 0.47 0.51 0.65 0.70 0.79

χ2 BBSDh 0.03 0.07 0.12 0.22 0.22 0.40 0.46 0.57
Bin Classif 0.01 0.03 0.11 0.21 0.28 0.42 0.51 0.67

M
ul

tiv
.t

es
ts

NoRed 0.14 0.15 0.22 0.28 0.32 0.44 0.55 –
PCA 0.15 0.18 0.33 0.38 0.40 0.46 0.55 –
SRP 0.12 0.18 0.23 0.31 0.31 0.44 0.54 –
UAE 0.20 0.27 0.40 0.43 0.45 0.53 0.61 –
TAE 0.18 0.26 0.37 0.38 0.45 0.52 0.59 –

BBSDs 0.16 0.20 0.25 0.35 0.35 0.47 0.50 –

AutoML (raw) 0.17 0.24 0.37 0.46 0.50 0.62 0.67 0.87
AutoML (pre) 0.18 0.29 0.42 0.47 0.47 0.64 0.65 0.72

AutoML (class) 0.19 0.19 0.38 0.46 0.52 0.61 0.67 0.87
AutoML (bin) 0.03 0.14 0.31 0.43 0.49 0.51 0.59 0.86

MMDAgg 0.20 0.28 0.40 0.43 0.46 0.52 0.58 0.79
MMD-D 0.22 0.19 0.25 0.36 0.40 0.48 0.56 0.65

(b) Test power depending on the shift for the AutoML
test on the raw features (raw) vs. the AutoML test on
the output of pretrained features (pre).

Shift Test
Number of samples from test

10 20 50 100 200 500 1,000 10,000

s_gn raw 0.20 0.27 0.33 0.40 0.43 0.50 0.63 0.80
pre 0.00 0.03 0.10 0.03 0.00 0.10 0.03 0.03

m_gn raw 0.27 0.23 0.33 0.43 0.43 0.53 0.63 0.83
pre 0.00 0.03 0.17 0.00 0.00 0.13 0.07 0.13

l_gn raw 0.23 0.33 0.53 0.67 0.70 0.77 1.00 1.00
pre 0.17 0.27 0.50 0.57 0.60 0.73 0.80 0.90

s_img raw 0.13 0.27 0.30 0.33 0.40 0.50 0.53 0.83
pre 0.20 0.30 0.60 0.57 0.67 0.83 0.83 1.00

m_img raw 0.03 0.00 0.03 0.00 0.10 0.20 0.30 0.57
pre 0.07 0.03 0.13 0.10 0.13 0.33 0.47 0.60

l_img raw 0.20 0.07 0.27 0.37 0.40 0.50 0.47 0.83
pre 0.10 0.03 0.07 0.23 0.27 0.57 0.63 0.70

adv raw 0.07 0.10 0.37 0.37 0.43 0.70 0.67 0.90
pre 0.27 0.33 0.53 0.67 0.60 0.83 0.80 0.87

ko raw 0.17 0.33 0.37 0.50 0.60 0.83 0.83 0.97
pre 0.27 0.47 0.57 0.77 0.67 0.87 0.87 0.97

m_img raw 0.00 0.03 0.23 0.53 0.53 0.67 0.67 1.00
+ko pre 0.17 0.43 0.50 0.73 0.80 1.00 1.00 1.00

oz raw 0.37 0.77 0.97 1.00 1.00 1.00 1.00 1.00
+m_img pre 0.60 0.93 1.00 1.00 1.00 1.00 1.00 1.00

mixture of nine Gaussian modes, with different covariance structures between P and Q [Liu et al.,
2020, Fig. 1]. We also consider the Higgs dataset [Baldi et al., 2014], which was introduced by
Chwialkowski et al. [2015] as a two-sample problem. As baselines, we use MMD-D, ME, SCF, and
kfda-witness as reported by Kübler et al. [2022]. We report the results in Fig. 3, where ±1 standard
error are shown as shaded regions. Since we estimated the performance over 500 runs, we obtain a
smaller error than the other methods. We observe that both approaches based on the mean difference
of a witness function (kfda-witness, AutoML) perform competitively. AutoML performs best on
Blob, and kfda-witness is best on Higgs.

Detecting distribution shift. Rabanser et al. [2019] introduced a large benchmark for the de-
tection of distribution shifts. We repeat their experiments by considering the datasets MNIST
[LeCun et al., 2010] and CIFAR10 [Krizhevsky, 2009]. We consider sample sizes n,m ∈
{10, 20, 50, 100, 200, 500, 1000, 10000}. Each shift is applied on a fraction δ ∈ {0.1, 0.5, 1.0}
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of the second sample in different runs. We consider the following shifts: Adversarial (adv): Turn
some images into adversarial examples via FGSM [Goodfellow et al., 2015]; Knock-out (ko): Re-
move samples from class 0; Gaussian noise (gn): Add gaussian noise to images with standard
deviation σ ∈ {1, 10, 100} (denoted s_gn, m_gn, and l_gn); Image (img): Natural shifts to images
through combinations of random rotations, (x, y)-axis-translation, as well as zoom-in with different
strength (denoted s_img, m_img, and l_img); Image + knock-out (m_img+ko): Fixed medium image
shift and a variable knock-out shift; Only-zero + image (oz+m_img): Only images from class 0 in
combination with a variable medium image shift. More details are given in [Rabanser et al., 2019].
In total, we run 33 different shift experiments on MNIST and CIFAR10 each and for each sample
size. Every setting is repeated for 5 times.

The methods of Rabanser et al. [2019] perform a dimensionality reduction by using the whole training
set (50.000 images for MNIST, 40.000 images for CIFAR10). The actual tests compare examples
from the validation set (10.000 images) to examples from the shifted test set (10.000 images). They
also consider a C2ST trained on the raw features, i.e. without seeing the whole training set.

We add four univariate AutoML witness tests: a) AutoML (raw) trains a regression model on the raw
data with MSE, which is our default, b) AutoML (pre) uses the same setting, but trains on the softmax
output of a pretrained classifier for MNIST/CIFAR10 respectively, which is the same representation
as BBSDs used, c) AutoML (class) trains a classifier and uses its predicted probabilities of class ’1’
as witness function, d) AutoML (bin) uses the same as c) but only considers binary outputs.

As additional baselines we also, for the first time, run the shift detection pipeline with MMD-D [Liu
et al., 2020] and MMDAgg [Schrab et al., 2021], where we use the settings recommended in their
paper. For MMD-D we use the exact architectures and hyperparameters that Liu et al. [2020] used
for their MNIST and CIFAR-10 Tasks. For MMDAgg we report results with Laplacian kernels with
bandwidth in {2cλmed | c ∈ {10, 11, . . . , 19, 20}.4

Our findings are reported in Table 1. From Table 1a we see that AutoML (raw) achieves overall very
competitive performance in detecting the shifts, especially for large sample sizes. Moreover, we
see that AutoML (raw) and AutoML (class) achieve comparable performance which confirms our
findings of Remark 1. Thresholding the classification probabilities to binary outputs always harms
the performance, see AutoML (class) vs. AutoML (bin). We can also compare AutoML (bin) with
’classif’, as reported by Rabanser et al. [2019]. While both use binary classifiers for the testing,
’classif’ used a fixed architecture across all shifts. This illustrates the power of using AutoML, as
we find significantly better performance across all sample sizes. If instead of training on the raw
features we start from the ten dimensional pretrained features, i.e. AutoML (pre), the performance
is improved when the sample size is small. For large sample sizes, instead working with the raw
features gives higher power. We also see that the AutoML test outperforms MMDAgg and MMD-D
except for very small sample size.

In Table 1b we report the test power for comparing AutoML (raw) with AutoML (pre) for the different
shifts. Using the pretrained probabilities of the softmax output, it is extremely hard to detect Gaussian
noise, while AutoML (raw) does a fairly good job here. This is consistent with the findings of
Rabanser et al. [2019, Table 1(b)]. Apparently, the output probabilities of the pretrained models are
quite invariant under small and medium noise on the inputs. For the other shifts, such as knock-outs,
using the pretrained features improves performance, particularly at small sample sizes. The Code to
reproduce our experiments is provided at github.com/jmkuebler/autoML-TST-paper.

6 Discussion

Bias-variance tradeoff. Our results on the distribution shift benchmark indicate a bias-variance
tradeoff when optimizing the witness in Stage-I. Learning the witness function over a ten dimensional
pretrained representation gives good test power for some shifts even for small sample sizes, however,
at the cost of being almost unable to detect other shifts, such as local Gaussian noise. Thus, learning
on pretrained features introduces a strong bias. On the other hand, learning directly on the raw
features introduces little bias, even more so since we used AutoGluon’s TabularPredictor, which
is not specifically designed for images. This has the effect that on small sample sizes the test power is

4The authors of Schrab et al. [2021] proposed different parameter settings and ran the benchmark with those.
For their additional results please visit https://github.com/antoninschrab/FL-MMDAgg.
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reduced, but when large data is available, we observe good test power across almost all shifts. For
practical applications this implies that using models with the right bias when learning hypothesis
tests is just as important as in any other supervised learning setting.

Stand on the shoulders of giants. As we see from the Blob and Higgs experiments the conceptually
simple witness two-sample test can outperform more sophisticated test statistics like the deep MMD.
This is possible through both the use of cross-validation (kfda-witness) or a full AutoML pipeline. In
the distribution shift benchmark, we saw much better performance even when comparing a binary
classifier (AutoML (bin)) with a classifier having a prespecified architecture (classif). Furthermore,
using an AutoML framework allows practitioners to stand on the shoulders of giants and removes the
need for specialized expertise. Instead, they can directly control how much time and resources to
spend on optimizing the witness, which can lead to improved significance and/or inference time.

Which test to use? Obviously, there is no general answer to this question, and we are not claiming
that our AutoML two-sample test should always be used. In special settings, a simple parametric test
would perform much better than our AutoML witness test (see Appendix C.3). Similarly, using MMD
with a kernel can be the right choice in some settings. Nevertheless, a few points should be considered.
For example, we demonstrate that a test using binary outputs of a classifier underperforms a test using
the predicted probabilities of the same classifier. Therefore, we do recommend choosing the latter
instead of the former. Furthermore, when using data splitting we should ensure that in the first stage
we are actually optimizing the test power or a directly related proxy loss. To this end, it is important to
use techniques that ensure good predictive performance and prevent overfitting. This brings us to the
last point: We should also consider the resources available, both computational and human, that are
relevant when implementing the test. That is, a testing framework should be easy to apply by a large
group of users and should be adaptable to the computational resources the user is willed to spend on
the test. The AutoML witness test can tick off all boxes. It learns a continuous witness function to
optimize test power, leverages well-engineered toolboxes to maximize predictive performance, and
requires little engineering expertise to apply and gives easy control over the computational resources
used to learn the test, by setting a time limit and providing the available hardware.

Limitations and future work. While we recommend using a 50/50 split for learning and testing,
this is generally not optimal. The splitting ratio balances the need to train a powerful witness function,
while retaining enough data to obtain significant results in the testing phase. A potential extension
could be to adaptively choose how much data is used for training [Lhéritier and Cazals, 2018], by
estimating whether the expected improvement of the witness function outweighs the reduction of the
test set. Alternatively, we could follow the idea of a k-fold cross-validation. Setting k = 2, we could
estimate two witness functions and estimate the witness value on the respective held-out sample. One
could then effectively use the whole dataset to compute the test statistic. However, this approach
creates again a dependency and requires a new method to obtain reliable p-values.

7 Conclusion

We showed that optimizing a squared loss or cross-entropy loss leads to a witness function that
maximizes test power, when using the mean discrepancy of the witness as a test statistic. This allows
us to harness the advances in Automated Machine Learning, where regression and classification are
the standard tasks, for two-sample testing. Although less studied, the use of a well-engineered toolbox
to maximize the predictive performance of the learned function is just as important for hypothesis
testing as it is for supervised learning tasks. The result is a testing pipeline that is theoretically
justified, leads to competitive performance, and is simple to apply in various settings. Our work thus
constitutes a step towards fully automated statistical analysis of complex data [Steinruecken et al.,
2019].
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helpful discussions and Vincent Berenz for contributing to autotst. Furthermore, Antonin Schrab
and Arthur Gretton for helping resolve the memory-efficiency issue of the MMDAgg test used in the
original experiments and for providing complementary results to those in our Table 1. This work was
supported by the German Federal Ministry of Education and Research (BMBF) through the Tübingen
AI Center (FKZ: 01IS18039B) and the Machine Learning Cluster of Excellence number 2064/1 –
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A Equivalence of squared loss and signal-to-noise ratio

We now prove Lemma 1. While the simplicity of the relation suggests that there is an instructive
proof we here give a proof based on direct calculation.

Proof of Lemma 1. After renaming we can assume that the minimizer of (γ, ν) → L(γh + ν) is
(γ∗, ν∗) = (1, 0), i.e., h itself minimizes the loss. We use the shorthand

h̄P ≡ EP [h(X)] and h̄Q ≡ EQ [h(Y )] (11)

for the mean of h under P and Q. Note that

0 =
d

dν

∣∣∣∣
ν=0

L(h+ ν) = 2(1− c)EP [h(X)− 1] + 2cEQ [h(X)]. (12)

This implies

ch̄Q = (1− c)(1− h̄P ). (13)

Similarly we get

0 =
d

dγ

∣∣∣∣
γ=1

L(γh) = 2(1− c)EP [h(X)(h(X)− 1)] + 2cEQ

[
h(Y )2

]
. (14)

We conclude that

(1− c)EP

[
h(X)2

]
+ cEQ

[
h(Y )2

]
= (1− c)h̄P . (15)

We observe using (15) and (13) that

L(h) = (1− c)
(
EP

[
h(X)2

]
− 2EP [h(X)] + 1

)
+ cEQ

[
h(Y )2

]
= (1− c) + (1− c)h̄P − 2(1− c)h̄P

= (1− c)(1− h̄P ) = ch̄Q.

(16)

Recall that

σ2
c (h) =

(1− c)VarX∼P [h(X)] + cVarY∼Q [h(Y )]

c(1− c)
. (17)

Using VarP (h(X)) = EP

[
h(X)2

]
− h̄2

P and (15) we derive

c(1− c)σ2
c (h) = (1− c)EP

[
h(X)2

]
+ cEQ

[
h(Y )2

]
− (1− c)h̄2

P − ch̄2
Q

= (1− c)h̄P − (1− c)h̄2
P − ch̄2

Q

= (1− c)h̄P (1− h̄P )− ch̄2
Q

= ch̄P h̄Q − ch̄2
Q

= L(h)(h̄P − h̄Q)

(18)

where we used (13) in the penultimate and (16) in the last step. Using the second step from the last
display we obtain

c(1− c)
(
σ2
c (h) + (h̄P − h̄Q)

2
)

=
(
(1− c)h̄P − (1− c)h̄2

P − ch̄2
Q

)
+ c(1− c)(h̄2

P + h̄2
Q − 2h̄P h̄Q)

= (1− c)h̄P − (1− c)2h̄2
P − c2h̄2

Q − 2c(1− c)h̄P h̄Q

= (1− c)h̄P − ((1− c)h̄P + ch̄Q)
2.

(19)

Now we use (13) which implies 1− c = (1− c)h̄P + ch̄Q and get

c(1− c)
(
σ2
c (h) + (h̄P − h̄Q)

2
)
= (1− c)h̄P − (1− c)((1− c)h̄P + ch̄Q)

= (1− c)(ch̄P − ch̄Q).
(20)

Recall that SNR2 = σc(h)
−2(h̄P − h̄Q)

2. We thus get using (18) and (20),

1

1 + SNR2 =
σc(h)

2

σc(h)2 + (h̄P − h̄Q)2
=

L(h)(h̄P − h̄Q)

(1− c)c(h̄P − h̄Q)
=

L(h)

c(1− c)
. (21)

This completes the proof.
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B Extended discussion of related works

B.1 Implications for testing with MMD with an optimized kernel

As we discussed in the related work, using the mean discrepancy as a test statistic is closely connected
to tests based on the MMD [Gretton et al., 2012a]. We now briefly discuss the implications of our
findings in Section 3.1 for MMD-based tests with optimized kernel functions [Sutherland et al., 2017,
Liu et al., 2020].

Sutherland et al. [2017] showed that the asymptotic test power of an MMD-based two sample test
is determined by its kernel function k via the criterion J(P,Q; k) = MMD2(P,Q; k)/σ(P,Q; k),
where σ(P,Q; k) is the standard deviation of the MMD estimator, see Proposition 2 and Eq. (3) of Liu
et al. [2020]. Hence, they use an empirical estimate of J when optimizing the kernel function. Kübler
et al. [2022, Appendix A.5] showed that J is directly related to the SNR Eq. (5) of the MMD-witness
function:

J(P,Q; k) =
1√
2

SNR(hP,Q
k ), (22)

where hP,Q
k = µP − µQ is the MMD-witness5 of kernel k, and µP , µQ denote the kernel mean

embeddings. Hence, we can think of optimizing the kernel for an MMD two-sample test as trying to
optimize the kernel such that its MMD-witness has maximal testing power in a witness two-sample
test. Given this insight, Kübler et al. [2022] argue that maximizing a witness is a more direct approach
as opposed to optimizing a kernel and then using MMD. When committing to MMD nevertheless,
our insights of Section 3.1 are directly applicable when optimizing the asymptotic test power of
MMD-based tests:

1. Instead of optimizing J one can also optimize the kernel function by minimizing the squared
loss or cross-entropy loss of its associated MMD-witness function (Proposition 1 and Remark 1).
We are not aware of any work that considered these choices before, see also Sutherland et al.
[2017, Section 2.2] for an overview of previously used (heuristic) approaches.

2. An asymptotically optimal kernel function is k∗(x, x′) = h∗(x)h∗(x′), with h∗ given in Eq. (7).

To see the second point, note that for k∗(x, x′) = h∗(x)h∗(x′) the corresponding MMD-witness is

hP,Q
k∗ (x′) = h∗(x′) (EX∼P [h∗(X)]− EY∼Q [h∗(Y )])

∝ h∗(x′).
(23)

Since h∗ is the optimal witness and the SNR is invariant to scaling, hP,Q
k∗ maximizes the right side of

Eq. (22), and thus no kernel function can lead to a larger J criterion.

B.2 Consistency of the AutoML two-sample test

As we mention in the main text, a witness-based two-sample test is consistent if in Stage-I with
high probability one finds a witness function that can discriminate the two distributions with a
SNR that is bounded from below. Kübler et al. [2022] showed that this is the case when learning
the witness function via (regularized) kernel Fisher Discriminant Analysis. Ideally, the asymptotic
witness function should also correspond to the Bayes optimal classifier (Proposition 2). For AutoML
frameworks such guarantees are usually not given. However, we emphasize that in practice what
matters is the predictive performance of the witness function learned from finite data. With regard
to this, AutoML has proven to be easier to apply and more successful than methods based on more
theoretically grounded learning algorithms. Nevertheless, if one cares more about the theoretical
guarantees than the practical performance, one might resort to using a nonparametric method. A
compromise could be to switch the used model similar to Erven et al. [2012], Lhéritier and Cazals
[2018].

5Note that the MMD-witness is not defined to maximize test power.
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Figure 4: Type-I error rates with specified level α = 0.05. Left: Blob Right: Higgs.

C Further experiments and details

C.1 Type-I error control

In Section 3.2 we discussed two methods to obtain p-values. Based on the asymptotic distribution
or based on permutations of the witness values. Since using permutations does not lead to a critical
increase in computational resources, we recommend this approach by default since it controls Type-I
error also at finite sample size. We empirically show this by running two experiments with the Blob
and Higgs dataset with significance level α = 5% and maximal training time tmax = 1min. We
follow Liu et al. [2020] and sample SP and SQ from the same distributions. For each sample size we
estimate the Type-I error rate over 500 independent runs and report the results in Fig. 4. Overall, on
Blob we estimate a Type-I error of 4.8%± 0.4% and Higgs of 4.3%± 0.3%, demonstrating that our
test correctly controls Type-I error.

C.2 Further experiments

In the main paper, the default setting of our reported results was to use AutoGluon with
presets=’best_quality’ and training with the MSE. We set the maximal runtime to tmax = 5
minutes. We now report further experiments with different settings and a more fine-grained analysis
for the shift detection datasets.

Blob dataset. We run different variants of the AutoML two-sample test on the Blob dataset. We use
different maximal training times tmax and besides our default approach ’AutoML’ that uses the MSE,
we also consider training a classifier with AutoGluon and using its probability of class ’1’ as witness
’AutoML (class)’. We also consider the binary outputs of the classifier as witness ’AutoML (bin)’.

We report the test power averaged over 500 trials in Table 2. Consistently with Remark 1 and our
observations, using ’AutoML (class)’ performs comparably to training with the MSE. However,
thresholding the classifier to binary values drastically decreases performance. We do not observe any
significant effect of allowing longer training times on this simple dataset.

All experiments were run on servers with Intel Xeon Platinum 8360Y processors, having 18 cores
and 64 GB of memory each.

Table 2: Test power on Blob dataset.

tmax Test Sample Size

180 360 540 720 900

1
AutoML 0.56±0.02 0.98±0.01 1.00±0.00 1.00±0.00 1.00±0.00

AutoML (class) 0.54±0.02 0.95±0.01 1.00±0.00 1.00±0.00 1.00±0.00
AutoML (bin) 0.39±0.02 0.84±0.02 0.99±0.00 1.00±0.00 1.00±0.00

5
AutoML 0.55±0.02 0.98±0.01 1.00±0.00 1.00±0.00 1.00±0.00

AutoML (class) 0.54±0.02 0.96±0.01 1.00±0.00 1.00±0.00 1.00±0.00
AutoML (bin) 0.37±0.02 0.83±0.02 0.98±0.01 1.00±0.00 1.00±0.00

10
AutoML 0.56±0.02 0.98±0.01 1.00±0.00 1.00±0.00 1.00±0.00

AutoML (class) 0.53±0.02 0.97±0.01 1.00±0.00 1.00±0.00 1.00±0.00
AutoML (bin) 0.36±0.02 0.84±0.02 0.99±0.01 1.00±0.00 1.00±0.00

Higgs dataset. We run the AutoML two-sample test (using MSE) for different maximal training
times tmax = 1, 5, 10 minutes on the Higgs dataset. We report our findings in Table 3. Notice that
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the Blob dataset is much simpler than Higgs, since we achieve unit test power with much smaller
sample size. For Higgs, we observe that the performance indeed depends on the training time. We
observe that for smaller sample size, using less training time leads to increased test power. On the
other hand, for larger sample size using more time is better. Although generally AutoGluon should
mitigate overfitting, it seems that for small sample sizes it overfits the validation set, within the
training stage. We believe that this happens because the signal in the Higgs dataset is extremely small,
and the heuristics AutoGluon is using are not designed for this. For larger sample size, the general
recommendation of ’allowing more time leads to better results’ is recovered.

All experiments were run on the same servers as those used for the experiments on the Blob dataset.

Table 3: Test power on Higgs dataset.

tmax Test Sample Size

1000 2000 3000 4000 5000 6000 8000 10000

1 AutoML 0.13±0.02 0.2±0.02 0.33±0.02 0.48±0.02 0.59±0.02 0.72±0.02 0.84±0.02 0.94±0.01
5 AutoML 0.09±0.01 0.17±0.02 0.33±0.02 0.46±0.02 0.62±0.02 0.73±0.02 0.89±0.01 0.98±0.01
10 AutoML 0.09±0.01 0.17±0.02 0.25±0.02 0.40±0.02 0.63±0.02 0.80±0.02 0.93±0.01 0.99±0.00

17



Detecting distribution shift. All AutoML results reported in Table 1 were run with tmax = 5
minutes, we show detailed performance depending on the shift type, shift strength, and percentage of
affected examples (shift frequency) in Table 4. For completeness, in Table 5 we also show summary
results for AutoML (raw), i.e., using MSE on the raw features for 1 and 10 minute maximal runtime.

All experiments were run on servers with Intel Xeon Gold 6148 processors, having 20 cores and 48
GB of memory each.

Table 4: Test power for the AutoML test with different methods all run with maximal training time of
tmax = 5 minutes.

(a) Test power depending on shift type.

Shift Test
Number of samples from test

10 20 50 100 200 500 1,000 10,000

s_gn

raw 5 0.20 0.27 0.33 0.40 0.43 0.50 0.63 0.80
pre 5 0.00 0.03 0.10 0.03 0.00 0.10 0.03 0.03

class 5 0.20 0.17 0.30 0.37 0.47 0.50 0.53 0.80
bin 5 0.00 0.17 0.27 0.40 0.40 0.33 0.40 0.73

m_gn

raw 5 0.27 0.23 0.33 0.43 0.43 0.53 0.63 0.83
pre 5 0.00 0.03 0.17 0.00 0.00 0.13 0.07 0.13

class 5 0.20 0.20 0.33 0.40 0.43 0.53 0.73 0.83
bin 5 0.00 0.17 0.30 0.40 0.43 0.37 0.53 0.83

l_gn

raw 5 0.23 0.33 0.53 0.67 0.70 0.77 1.00 1.00
pre 5 0.17 0.27 0.50 0.57 0.60 0.73 0.80 0.90

class 5 0.33 0.23 0.57 0.70 0.73 0.83 0.93 1.00
bin 5 0.03 0.17 0.43 0.67 0.70 0.67 0.80 1.00

s_img

raw 5 0.13 0.27 0.30 0.33 0.40 0.50 0.53 0.83
pre 5 0.20 0.30 0.60 0.57 0.67 0.83 0.83 1.00

class 5 0.23 0.10 0.30 0.37 0.43 0.50 0.50 0.87
bin 5 0.10 0.17 0.30 0.33 0.40 0.43 0.50 0.83

m_img

raw 5 0.03 0.00 0.03 0.00 0.10 0.20 0.30 0.57
pre 5 0.07 0.03 0.13 0.10 0.13 0.33 0.47 0.60

class 5 0.10 0.03 0.07 0.07 0.17 0.20 0.30 0.53
bin 5 0.00 0.00 0.07 0.10 0.10 0.03 0.20 0.50

l_img

raw 5 0.20 0.07 0.27 0.37 0.40 0.50 0.47 0.83
pre 5 0.10 0.03 0.07 0.23 0.27 0.57 0.63 0.70

class 5 0.07 0.07 0.33 0.33 0.47 0.43 0.47 0.83
bin 5 0.03 0.00 0.23 0.27 0.43 0.37 0.43 0.83

adv

raw 5 0.07 0.10 0.37 0.37 0.43 0.70 0.67 0.90
pre 5 0.27 0.33 0.53 0.67 0.60 0.83 0.80 0.87

class 5 0.10 0.07 0.33 0.33 0.40 0.67 0.70 0.90
bin 5 0.00 0.03 0.20 0.33 0.37 0.57 0.63 0.87

ko

raw 5 0.17 0.33 0.37 0.50 0.60 0.83 0.83 0.97
pre 5 0.27 0.47 0.57 0.77 0.67 0.87 0.87 0.97

class 5 0.20 0.23 0.37 0.53 0.60 0.80 0.80 0.97
bin 5 0.07 0.13 0.30 0.43 0.63 0.73 0.73 0.97

raw 5 0.00 0.03 0.23 0.53 0.53 0.67 0.67 1.00
m_img pre 5 0.17 0.43 0.50 0.73 0.80 1.00 1.00 1.00

+ko class 5 0.10 0.07 0.23 0.53 0.53 0.60 0.73 1.00
bin 5 0.00 0.03 0.13 0.43 0.43 0.60 0.67 1.00

raw 5 0.37 0.77 0.97 1.00 1.00 1.00 1.00 1.00
oz pre 5 0.60 0.93 1.00 1.00 1.00 1.00 1.00 1.00

+m_img class 5 0.33 0.77 0.97 1.00 1.00 1.00 1.00 1.00
bin 5 0.07 0.53 0.87 0.93 1.00 1.00 1.00 1.00

(b) Test power depending on shift intensity.

Test Intensity
Number of samples from test

10 20 50 100 200 500 1,000 10,000

ra
w

5 Small 0.14 0.11 0.21 0.26 0.31 0.40 0.47 0.73
Medium 0.16 0.20 0.33 0.38 0.42 0.58 0.61 0.86

Large 0.19 0.37 0.53 0.68 0.71 0.82 0.88 0.99

pr
e

5 Small 0.14 0.06 0.03 0.10 0.12 0.13 0.33 0.38
Medium 0.16 0.16 0.22 0.43 0.41 0.42 0.60 0.57

Large 0.19 0.30 0.53 0.64 0.77 0.77 0.90 0.92

cl
as

s
5 Small 0.14 0.12 0.09 0.23 0.26 0.37 0.38 0.43

Medium 0.16 0.18 0.12 0.32 0.37 0.42 0.57 0.64
Large 0.19 0.24 0.33 0.53 0.69 0.72 0.81 0.87

bi
n

5 Small 0.01 0.06 0.19 0.26 0.31 0.24 0.34 0.69
Medium 0.03 0.12 0.27 0.36 0.40 0.46 0.56 0.84

Large 0.04 0.22 0.43 0.62 0.69 0.75 0.80 0.99

(c) Test power depending on shift frequency.

Test Percentage
Number of samples from test

10 20 50 100 200 500 1,000 10,000

ra
w

5 10% 0.09 0.15 0.14 0.24 0.27 0.45 0.52 0.68
50% 0.15 0.17 0.45 0.52 0.58 0.66 0.72 0.94
100% 0.26 0.40 0.53 0.62 0.66 0.75 0.78 1.00

pr
e

5 10% 0.15 0.17 0.31 0.28 0.19 0.41 0.45 0.53
50% 0.14 0.27 0.40 0.48 0.53 0.70 0.69 0.79
100% 0.26 0.42 0.54 0.64 0.70 0.81 0.81 0.84

cl
as

s
5 10% 0.07 0.10 0.16 0.23 0.34 0.43 0.50 0.68

50% 0.16 0.13 0.44 0.54 0.58 0.68 0.71 0.94
100% 0.33 0.35 0.54 0.62 0.65 0.71 0.80 1.00

bi
n

5 10% 0.02 0.08 0.12 0.22 0.23 0.26 0.32 0.66
50% 0.02 0.08 0.29 0.51 0.58 0.61 0.69 0.91
100% 0.05 0.26 0.52 0.56 0.66 0.66 0.76 1.00

Table 5: Shift detection on MNIST and CIFAR10 based on Rabanser et al. [2019]. The performance
of the 5-minute runtime was reported in Table 1. We additionally show the effect of varying the
maximal runtime tmax. Furthermore, we report results using Auto-Sklearn [Feurer et al., 2020].

tmax Test Number of samples from test

10 20 50 100 200 500 1,000 10,000

5

AutoML (raw) 0.17 0.24 0.37 0.46 0.50 0.62 0.67 0.87
AutoML (pre) 0.18 0.29 0.42 0.47 0.47 0.64 0.65 0.72

AutoML (class) 0.19 0.19 0.38 0.46 0.52 0.61 0.67 0.87
AutoML (bin) 0.03 0.14 0.31 0.43 0.49 0.51 0.59 0.86

1 AutoML (raw) 0.19 0.21 0.37 0.46 0.49 0.60 0.66 0.81
10 AutoML (raw) 0.15 0.24 0.38 0.46 0.51 0.61 0.67 0.88

10 Auto-Sklearn (raw) 0.10 0.18 0.28 0.38 0.43 0.38 0.43 0.49
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C.3 In simple settings, simple tests should be used.

As we mention in our discussion, if one can make strong assumptions about the data, using a classic
test can be beneficial. To illustrate this, we run a toy experiment, where we test for equality in
variance for two Gaussians with equal mean (and variance 1.0 and 1.5 respectively). We run our
AutoML test and compare the performance to an F-test of equal variance (which uses the assumption
of normality). For sample sizes 50, 100, 500 we obtain test power of AutoML as 0.15, 0.43, 0.97 and
for the F-test as 0.88, 0.97, 1.0 (estimated over 100 trials, at significance level 5%).
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