
A Broader Impact, Limitations and Future Work

Limitations. In this work, our aim was to create a meaningful benchmark, provide practical
guidelines, and offer insights into various multimodal continual pretraining scenarios. We focused on
continual, controlled, minor model updates. We developed FoMo-in-Flux to include many publicly
accessible datasets covering a wide range of potential adaptation sub-domains. However, our findings
on knowledge accumulation AKA and zero-shot retention AZS are tied to our chosen adaptation
and evaluation datasets. Consequently, though unlikely, various sub-domains relevant for future
applications might not be sufficiently covered. Additionally, our methods were based off of default
hyperparameter ranges from original publications (LoRA, VeRA, DoRA, BitFit, LNFit, FS-Merge,
EMA-Merge) or continual learning repositories (mammoth [17]). While we tested the validity of each
method and the chosen hyperparameters to elicit meaningful finetuning responses on respective
single datasets (as highlighted e.g., for normal full-finetuning in Tab. 5), it overall means that our
conclusions rely on the optimality of these provided hyperparameter ranges.

Broader Impact. Better continual model pretraining and the ability to minimize the need for large-
scale model retraining can have significant impact on cost, compute and consequently environmental
footprint. By encouraging research into extending the re-usability of large-scale pretrained models
before a major continual model update or even full retraining from scratch is needed, we believe
our work will lead to more economical and ecological utilization of foundation models. We do not
believe that there are any immediate negative societal consequences as a result of this work, but we
outline the limitations of our datasets in appendix K.

Future Work. Our benchmark and findings provide a crucial starting point reference for further
research into continual multimodal pretraining. We sketch a few important and immediate future
research directions:

• (Meta-) Learning Rate Schedules and Beyond: Our experiments show the importance of
learning rate schedules (and meta-variants) designed for longer horizon continual (minor)
model updates. We used a default cosine learning rate schedule and one infinite learning
rate schedule (rsqrt), along with five meta-schedule variants, but our results showcase that
there is a lot of potential in further exploring infinite schedules, as well as extensions into
task- and order-conditioned learning rate schedules to allow for continual model pretraining
and model updates.

• Further Scaling Up Compute and Models: We studied continual learning under realistic
constraints (MAFs), with compute budgets derived from DataComp-small. Investigating
other computational budgets including over-training, and extending budgets to be potentially
task-order dependent could have practical relevance. Extending our insights to even larger
model scales (ViT-bigG/14 and beyond) can offer further practical guidance. We have
investigated the effect of model and compute scaling (see fig. 5) independently and to a first
degree, however we believe there is a lot more exciting future work to be done.

• Text-to-Image Generative Models: Besides vision-language representation learning,
FoMo-in-Flux can be used to study continuous minor updates of text-to-image gener-
ative models (such as generative diffusion models) on a fine-grained class and concept level,
leveraging its diverse set of captions and information about respective image concepts.

• Optimal Training Mixtures: Our results indicate that knowledge retention during minor
updates depends heavily on replaying data from previous tasks, guided towards “iid”-fying
the learning task. This process helps prevent knowledge forgetting related to pretraining.
However, there is room to better understand optimal training mixtures within limited compute
budgets. Finding the best ways to allocate FLOPs and memory for replay on large pretraining
data is crucial.

B The FoMo-in-Flux Benchmark: Additional details.

B.1 Creating our obscure datasets

We first query ChatGPT to produce a set of 100 obscure animal names and 100 obscure object
names. We then ask ChatGPT to produce diverse prompts for each class name to be used as text

24

Class: Ruin
Generated Caption:
“A photo of a temple built on a
hillside in the desert captures
the essence of a ruin.”

Class: Industrial Area
Generated Caption:
“The photo depicts an
industrial area with a
cooling tower emitting
billowing smoke.”

Class: Thayers Gull
Generated Caption:
“A photo of a Thayers Gull, a bird,
standing on a rock in a stream of water.”

Class: Gray Kingbird
Generated Caption:
“The Gray Kingbird, a
small bird, can be
seen in a photo
standing on top of a
tall stem.”

Class: Violet green Swallow
Generated Caption:
“In the clear blue sky, a photo
captures the Violet green Swallow
perched on a wire.”

Figure 7: Visualisation of generated captions. We showcase some sample captions generated using
our two-stage pipeline for fine-grained classes (birds from Birdsnap [9]), and general, coarse classes
(taken from SUN397 [202]). The generated captions combine both image descriptions as well as
important semantic class information.

Caption:
“A black-and-white photo
of a square located in
the top left (exact
position: x = 0.097 (0:
left, 1: right) and y =
0.097 (0: top, 1:
bottom).”

Caption:
“A black-and-white photo
of a heart located in the
top right: Located at x =
0.839 (with 0 as left, 1
as right) and y = 0.032
(0 top, 1 bottom).”

Caption:
“Captured from a
-30.00 degree angle:
a red, small cube
against a blue wall
on a blue flooring.”

Caption:
“A pink sphere
(larger size),
displayed on blue
flooring with a
orange background,
viewed from a 17.14
degree angle.”

Caption:
“From the 17.14
degree direction,
the orange pill
makes a striking
impression against
a simple backdrop.”

Figure 8: Visualisation of programmatically generated captions for Shapes3D [19] (right) and
DSprites [115] (left, black and white). Chosen at random, some captions are complete with exact
details, while some only have more generic descriptors. Caption style leverages templates generated
by GPT-4. The default resolution of these images is 64× 64, hence the low-resolution appearance.

prompts to feed into a text-to-image model. We manually reviewed the quality of text prompts for
faithfulness to real world contexts, and then used Kandinsky-2.1 [147], Stable Diffusion-2.1 [153],
and Dreamlike-PhotoReal [1] text-to-image models to generate images for each classname using
the curated text prompts. Finally, for each class we manually cleaned and filtered the images to
ensure faithfulness. We conservatively removed an entire class if more than 30% of its images were
ambiguous or unfaithful to the class using reference images from Google Images.

B.2 Additional information on FoMo-in-Flux datasets.

Tables 2 and 3 highlight the diversity of domains and concepts covered in FoMo-in-Flux—ranging
from diagrams and paintings, natural high- and low-resolution images, to synthetic and generative
images, covering fine-grained and specialized domains, such as remote sensingand medical images.
On the language side, concept and classes covered also vary noticeably, with e.g. ArtBench10
built around art-style and artist classification (as reflected in the captions), Quilt-1M introducing
medical captions for histopathological image data, or our synthetic Obscure datasets introducing
rare, fantastical concepts with corresponding captions. Dataset licenses are provided in both tables,
all of which permit academic re-use. We provide references to original publications, most of which
contain information how to download each dataset. To facilitate reproduction, our codebase comes
with automatic download mechanisms for datasets where possible, and manual instructions otherwise.
Examples for our generated captions are provided in fig. 7 for natural images., and in fig. 8 for
procedural generation. Figure 9 contains examples from our generated obscure datasets.

B.3 Pipeline, Compute Budgeting and Data Restrictions - Full Overview.

We illustrate the general FoMo-in-Flux training and evaluation pipeline in fig. 1. We start with a
model θ0 trained on a large pretraining dataset P , and an empty buffer B.

25

Table 2: Adaptation-only datasets over various visual and textual domains like diagrams, paintings,
natural, synthetic or generative images, remote sensing, art styles, traffic signs or textural data; with
datasets from Radford et al. [142] with lower zero-shot performance, common transfer or aggregation
benchmark datasets such as DomainNet [129] or VTAB [210] and specialized datasets like MVTec-
AD [10].

Dataset #Train #Test #Classes Domain License Captions

Classification-based
AI2Diagrams [84] 2720 681 15 diagrams CC BY-SA generated
ArtBench10 [99] 47531 11883 1870 paintings Fair Use generated
Birdsnap [9] 31905 7977 500 finegrained, natural Unspecified, but academic usage generated
Cifar100 [93] 50000 10000 100 natural Unspecified, but academic usage generated
CLEVR [83] 55931 13983 217 synthetic CC BY 4.0 generated
CLRS [151] 13525 1475 25 remote sensing Academic purposes [151] generated
Country211 [142] 31650 21100 211 natural various CC generated
CUB200-2011 [186] 5994 5794 200 finegrained, natural custom non-commercial generated
DF20-mini [131] 32724 3637 179 finegrained, natural custom non-commercial generated
Dollarstreet [152] 13555 4103 1701 finegrained, natural CC BY-SA 4.0 generated
Domainnet-Clipart [129] 33525 14604 345 illustrations custom non-commercial generated
Domainnet-Infograph [129] 36023 15582 345 diagrams custom non-commercial generated
Domainnet-Painting [129] 50416 21850 344 paintings custom non-commmerical generated
Domainnet-Sketch [129] 48212 20916 345 sketch custom non-commercial generated
Dsprites [115] 75000 25000 27 synthetic Apache 2.0 procedural
DTD [31] 1880 1880 47 textural custom non-commercial generated
FGVCAircraft [110] 3334 3333 100 finegrained, natural custom non-commercial generated
Flowers102 [125] 6149 1020 102 finegrained, natural Unspecified, but academic usage generated
FRU92 [69] 55814 9200 92 finegrained, natural Apache 2.0 generated
iNaturalist2021 [79] 125000 25000 2500 finegrained, natural custom non-commercial generated
Isicmelanoma [41] 2245 562 7 medical CC-BY-NC generated
Mitstates [80] 43002 10751 1959 finegrained, natural Unspecified, but academic usage generated
Mtsd [44] 59978 8737 227 finegrained, traffic signs CC BY-NC-SA 4.0 generated
MVTec-AD (Base) [10] 2903 726 15 high-resolution, industrial CC BY-NC-SA 4.0 generated
MVTec-AD (Faults) [10] 1380 345 88 high-resolution, industrial CC BY-NC-SA 4.0 generated
ObjectNet [7] 40134 10000 313 natural CC BY 4.0 generated
Obscure Animals 17000 4238 74 generative MIT custom
Obscure Things 19128 4758 84 generative MIT custom
OpenImages [90] 115333 8593 589 natural Apache 2.0 available
PatternNet [226] 26600 3800 38 remote sensing custom non-commercial generated
Places365 [221] 120231 36499 365 natural custom non-commercial generated
Plantvillage [75] 43444 10681 38 finegrained, natural CC0 generated
Quilt-1M [77] 95862 23966 157 medical Academic purposes available
Resisc45 [68] 18900 6300 45 remote sensing Unspecified, but academic usage generated
Shapes3D [19] 75000 25000 864 synthetic Apache 2.0 procedural
SnakeCLEF2023 [130] 151031 14117 1599 finegrained, natural custom non-commercial generated
SUN397 [202] 15880 19850 397 natural custom non-commercial generated
SynthCLIP106 [60] 84800 13886 106 generative CC BY-NC 4.0 generated
Veg200 [69] 61117 20000 200 finegrained, natural Apache 2.0 generated
Zappos50k [205] 37829 9458 1847 finegrained, object custom non-commerical generated

Retrieval-based
FSCOCO [30] (avg T2I/I2T R@5) 7105 1777 115 sketch CC BY-NC 4.0 Available

Total 1759782 453020 18449

Thing: Khopesh Thing: Matryoshka Doll Thing: Tessellation Animal: Kakapo Animal: Ichthyosaur

Figure 9: Examples of our generated obscure things and animals along with captions, covering
100 rare and uncommonly occurring things and animals. For each class, images are generated using
either Kandinsky-2.1 [147], Stable Diffusion 2.1 [153] or Dreamlike-PhotoReal [1].

Continual Pretraining Updates. Within the allocated update budget, at each update step j ∈
{1, 2, . . . , T}, the following happens in order:

1. The stream reveals a task update pool of nj image-text pairs Dj = {(ijk, t
j
k)}

nj

k=1 spanning
Cj concepts.

2. We create the training data mixture Sj by sampling from the pretraining data P , buffer B,
and current task data Dj with respective ratios λP , λB, and λD, such that λP+λB+λD = 1.

26

Table 3: FoMo-in-Flux Evaluation-only Datasets. We utilize a subset of standard evaluation
datasets used in Radford et al. [142], as well as an array of ImageNet-like variations (including
the original ImageNet) to probe different aspect of vision-language understanding and alignment.
Moreover, datasets like Food101 [18] or OxfordPets [126] were selected due to their high initial
zero-shot performance scores.

Dataset # Train # Test # Classes Domain License Captions

Classification-based
Caltech101 [94] 6026 2651 101 natural CC BY 4.0 generated
Caltech256 [55] 21307 9300 257 natural CC BY 4.0 generated
Cars196 [169] 8144 8041 196 finegrained, natural custom non-commercial generated
Cifar10 [91] 50000 10000 10 natural, low-res Unspecified, but academic usage generated
Domainnet-Quickdraw [129] 60375 25875 345 sketch custom non-commercial generated
EuroSAT [65] 18900 8100 10 Remote Sensing MIT generated
FashionMNIST [201] 60000 10000 10 b&w, low-res MIT generated
Food101 [18] 75750 25250 101 finegrained, natural Unspecified, but academic usage generated
GTSRB [71] 18635 8005 43 traffic signs CC0 generated
ImageNet [39] 0 50000 1000 natural custom non-commercial generated
ImageNet-A [67] 0 7500 200 adversarial, natural MIT generated
ImageNet-D [214] 0 4835 103 generative MIT generated
ImageNet-R [66] 0 30000 200 renditions (e.g. sketch, paintings) MIT generated
ImageNet-S [188] 0 50889 1000 sketch MIT generated
ImageNet-V2 [150] 0 10000 1000 natural MIT generated
MNIST [40] 60000 10000 10 b&w, low-res CC BY-SA 3.0 generated
Monkeys10 [2] 1097 272 10 natural CC0 generated
OxfordPets [126] 3680 3669 37 natural CC BY-SA 4.0 generated
STL10 [32] 5000 8000 10 natural, low-res custom non-commercial generated
SVHN [122] 73257 26032 10 natural, low-res custom non-commercial generated

Retrieval-based
MSCOCO [100] (avg T2I/I2T R@5) 0 5000 0 natural CC BY 4.0 available
Flickr30k [132] (avg T2I/I2T R@5) 0 1000 0 natural CC0 available

Total 462171 314419 4653

If samples in B are insufficient (particularly at the start of task adaptation), we oversample
from Dj , with λD fixed.

3. We apply a continual update method M with a fixed compute budget F :
θj=train(M,Dj , θj−1). This compute budget F also determines the overall number
of update steps conducted.

4. We add samples from the update pool Dj to the unrestricted buffer B. However, while all
samples can be stored in buffer B, they cannot all be sampled for training set S, as the
compute budget F imposes an implicit memory restriction [136].

How to Measure Continual Pretraining Computational Cost? To keep our setting practical and
ensure a fair comparison, we impose a fixed computation cost budget for each time step to account
for the efficiency of each method. However, there is no universally adopted measure of computational
cost. Recent works use the number of iterations (forward/backward passes) [136, 49], number of
parameters updated [88, 13, 118], FLOPs [50], and time/throughput [118]. However, a single metric
does not paint a complete picture of efficiency that is releveant in practice [38, 118].

To account for this, we introduce Memory-Adjusted-FLOPs (MAFs), a novel metric that highlights
two aspects most relevant from a practitioner’s perspective: the total number of FLOPs per iteration
and the maximum utilization of device memory. To compute MAFs, we multiply the FLOPs count of
each method by a memory multiplier, the ratio of that method’s maximum memory utilization to the
maximum memory utilization of a full fine-tuning of the base model. The total amount of MAFs for
each method and backbone determines the allowed number of update steps each method can take
during each adaptation task.

Data Restrictions. We allow unrestricted access to pretraining data (e.g., LAION-400M [160]), and an
unlimited replay buffer B, as data storage is a negligible contributor to real-world cost [135, 136], and
buffer memory is only utilized during the continual pretraining process. To study different retraining
data pools, we use four popular image-text pretraining datasets of varying sizes, quality and curation
strategies—LAION-400M [160], CC-12M [23], CC-3M [161], and DataComp-Small [45].

27

images

captions

1 2 …
…

… … … …

CLIP-Loss

Pretraining concept frequency

Sequence of
next

semantically
most similar

concept

(1) Easy Samples
First Ordering

(2) Concept
Frequency

(3) Concept
Similarity

(4) Time
incremental

3 5 1 89 45 31 2

1 2 1 2 1 2 1 2 1 2

… …

Dataset [2008] Dataset [2022] Dataset [2016]concepts

< … … … …

… … … …

Generated Stream Orderings

[2008] [2016] [2022]

< < …

(5) Dataset
incremental (6) Random

3 5 1 89 45 31 2
… … … …

n

Sample id

Figure 10: Pictographic visualization of different data stream orderings included within the
FoMo-in-Flux benchmark setup.

B.4 Designing Data-Centric Task-Sequences

In addition to studying different pretraining sets P and data mixture ratios (λP , λB, λD), we also
investigate different realistic orderings by breaking down the FoMo-in-Flux datasets into individual
concepts, which are then ordered according to a chosen criterion (including the option to study reverse
orderings). This is visualized in Fig. 10. In order to do so, having a controlled set of image-caption
pairs is critical, as it allows for well-defined and meaningful arrangement of concepts into sequences
according to an ordering π(C). Each ordering π divides the set of samples D into T disjoint subsets
{D1, . . . ,DT } of concepts C sampled without replacement, i.e. Ci

⋂ Cj = ϕ, ∀i, j. We define and
motivate six different orderings below:

1. Easy-To-Hard Ordering (performance) is motivated by curriculum learning [58, 154, 165, 170,
208], assuming users deploying their model to easier concepts and usecases first, with incremental
movement towards to harder concepts.

Implementation. We approach the notion of “easy” vs. “hard” samples by ordering them according to
base model performance. For each concept, we select 50 random image-text pairs and then randomly
sample further 50 image-text pairs from the CC-3M dataset to represent random samples from
CLIP’s pretraining data pool [29]. For each of the 100 image-text pairs, we compute the sample-wise
contrastive loss using a CLIP ViT-L-14 model, and average it over concepts. The lower the mean loss
per concept, the easier it is. We then sort all the concepts by their mean loss in ascending order, and
consider that to be the data stream ordering.

2. Concept Frequency Ordering (concept-frequency) draws motivation from Udandarao et al.
[180], with user requests for model improvement starting from least frequent concepts first (as these
constitute edge cases that are most likely to cause undesired performance drops) and incrementally
extending to more frequent concepts, which are already represented well in the pretraining pool.

Implementation. We use the What’s In My Big Data [43] tool’s elastic search index to search for
the frequency of occurrence of each of the class names in the C4 [144] dataset. We compute the
frequencies of each of the classes, and order them such that the least frequent concepts (long-tail)
occur first and the most frequent ones (head-concepts) are at the end.

3. Concept Similarity Ordering (similarity), inspired by Yıldız et al. [204], is based on the
hypothesis that training on conceptually similar tasks allows users to minimize catastrophic forgetting
over tasks.

Implementation. To find a trajectory with the highest semantic similarity between subsequent
concepts, we start with a similarity matrix containing the pairwise similarities between all the class
names (via CLIP ViT-L-14 text embeddings of templated text captions of the respective classes).
Defining each class as a node in a graph, with weights between the classes being their similarity, the
problem reduces to finding the minimum spanning path. We use a simple greedy algorithm: pick a
starting class, find its closest neighbour from the remaining set of classes, and keep repeating until

28

we exhaust all classes. We repeat this procedure for every class as a starting point and pick the path
with the smallest total weight across all starting classes.

4. Time-incremental Ordering (time), inspired by [15, 73, 21, 135, 49], arranges in chronological
order.

Implementation. As we only have reliable time information about datasets (via release dates of
corresponding publications or the official dataset upload date), concepts are ordered on a dataset-
level [15]. These year-level groups are arranged from oldest to most recent, assuming that older
datasets are more likely to be conceptually integrated within the pretraining data. Within each year,
concepts are randomly ordered. Alongside the above orderings, we compare with two baseline
methods popular in continual learning, to better understand the trade-offs made by these data-centric
orderings:

5. Dataset-Incremental Ordering (dataset) is motivated by [148, 111, 112, 190, 206], but
extended to a larger sequence of datasets. To set up dataset, we simply randomly sample datasets
from Tab. 2 to create a dataset-incremental concept sequence. This sequence is then broken down
into the desired number of tasks T .

6. Random Ordering (random), a baseline class-incremental ordering widely used across continual
learning setups [149, 200, 70, 136], mimics a scenario where user requests for model improvement
are unstructured. For this ordering, we simply shuffle class names at random.

B.5 Verifying Downstream Datasets: Finetuning must improve Performance

In order to estimate a reference upper bound on adaptation performance, verify the quality of
generated captions, and perform a sanity-check on our training pipeline, we fine-tune CLIP-ViT-B/32
and CLIP-ViT-B/16 individually on each dataset in our training split, as well as all the evaluation-only
datasets which come with training samples. We fine-tune the models on each dataset for 10 epochs,
with exact results and training details shown in Supp. table 5. For all datasets, we find that finetuning
a pretrained CLIP model on our generated captions consistently, and in parts very significantly,
improves initial zero-shot performance. This showcases the validity of our generated captions, and
supports the inclusion of each listed dataset in the FoMo-in-Flux benchmark.

C Continual Pretraining: Additional Details to our Method Perspective

C.1 Detailed Method Overview.

In detail, we study several promising directions for continual pretraining of foundation models: (1)
Naive continual finetuning [49, 136, 76], which has emerged as a dominant approach for major
updates on realistic large-scale benchmarks, making it a contender for handling minor updates
as well. (2) Parameter-efficient tuning methods like LoRA [72], which have become a method of
choice for minor updates on a smaller scale or for adapting to new tasks with reduced memory
requirements [62, 109, 196, 166, 167, 48, 98] through the use of low-rank weight approximations. In
a related fashion, recent work by Zhao et al. [219] has shown promise for model finetuning through
low-rank approximations on the optimization gradients (GaLore). (3) Parameter-selective tuning
methods such as BitFit [8] or LNFit [37], which only tune and update particular parameter subsets
in the pretrained model such as bias or normalization terms. (4) Traditional regularization strategies
from continual learning literature [86, 209], which have yielded surprisingly strong performance
in recent studies both in parameter [95, 217] and feature space [121], despite being developed and
tested in small-scale scenarios where the model is trained from scratch. (5) Model merging, which
has gained popularity [197, 78, 146] in non-continual learning scenarios as a means to aggregate
models tuned across different tasks, and has been studied in some recent [172, 114] and concurrent
works [89, 113] as a method to facilitate continual pretraining over longer adaptation periods. All
model merging variations are visualized in fig. 16.

29

66 67 68 69 70

Zero-Shot Retention (AZS)

40

45

50

55

60

K
n

ow
le

d
ge

A
cc

u
m

u
la

ti
on

(A
K
A

)

Different Ranks for PEFT Methods

lora, r=4

lora, r=64

Zero-Shot

Joint Upper-Bound

66 67 68 69 70

Zero-Shot Retention (AZS)

40

45

50

55

60

K
n

ow
le

d
ge

A
cc

u
m

u
la

ti
on

(A
K
A

)

Tuning biases or layer-norms?

lnfit

bitfit

Zero-Shot

Joint Upper-Bound

66 67 68 69 70

Zero-Shot Retention (AZS)

40

45

50

55

60

K
n

ow
le

d
ge

A
cc

u
m

u
la

ti
on

(A
K
A

)

Which PEFT method is best?

lora, r=4

dora, r=4

vera, r=4

Zero-Shot

Joint Upper-Bound

Figure 11: More Detailed Method Ablations. (Left) Impact of different ranks on continual pretrain-
ability; favouring lower rank values (r = 4) over large rank values (r = 64) when contrasted against
the hypothetical linear tradeoff line between original zero-shot behaviour and performance when
finetuned over all data at once. (Center) Comparison between parameter-selective LNFit [37] and
BitFit [8]. Both exhibit similar behaviour: strongly limited ability to continuously incorporate new
context, with correspondingly minimal deviation in original zero-shot behaviour. (Right) Overview
of adaptation versus evaluation trajectories for different PEFT methods: LoRA [72], DoRA [104] and
VeRA [88]. LoRA and DoRA behave comparably, with low adaptable parameter counts in VeRA heavily
limiting the ability to accumulate new knowledge.

C.2 Additional study on parameter-efficient finetuning methods.

For parameter-efficient tuning, the scaling between the accumulation-retention trade-off and the
tunable parameter count is also unsurprisingly reflected when adjusting the rank of LoRA (fig. 11
left)—though the loss in original generalization performance outweighs the achievable knowledge ac-
cumulation when contrasted against the hypothetical trade-off line between initial zero-shot behaviour
and joint finetuning.

30

D Continual Pretraining: Additional Details to General Training Recipes

D.1 On the Influence of Learning Rate Choices for Continual Pretraining.

40 45 50 55 60 65 70

Zero-Shot Retention (AZS)

25

30

35

40

45

50

55

60

K
n

ow
le

d
ge

A
cc

u
m

u
la

ti
on

(A
K
A

)

Effect of changing the learning rate

32.0 36.0 40.0

44.0

48.0

52.0

56.0

60.0

64.0

full-ft (lr=1e-04)

full-ft (lr=1e-05)

full-ft (lr=1e-06)

full-ft (lr=1e-07)

Zero-Shot

Joint Upper-Bound (lr=1e-04)

Joint Upper-Bound (lr=1e-05)

Joint Upper-Bound (lr=1e-06)

Joint Upper-Bound (lr=1e-07)

Figure 12: The effect of the base learning rate on con-
tinual pretraining. The learning trajectory is shown for
each value of the learning rate, with the joint training per-
formance as an upper bound. The contour lines show the
geometric mean of knowledge accumulation and zero-shot
retention (

√AKA ×AZS). A learning rate of 1e−5 derived
from the inital pretraining learning rate achieves the highest
final knowledge accumulation and provides the optimal bal-
ance between AKA and AZS .

To define the learning rate of choice
for our continual pretraining problem,
we derive it directly from the original
pretraining values in Cherti et al. [29]
(1e-3). We note that the exact peak
values are corrected for our practi-
cal differences in compute availability
(operating on a batch-size of bours =
512 instead of bopenclip = 88064); test-
ing both the commonly utilized lin-
ear resizing [53]: λscaled = bours/bopenclip ·
λopenclip and the respective square-root
resizing [92] (giving 5.81e − 6 and
7.625e − 5, respectively). In pre-
liminary experiments, we found that
rounding up the linearly resized ref-
erence (to λscaled = 1e − 5) worked
slightly better than both options, and
provides a much cleaner entry point.
As such, we chose to utilize 1e− 5 as
our learning rate reference value. As
we find in fig. 12, this (mostly) direct
re-use of the maximum learning rate has most importantly the highest degree of knowledge accumu-
lation, but also achieves the highest base joint tradeoff with respect to zero-shot retention. Larger
learning rates incur significantly higher rates of particularly early-task forgetting, while smaller
learning rates limit the amount of knowledge gained. As such, we set λscaled = 1e− 5 as our base
learning rate.

D.2 Model-specific tuning choices in compute-restricted scenarios

64 66 68 70 72

Zero-Shot Retention (AZS)

40

45

50

55

60

K
n

ow
le

d
ge

A
cc

u
m

u
la

ti
on

(A
K
A

)

Which encoder should you tune?
full-ft

locked-image

locked-text

Zero-Shot

Joint Upper-Bound

Figure 13: To freeze or not to freeze. Tuning
both encoders beats single encoder tuning in
line with finetuning insights from Goyal et al.
[54].

Finally, we highlight the relevance of freezing ei-
ther image or text encoder in practically compute-
restricted continual pretraining in Fig. 13. As freez-
ing either the image or language encoder can allow
for significant increases (over a magnitude) in the tun-
ing step budget (as total FLOPs and memory use go
down), we find that within the compute-restricted con-
tinual multimodal pretraining scenario, tuning both
encoders still remains beneficial (aligning with in-
sights provided in Goyal et al. [54] for simple finetun-
ing). While there is negligible difference when freez-
ing each encoder respectively (despite the substan-
tial difference in FLOPs reduction based on tuning
the image-encoder alone vs. tuning the text-encoder
alone), updating the vision-language model as a joint
system incurs a more favorable trade-off between
knowledge accumulation and zero-shot retention for each update.

D.3 Softmax Temperatures for Contrastive Losses—Not Too Hot!

Recall that CLIP’s contrastive loss uses a temperature parameter τ , and it is typically learnable during
pretraining. At the beginning of training, it is initialized to 0.07 [142]. Further, to prevent training
instabilities, the temperature is clipped to avoid becoming smaller than 0.01. Post training, the learned
temperature for all CLIP models considered in this study are found to be exactly 0.01. Moreover,

31

most works that fine-tune a pretrained CLIP model for different downstream tasks, use exactly this
learned temperature [54, 177, 178, 197, 42, 78, 61].

10 20 30 40 50 60 70

Zero-Shot Retention (AZS)

10

20

30

40

50

60

K
n

ow
le

d
ge

A
cc

u
m

u
la

ti
on

(A
K
A

)

Impact of Softmax Temperature

τ=0.01

τ=0.1

τ=0.5

τ=0.75

τ=1.0

Zero-Shot

Joint Upper-Bound

Figure 14: The softmax temperature for
the contrastive loss is crucial for continual
pretraining optimization. The learned temper-
ature after CLIP pretraining is 0.01 (brown
trajectory)—higher temperatures than the op-
timal 0.01 hinder continual pretraining opti-
mization and degrade model weights.

Across our main experiments, we follow this stan-
dard practice of initializing τ to 0.01 and setting it
to be a learnable parameter during continual pretrain-
ing. We now explore the impact of different initial-
izations for τ , and sweep over 5 different tempera-
ture values, {0.01,0.1,0.5,0.75,1.0}. From fig. 14,
we observe that τ plays a crucial role for continual
pretraining. As we increase the temperature from
0.01 to 0.1, zero-shot retention AZS gets impacted
by 20% while also noting modest drops on knowl-
edge accumulation AKA, as stability gap issues are
excacerbated. Further increasing τ , degrades both
AZS and AKA even more greatly, with the model
degenerating to very poor performance. Such drastic
changes in model behaviour were also observed in
prior work investigating CLIP fine-tuning for down-
stream tasks [177, 97, 33]—fine-tuning at higher tem-
peratures leads to a decrease in the modality gap
between the image and text embedding spaces on
the CLIP embedding hypersphere, and hence very
quickly degrades the quality of the embedding space for performing downstream tasks [158, 163, 97].
We reproduce and extend the findings of these previous works for the continual pretraining regime,
and emphasise the importance of retaining low temperature values for providing optimal AZS and
AKA.

E Continual Pretraining: Additional Details to our Data-Centric Perspective

This section extends section 6 with detailed information on data-stream reversals specific data-pool
choices and mixing ratios between streaming, buffer and pretraining data (D/B/P and λD, λB, λP ,
respectively, in appendix E.2), and subsampling over the pretraining data for replay.

E.1 What Happens if We Reverse Data-Streams?

Each sequence introduced in appendix B.4 introduces its own particular deployment scenario. Natu-
rally, these scenarios may also either occur or be designed to occur in reverse; updating the model for
example with hardest examples first, or choosing highly unrelated concepts before honing in on one
specific ordering of similar concepts (by reversing similarity). These scenarios do not have to be
related to their precursors, and can present their own unique update cycle. Evaluating fig. 6 (right),
random remains consistent. The prevalent difference we find in reversing similarity; starting with
a stream of unrelated concepts (more so than just random subsampling) and then moving towards
a stream of more related concepts. Effectively, early task composition becomes forcibly harder. In
doing so, the loss in retention along the trajectory comes with increased knowledge accumulation1.

This allows the trajectory to remain consistent and close to the hypothetical linear trade-off line
between the initial zero-shot behavior and the finetuning upper bound - more so even than random
streams. Both cases however point towards high variation in the presented concepts during each
update step being very beneficial for continual pretraining over longer update cycles, especially
when trying to retain consistent model behaviour for each update. Still, even when also accounting
for the reversed performance ordering, end-points converge to comparable end points! We find
the only outlier to this to be the reverse frequency stream. As head concepts are encountered
early, knowledge accumulation is lower, while the controlled placement of long-tailed, rare concepts

1By composing harder tasks, batch composition becomes also more difficult, which has been aligned with
improved vision-language representation learning in e.g., Zhai et al. [213]. Though by reversing similarity in
our case, the aggregation of similar concepts towards the end of the stream results in diminished knowledge
accumulation towards the end of the sequence.

32

62 64 66 68 70 72

Zero-Shot Retention (AZS)

40

45

50

55

60

K
n

ow
le

d
ge

A
cc

u
m

u
la

ti
on

(A
K
A

)

Different Data-Mixing Ratios Across Pools

{λP=0.33,λD=0.34,λB=0.33}
{λP=0.05,λD=0.48,λB=0.47}
{λP=0.8,λD=0.1,λB=0.1}
{λP=0.5,λD=0.5,λB=0}
{λP=0,λD=0.1,λB=0.9}
Zero-Shot

Joint Upper-Bound

(a) Different Data Mixture Ratios λD/P/B between
pretraining P , update D and buffer pool B yield
significantly different adaptation-retention behaviour.

62 64 66 68 70 72

Zero-Shot Retention (AZS)

40

45

50

55

60

K
n

ow
le

d
ge

A
cc

u
m

u
la

ti
on

(A
K
A

)

Effect of Different Pretraining Data-Pools

cc3m

cc12m

laion400m

datacomp-small

Zero-Shot

Joint Upper-Bound

(b) Quality and Diversity of the Pretraining Pool
P can matter significantly for retention of initial zero-
shot performance.

Figure 15: Study on Mixture Ratios and Pretraining Pools.

towards the end of the update cycle, result in disproportionate forgetting of frequent concepts crucial
for achieving and retaining overall accumulation and retention performance.

E.2 Data mixtures inform knowledge accumulation and zero-shot retention

Data control is also reflected in the use of different mixing ratios λP/D/B, which we study in Fig. 15a.
The particular ratios investigated are motivated as follows (note that the baseline reference ratios we
use for all our experiments are {λP=0.33,λD=0.34,λB=0.33} (in orange)):

No Buffer {λP=0.5,λD=0.5,λB=0} (in pink) significantly degrades both accumulation and reten-
tion, hampering the AKA–AZS tradeoffs (−14%AKA and −2.5%AZS compared to the reference).

Pretrain-heavy {λP=0.8,λD=0.1,λB=0.1} (in blue) also does not improve over the reference,
since at each update step, we input fewer update samples from D, limiting the accumulation capacity.

Ibrahim et al. [76] {λP=0.05,λD=0.48,λB=0.47} (in green) defines the mixture ratio used in
past CPT work operating on LLMs. We reproduce the findings of [76], finding a 5% pretraining
replay suffices to provide a better accumulation tradeoff compared to the reference (+2.2%AKA and
−0.3%AZS), suggesting that replaying pretraining data is less essential for optimal performance.

IIDify {λP=0,λD=0.1,λB=0.9} (in violet). Inspired by the previous result of [76], the question
arises on the importance of the overall pretraining pool P . Extending findings in Prabhu et al. [136],
we jointly also increase the buffer mixing ratio to encourage more IID training distributions at each
update step from the full D and B pools. Doing so provides the favored tradeoff compared to all the
previous mixtures, corroborating findings in [136].

E.3 Choice of pretraining data pool significantly impacts zero-shot retention

While the overall relevance of replay on pretraining data may be smaller than suitable buffer choices,
we complete the previous study by investigating the impact of the pretraining data pool P on the end
model. We experiment with three other pretraining data pools of diverse volumes, caption-sources,
curation strategies, and quality measurements—CC-3M [161], CC-12M [23], DataComp-Small [45]—
beyond our reference pool LAION-400M. For a fair comparison, we randomly subsample each
pretraining data pool to a total size of 2M samples, and use this subset as our final pretraining pool P .
Here too, we use the reference mixture ratio setting of {λP=0.33,λD=0.34,λB=0.33}. From fig. 15b,
it is immediately evident that the choice of the pretraining data pool has a relevant impact on the
AKA–AZS tradeoffs. While adaptation capabilities are barely impacted, using DataComp-Small (in
pink) yields significantly better zero-shot retention properties, (upto 2.4%AZS) gains). We speculate
that this could be attributed to the purely English-centric nature of the CC/LAION pools compared to
the unfiltered DataComp-Small which has a significantly higher multilingual and cultural diversity,
which has been shown to be beneficial for downstream performance previously [123, 124, 133].

33

F Method and Schedule Details

In the main paper, we study and reference different methods for their ability to encourage better
continual multimodal pretraining on FoMo-in-Flux. In this section, we provide details on the
methods utilized, alongside information not included in the main text with respect to the utilized
learning rate schedules.

F.1 Adaptation Methods

LoRA [72] is the most commonly deployed form of parameter-efficient finetuning based on Low-
rank Adaptation, which avoids explicitly changing pretrained weights, but instead recommends
weight updates to be of the form

W ′ = W0 +BA

with pretrained weights W0, where B, A are two low-rank matrices, i.e., where W ∈ Rd×f ,
A ∈ Rr×f and B ∈ Rd×r. By choosing r << min (d, f), memory requirements during finetuning
can be significantly reduced. Moreover, any learned adapter weights can be absorbed into the
pretraining weights. Note however that while memory is reduced, total FLOPs for backward and
forward pass are commonly increased over simple finetuning, as full backpropagation still needs
to be conducted, as noted in Mercea et al. [118] and as consequently seen in the final MAFs
breakdown (see table 4). By default, LoRA (as well as its subsequent variations VeRA and DoRA, see
below) introduces an additional weighting α over the weight update BA, which we set to a constant
α = 1 [72, 88]; as it only acts as an implicit change in learning rate. As noted in Hu et al. [72], the
rank r is the essential hyperparameter to define for optimal changes in behaviour.

VeRA [88] introduces a simple variation over LoRA by randomly initializing and freezing A, B
into fixed low-rank projections, and instead learning simple learnable vectors ΛB and ΛA such that

W ′ = W0 + ΛBBΛAA

where ΛB ∈ Rf and ΛA ∈ Rr (utilizing the same dimensional notation as above). This reduces
the total number of tunable parameters significantly (though also mitigating possible adaptation
capabilities), but similar to LoRA, does not positively impact FLOPs counts for backward and
forward passes together.

DoRA [104] minimally alters LoRA by disentangling norm and directions of the introduced adapter
matrices to encourage increased stability, and moving training dynamics of LoRA-style approaches
closer to those of simple finetuning. Effectively, this defines the DoRA adaptation step as

W ′ = m · W0 +BA

∥W0 +BA∥
with magnitude vector m ∈ R1×f , where m is initialized as ∥W0∥c, before being jointly updated
during finetuning alongside the directional (through normalization) updates induced by B and A.

BitFit [8] introduces parameter-selective model finetuning by only updating bias-terms in the model
(and retaining remaining (kernel) weights as frozen). In doing so, changes to the model behaviour
are supposed to be kept minimal, will still introducing several degrees of freedom for finetuning.
Note however that similar to LoRA, while GPU peak memory is reduced, FLOPs are still high, as
backpropagation through the full network still has to occur.

LNFit[37] succeeds in the spirit of BitFit, by recommending to only tune scale and bias parameters
in model architectures that leverage LayerNorm [6] layers, showcasing particular success on small
continual learning benchmarks.

F.2 Standard Continual Learning Methods

EWC [86] (Elastic Weight Consolidation) is a regularization scheme on weight updates initially
introduced to tackle rehearsal-free continual learning from scratch. The core motivation behind EWC
is the assumption that for each continual task, deviation from “task-optimal” weights learned in
preceding tasks should be kept meaningfully minimal. In particular, Kirkpatrick et al. [86] argue that

34

deviation should be individual to each model parameter. Assuming full model weights θ after task t,
EWC tries to approximate the curvature in parameter-loss space around θt via the Fisher Information
Matrix F t. To estimate F t, several forward and backward passes have to be conducted, with the final
regularization during training in task t+ 1 defined as

Ltotal
t+1(θ) = Lt+1(θ)−

λ

2

∑
k∈|θ|

F t
k(θk − θt,k)

2

with penalty weight λ, loss function for task t+ 1, Lt+1, θt the weights from the previous task, and
k the parameter index. Note that for more than two tasks, F is commonly estimated through a rolling
average, as done in implementation, borrowing from the mammoth codebase [17].

SI [209] (Synaptic Intelligence) follows a motivation conceptually related to that of EWC, in that
parameters defined as more influential (by some measure) are regularized more strongly to minimize
change. However, unlike EWC which computes one single point estimate using final parameter
values after each task, SI computes importance measures used for regularization along the entire
training trajectory. By tracking past and current parameter values, an online importance estimate is
computed and incorporated as regularization as follows:

Lt+1(θ) = Lt+1(θ) + c ·
∑
k∈|θ|

(∑
τ<t

ωτ
k

(∆τ
k)

2 + ζ

)(
θtk − θk

)2
.

with final task weights θt from the previous task. Here, ωtau
k is regarded as the per-parameter

contribution to changes in the total loss, approximated as the running sum of the product between
gradient gk(s) = δL

δθk
and parameter update θ′k(s) =

δθk
δs (with within-task update step s). Finally,

∆τ
k = θk(s

τ)− θk(s
τ−1) estimates how much a particular parameter has moved. Alongside a simple

regularization term ζ to avoid division by zero, this defines the online importance term in SI.

F.3 Model Merging Methods

FT-Merge [197, 78] introduces a simply model merging recipe, in which different finetuned variants
of a same base pretrained model are linear interpolated (using interpolation coefficient α) into a
final, more general new base model. While this was initially not introduced for continual learning /
pretraining tasks, this form of interpolation can be naturally extended to our problem scenario. After
each task, given an interpolation coefficient alpha, we interpolate pre- and post-task weights (θt−1

and θt, respectively). These updated weights are then passed to the subsequent task t+ 1. Note that
we incorporate the interpolation process into the overall MAF compute budget as well.

EMA-Merge [172] extends Ilharco et al. [78], but shows how a simple exponential moving average
can achieve promising regularization beyond implicit learning rate changes for small, toy-ish con-
tinual learning image classification benchmarks. Similar to FT-Merge, EMA-Merge introduces an
interpolation coefficient α, and each interpolation step is account for in the overall compute budget.

ZS-Merge operates in a fashion close to both merging methods - with the only differentiating factor
being that after each task, interpolation occurs not with respect to preceding model weights, but
instead to the initial zero-shot baseline.

G Differentiating Factors: FoMo-in-Flux with TiC-CLIP [49] and NEVIS
[15]

In this section, we elaborate on the details presented in Table 1 of the main paper. We highlight
the distinctive features of our benchmark, FoMo-in-Flux, in comparison to two closely related
benchmarks: NEVIS and TiC-CLIP.

NEVIS. NEVIS [15], like our work, studies long-horizon continual learning with changing data
distributions. However, NEVIS focuses on improving performance in a task-incremental setup,
where task separation is based on dataset creation timestamps, and concentrates on performance for
the current, ongoing task. In contrast, FoMo-in-Flux studies the ability for continual knowledge

35

train

mergew

1-w

w

1-w

w

Update step 1

…
ema

zs

ft

ema

ft

zs

ema

ft

zs
ema

ft

zs

Update step 2 Update step T

[ema] EMA-Merge [zs] ZeroShot-Merge [ft] Finetune-MergeLegend

train train

merge merge

Pretrain

1-w

, …, model at different steps t merged model Methods:

Figure 16: Different model merging strategies explored in this work. We use θ′ to denote weights
θ finetuned after a respective task. Merging θt−1 and θ′t then results in the merged outputs weights
for task t, θt. EMA-Merge, or exponential moving average merging, merges previously merged
weights θt−1 with current task weights θ′t produced by tuning the same previously merged θt−1

on task t. ZeroShot-Merge always tunes the original pretraining weights θ0 on each task, then
weight-interpolates between the finetuned θ′t and the previously merged θt−1. Finetune-Merge
always interpolates between the original pretraining weights θ0 and the finetuned weights θ′t. To
arrive at θ′t, the previously merged model θt−1 is trained on task t.

aggregation, while balancing the retention of good downstream zero-shot performance; measuring
open-ended performance in both cases and not limited to a fixed set of classes. We also tackle
multimodal vision-language tasks like image-text retrieval, which are more complex to formulate
than vision-only tasks. Moreover, FoMo-in-Flux allows as to study the impact of different concept
and class streams to emulate task orderings that can potentially be encountered when realistically
deployed.

TiC-CLIP. The TiC-Datacomp benchmark [49] evaluates the best methods for continual learning
over major updates, using pretraining budgets similar to those used for pretraining CLIP. In contrast,
our work focuses on minor updates, utilizing sample and compute scales that are 20×−100×
lower than the corresponding pretraining budgets. Furthermore, TiC-CLIP operates with only six
timesteps and uses large, monolithic time-incremental batches of image-text pairs. Our experiments,
however, extend up to 200 timesteps and involve four carefully controlled fine-grained data-centric
streams across a variety of subdomains, including medical and remote sensing images. Our study
provides insights into how models can be pretrained continually over time, in scenarios working
with far smaller sample and compute budgets and a larger number of timesteps, ensuring efficiency
and scalability across different subdomains. Moreover, we are able to cover and study different
data-centric deployment scenarios, alongside a wide array of methods and their trajectority in the
knowledge aggregation and retention space. Together, FoMo-in-Flux allows us to provide the
transitional benchmark towards the much more compute-intensive major updates as studied in
TiC-Datacomp.

H Additional Experimental Details and Results

H.1 Experimental Setup: Full Overview.

For complete replication, we detail the default models, compute budgets, metrics, training schedules,
and data mixtures used here in significantly extended detail here.

Pretrained Models. We conducted our main experiments using a ViT-B-16 CLIP model pretrained
on the LAION-2B dataset [159]. We also conducted some additional ablation experiments with a
ViT-B-32 CLIP model (to understand the effects of different patch resolution) and ViT-S/16, ViT-L/14,
ViT-H/14 and ViT-g/14 models. All our CLIP models are pretrained on LAION-2B, except for the
ViT-S/16 model which is pretrained on the DataComp-1B dataset [45].

Default Continual Pretraining Settings. Unless otherwise specified, we always train each continual
pretraining method for 20 update steps, T=20 (we test longer sequences with T={50, 200} in
Supp. fig. 18). Each update step comprises of continually training a CLIP model for a fixed number

36

of samples derived by the computational budget outlined above. We fix the compute budgets per
update step by taking the DataComp-Small total FLOP budget, i.e., 1.8×109 GFLOPs and dividing
it by the total number of update steps. The exact number of update steps for each method is provided
in Supp. Tab. 4. By default, we use a random 2M subset of LAION-400M as our pretraining data pool
P and operate with uniform mixing ratios {λP=0.33,λD=0.34,λB=0.33}. For our reference upper
bound performance, we train a CLIP model initialized from the same open_clip checkpoints jointly
on all 41 adaptation datasets (with the samples randomly shuffled). We do this training for a compute
budget of T × F MAFs, equivalent to the overall compute budget available for the entire continual
pretraining process.

Training Details. We train all continual pretraining methods with the CLIP contrastive loss [142,
54] and learnable temperature τ , initialized to 0.01 (we provide ablations for the impact of τ
initialization in appendix D.3). We select the best-reported hyperparameters for each method from
previous literature, only tuning the peak learning rate for each method. We use cosine-decay LR-
scheduling with linear warmup of 10% (we study more LR-schedules in section 5.1), with an AdamW
optimizer [107], a batch-size of 512 [107], and clip gradients with norm higher than 1. We run all
experiments using PyTorch [128]. To truly study updates in both vision and language space, we
update both encoders jointly (following Zhai et al. [212], we ablate this choice in appendix D.2).
Finally, the exact reflections of MAFs in method updates steps are provided in the supplementary,
alongside individual reference scores finetuning CLIP on each dataset individually.

Metrics. From a model updating perspective, there are two main quantities of interest: the degree of
adaptation to new data and the retention of pretraining knowledge. For all experiments, we therefore
report two main metrics: Knowledge Accumulation (AKA), the average accuracy (or recall@5
for retrieval) over all concepts in the 41 adaptation datasets, and Zero-Shot Retention (AZS), the
zero-shot transfer accuracy (or recall@5 for retrieval) on the held-out set of 22 datasets.

Plotting Style. In most plots showing our main experimental result, we depict the zero-shot baseline
as a black star and the joint training upper-bound as a golden star, with a dotted line connecting
the two to approximate the joint training trajectory on the AKA-AZS plane. Every other trajectory
depicts the training progression of individual experimental runs. Note that these trajectories always
begin at the zero-shot baseline (black star).

H.2 Further Replication Details.

We provide our full code, datasets, download pipeline, and experimental results here:
github.com/ExplainableML/fomo_in_flux. The provided code covers all relevant details that make
up FoMo-in-Flux: All dataset loaders, method implementations, streaming files and all generated
captions for every single dataset image (c.f. data_lib/00_info). The code also comes with an
automated downloader for preprocessed versions of each utilized dataset.

Compute cluster and run details. For all our experiments, we used a compute cluster with 8×40GB
A100 nodes. For most of our ViT-B-16 runs, we used 2 GPUs from these nodes which was sufficient
for all our method implementations. To ensure memory efficiency, we optimised our implementations
to use CPU offloading for model weights where possible (for e.g., for the EWC, SI and Merge methods).
For comparability and reproducibility, all runs and methods share the same seed and equivalent overall
experiment setting, with changes in e.g., data stream ordering, modified compute budgets, method or
data-mixtures only done when explicited noted.

Justification for CLIP models used. To ensure that our experiments were most relevant to the
community, we further verified that the choice of our base CLIP models were validated by practitioner
usage. On Huggingface, the open_clip models that were downloaded the most were CLIP ViT-
B-32-laion2b (6.11M times), CLIP-ViT-H-14-laion2b (4M times), and CLIP-ViT-B-16 (2M times).
Hence, we investigate these models - particularly as ViT-B/16 has been used in other studies on
continual major model updates such as Garg et al. [49].

Exact number of update steps, MAFs and samples seen. We provide the full breakdown of how
we compute MAFs per time step for each of the methods, and the total compute budget in terms
of samples seen per method (in Appendix table 4). We use the datacomp-small [45] compute
budgets as our reference. Hence, this means that our total compute budget for the full continual

37

https://github.com/ExplainableML/fomo_in_flux/
https://huggingface.co/models?sort=downloads

Table 4: Compute Budgets used in all ViT-B-16 experiments. We provide the total number of
GFlops taken per task for each of the methods in the Per-Task GFlops column. We also showcase
the maximum GPU memory requirements for each method in the Max. Memory Reqd. column—
we convert this into a memory multiplier for each method by dividing with respect to the reference
full-ft max memory required. Finally, for each method the Per-Task MAFs are computed as the
product of the Per-Task GFlops and the Memory Multiplier. Then, we show the total number
of gradient update steps that are allowed for these compute budgets per update step t, for the four
total number of time step settings, T={20,50,100,200}. Finally, we also show the total number
of gradient steps used (Total Num. steps) and the total number of samples seen (Total Num.
samples seen) for the full continual pretraining process—our joint upper-bound oracle also uses
this total compute budget.
Method Per-Task GFlops Max Memory Reqd. Memory Multiplier Per-Task MAFs Num. steps Num. steps Num. steps Num. steps Total Num. Total Num.

(wrt full-ft) (T=20) (T=50) (T=100) (T=200) steps samples seen

full-ft 63394.7585 46.5917 1 63394.7585 1420 568 284 142 28,400 14,540,800
locked-text 57254.6183 37.5761 0.8064 46170.1241 1949 780 390 195 39,000 19,968,000
locked-image 27176.6698 11.8847 0.2551 6932.7684 12982 5193 2596 1298 259,600 132,915,200
LNFit 43165.5968 30.5566 0.6558 28307.9983 3179 1272 636 318 63,600 32,563,200
BitFit 43165.5968 30.5546 0.6558 28307.9983 3179 1272 636 318 63,600 32,563,200
LoRA, r=4 54479.2515 40.5449 0.8702 47407.8446 1898 759 380 190 38,000 19,456,000
LoRA, r=64 54505.0151 40.6757 0.873 47582.8781 1891 757 378 189 37,800 19,353,600
DoRA, r=4 54479.8241 40.6582 0.8726 47539.0945 1893 757 379 189 37,800 19,353,600
DoRA, r=64 54514.1754 40.7871 0.8754 47721.7091 1886 754 377 189 37,800 19,353,600
VeRA, r=4 54479.3393 40.5449 0.8702 47407.921 1898 759 380 190 38,000 19,456,000
VeRA, r=64 54507.8336 40.5742 0.8708 47465.4214 1896 758 379 190 38,000 19,456,000
EWC 6276081.094 47.207 1.0132 6358925.364 14 6 3 1 200 102,400
SI 63394.7585 46.6523 1.0013 63477.1716 1418 567 284 142 28,400 14,540,800
ZS-Merge 63394.7585 46.5917 1 63394.7585 1420 568 284 142 28,400 14,540,800
FT-Merge 63394.7585 46.5917 1 63394.7585 1420 568 284 142 28,400 14,540,800
EMA-Merge 63394.7585 46.5917 1 63394.7585 1420 568 284 142 28,400 14,540,800

pretraining is set to 5.7×108 GFlops for the ViT-B-32 architecture and 1.8×109 GFlops for the
ViT-B-16 architecture.2

Variance across seeds. To ensure that our results are statistically valid and generalizable, we re-run
our canonical continual pretraining experiment with a ViT-B/16 backbone on the 20-task random data
stream, with three different seeds. fig. 17 showcases that the three trajectories across the different
seeds result in very similar patterns and low variance across runs. This validates that all our main
results are generalizable across seeds.

Additional Experiment Results. Finally, we augment our suite of experiments conducted in the
main paper.

Fig. 18 provides additional higher-level experiment insights and verification, covering changes
in backbone architecture, compute budget and total update steps / task counts. More precisely,
Fig. 18 (left) shows the impact an increase or decrease in overall compute budget has. As can be
seen, all trajectories behave similarly on a qualitative level - experiencing forgetting and stability
gap [36] issues at the beginning, before recovering towards the linear zeroshot-finetuning trend
line. Comparing end points, we do find that larger compute budgets encourage slightly increased
knowledge accumulation gains, but at the cost of disproportionately larger losses in knowledge
retention. This means that in practice, large compute budgets may be less favoured even from a
performance standpoint to incorporate minor model updates and bridge time between large, major
model updates. On top of that, Fig. 18 (right) highlights that under a fixed compute budget, in
order to bridge time to large model updates, keeping the number of minor model updates small,
while maximizing the size of each respective minor update, is preferable from both a knowledge
accumulation and retention perspective. Further, we note the strong robustness of model merging
even under very long task streams, further strengthening their applicability for long-step continual
pretraining.

Fig. 18 (center) augments our results on the impact of different data-centric deployment scenarios
for continual minor model updates, under a different patch resolution for the vision-transformer. In
this experiment, we continually pretrain ViT-B-32 image-encoder models instead of the standard
ViT-B-16 image-encoder. We note that the overall trends from this experiment closely match those of

2Note that the compute budgets outlined in the original paper [45] were in GMacs—we convert these numbers
to GFlops by multiplying by 2 (see here for reference.)

38

https://github.com/sovrasov/flops-counter.pytorch/issues/16

62 64 66 68 70 72

Zero-Shot Retention (AZS)

40

45

50

55

60

K
n

ow
le

d
ge

A
cc

u
m

u
la

ti
on

(A
K
A

)

Robustness Across Seeds

seed=0

seed=1

seed=2

Zero-Shot

Joint Upper-Bound

Figure 17: Our continual pretraining insights are robust across different random seeds—the variance
in trajectories across three different seeds is minimal.

62 64 66 68 70 72

Zero-Shot Retention (AZS)

40

45

50

55

60

K
n

ow
le

d
ge

A
cc

u
m

u
la

ti
on

(A
K
A

)

Effect of changing the compute budget for full-finetuning

standard-budget

double-compute

half-compute

Zero-Shot

Joint Upper-Bound

56 58 60 62 64 66 68 70 72

Zero-Shot Retention (AZS)

35

40

45

50

55

60

K
n

ow
le

d
ge

A
cc

u
m

u
la

ti
on

(A
K
A

)
Sensitivity to patch-size in image-encoder: ViT-B-32

Similarity

Frequency

Random

Performance

Zero-Shot

Joint Upper-Bound

62 64 66 68 70 72

Zero-Shot Retention (AZS)

40

45

50

55

60

K
n

ow
le

d
ge

A
cc

u
m

u
la

ti
on

(A
K
A

)

Changing the total number of update steps T

full-ft (T = 20)

full-ft (T = 50)

full-ft (T = 200)

ema-merge (T = 20)

ema-merge (T = 50)

ema-merge (T = 200)

Zero-Shot

Joint Upper-Bound

Figure 18: We provide additional experiment insights and verifications, covering changes in backbone
architecture, compute budget and update steps. (Left) Changing the available compute budget
noticeably affects knowledge retention, however with limited gains in knowledge accumulation.
(Center) Replacing our default patch-size of 16×16 to 32×32 (i.e., ViT-B-16 to ViT-B-32) for ablating
the effect of lower the patch-resolution of our vision-transformer backbones, retains comparable
behaviour across different deployment scenarios, with surprisingly similar trajectory endpoints, and
comparable accumulation performance. (Right) Changing the number of tasks the data stream
(referred to as update steps T) is divided into, we find drops in both knowledge retention and
accumulation. Correspondingly, these results generally recommend to keep the number of minor
updates as small as possible, and the respective sizes as large as can be. Note that each trajectory
has been uniformly subsampled to visualize the same number of trajectory points for better visual
readability. Additionally, note that the robustness of the EMA-Merge method extends to longer task
streams, reinforcing its potential as a strong approach for continual pretraining.

the original ViT-B-16 experiments (fig. 6), suggesting the overall robustness of our main data-centric
results to the patch-resolution of the input images.

I FoMo-in-Flux: Datasets

I.1 Finetuning verification

In order to estimate a reference upper bound on adaptation performance, we verify the quality of
generated captions, and perform a sanity-check on our training pipeline, we fine-tune ViT-B/32 and
ViT-B/16 individually on the datasets in our training split, as well as the evaluation-only datasets
which come with training samples. We fine-tune the model on each dataset for 10 epochs with the
same learning rate scheduling and the results are shown in table table 5. As can be seen, we find a
consistent, and in parts significant improvements conducting CLIP-style training across all individual
benchmarks—highlighting the validity of our generated captions, and support for each benchmark to
be included in FoMo-in-Flux.

39

Table 5: Per-dataset fine-tuning results for the ViT-B/32 and ViT-B/16 backbone. FT Performance is
the maximum accuracy over 10 epochs. Delta to ZS is the difference between FT Performance and
the initial zero-shot accuracy.

Dataset ViT-B-16 ViT-B-32
FT Performance Delta to ZS FT Performance Delta to ZS

Ai2Diagrams [84] 88.00 10.67 83.67 12.33
ArtBench10 [99] 22.86 11.64 21.20 9.08
Birdsnap [9] 63.70 13.30 57.60 10.00
Caltech101 [94] 93.33 1.33 93.67 1.67
Caltech256 [55] 93.97 1.39 92.61 2.61
Cars196 [169] 93.88 5.07 90.56 2.25
Cifar100 [93] 90.33 15.83 91.33 15.93
Cifar10 [91] 99.67 4.67 99.00 4.70
CLEVR [83] 71.05 67.19 55.87 52.94
CLRS [151] 92.67 29.33 91.33 30.00
Country211 [142] 20.38 3.74 20.38 6.11
CUB200 [186] 80.50 10.38 74.00 10.27
DF20mini [131] 50.84 49.46 43.30 41.64
DollarStreet [152] 18.31 11.88 17.96 12.26
DomainNet-Clipart [129] 83.62 3.14 81.74 3.93
DomainNet-Infograph [129] 61.16 3.71 54.93 2.55
DomainNet-Painting [129] 74.64 3.61 71.72 1.47
DomainNet-Quickdraw [129] 66.81 48.45 66.52 48.24
DomainNet-Sketch [129] 78.26 3.94 76.96 4.89
Dsprites [115] 100.00 88.16 100.00 88.36
DTD [31] 68.00 16.00 66.33 11.33
EuroSAT [65] 99.67 43.62 99.33 47.85
FashionMNIST [201] 96.33 16.93 94.67 18.07
FGVCAircraft [110] 48.67 22.24 39.33 14.41
Flowers102 [125] 95.67 21.33 94.67 21.33
Food101 [18] 90.67 5.08 88.00 5.66
FRU92 [69] 91.67 42.97 88.33 39.64
GTSRB [71] 99.33 49.46 100.00 56.12
iNaturalist2021 [79] 50.40 44.76 43.10 37.80
Isicmelanoma [41] 59.33 51.00 56.00 40.33
MITStates [80] 28.30 4.75 26.35 3.02
MNIST [40] 100.00 34.70 99.67 30.57
Monkeys10 [2] 97.79 15.07 96.69 13.97
MTSD [44] 90.97 72.41 90.75 70.93
MVTec-AD (Base) [10] 100.00 27.67 100.00 21.00
MVTec-AD (Faults) [10] 52.33 38.67 38.00 20.67
ObjectNet [7] 54.63 16.75 48.88 16.98
Obscure Animals 89.67 27.49 89.33 33.78
Obscure Things 73.33 17.54 68.67 14.98
OpenImages [90] 58.64 0.00 59.40 0.38
OxfordPets [126] 95.00 4.29 90.67 0.23
PatternNet [226] 99.67 30.72 99.67 34.14
Places365 [221] 48.49 6.62 49.86 7.22
Plantvillage [75] 100.00 80.02 99.67 76.55
Quilt-1M [77] 66.45 65.45 67.10 66.80
Resisc45 [68] 94.33 25.60 93.33 30.16
Shapes3d [68] 100.00 87.16 100.00 85.68
SnakeCLEF2023 [130] 22.17 21.98 16.51 16.45
SUN397 [202] 75.69 6.22 73.93 5.62
STL10 [32] 100.00 3.25 98.67 1.42
SVHN [122] 99.33 46.32 99.00 57.01
SynthClip106 [60] 46.67 5.46 44.00 4.30
VEG200 [69] 84.75 53.90 79.50 46.70
Zappos50k [205] 35.14 22.36 31.29 18.25

40

J FoMo-in-Flux: Caption Pipeline

As part of our FoMo-in-Flux pipeline, we converted 63 different classification and retrieval datasets
into a format that made them amenable for contrastive language-image pretraining. This entailed
providing text captions for each of the images in the classification datasets. For this, our main aims
were to ensure: (1) scalability of the captioning pipeline, (2) that the captions captured real-world
and fine-grained details about the image, (3) that the captions were not verbose so that they would fit
into the context length of CLIP’s text encoder (77 tokens), and (4) that the captions contained the
true classname of each of the images from the classification datasets.

To this end, we proceeded to caption the images in a three-stage manner—(1) We first used a BLIP-2
model [96] using a T5-XL decoder to ensure high captioning performance along with scalability
to provide initial seed synthetic captions for each of the images, (2) we next generated templated
captions for each of the images using the classnames, for e.g., for an image of a tench in the
ImageNet dataset, we use a templated caption, “A photo of a tench” and similarly for an image of
a manted howler in the Monkeys10 dataset, we use a templated caption, “A photo of a mantled
howler, a type of monkey.”, and finally (3) we merge both the templated and seed synthetic captions
using the Capsfusion [207] model—a LLaMA model that is finetuned to take in two captions for
an image, and return a merged caption capturing the key aspects of both the captions. Using our
three-stage pipeline, we are able to generate diverse yet faithful captions for each of the images in our
set of 63 datasets. We showcase a visualisation of our generated captions for some of our constituent
datasets in fig. 19.

41

Dataset: AI2Diagrams
Class caption: “A

photo of a circuits
diagram.”

Synthetic caption:
“the main parts of
the model of the
circuit are :”

Merged caption: “The
main parts of the

model of the
circuit are

depicted in a photo
of a circuit
diagram.”

Dataset: ArtBench10
Class caption: “A
painting of the

artist adam
baltatu.”

Synthetic caption:
“two men in a boat

sitting on a
cliff.”

Merged caption: “A
painting by the

artist Adam Baltatu
depicts two men

sitting in a boat
on a cliff.”

Dataset: Birdsnap
Class caption: “A

photo of the bird
Acadian

Flycatcher.”

Synthetic caption:
“small green bird
on the branch.”

Merged caption: “On
the branch, there
is a small green
bird known as the

Acadian
Flycatcher.”

Dataset: Caltech101
Class caption: “A

photo of a camera.”

Synthetic caption:
“the canon eos dslr

has a flash and
lens attached to

the front.”

Merged caption: “The
Canon EOS DSLR,
depicted in a

photo, features a
flash and a lens
attached to the

front.”

Dataset: Cars196
Class caption: “A
photo of a GMC

Terrain SUV 2012, a
type of car.”

Synthetic caption:
“gmc terrain slt.”

Merged caption: “The
GMC Terrain SUV

2012 is a type of
car, specifically
the SLT model.”

Dataset: CLRS
Class caption: “A

satellite image of
a airport.”

Synthetic caption: “a
google satellite

image of the
airport and parking

lot”

Merged caption: “A
Google satellite

image of the
airport and parking

lot provides a
detailed real-world

view.”

Dataset: Dollarstreet
Class caption: “A

photo of a washing
machine from
Pakistan.”

Synthetic caption:
“image of washing

machine”

Merged caption: “The
image depicts a
washing machine
from Pakistan.”

Dataset: DF20-mini
Class caption: “A

photo of the fungi
Agaricus arvensis.”

Synthetic caption:
“the image shows
three white and
black mushrooms”

Merged caption: “The
image depicts three
Agaricus arvensis
mushrooms, which
are characterized
by their white and
black coloration.”

Dataset: DomainNet-C
Class caption: “A
clipart of a
butterfly.”

Synthetic caption: “a
colorful butterfly
is shown on a white

background”

Merged caption: “A
colorful butterfly
is depicted in a

clipart, set
against a white
background.”

Dataset: DomainNet-S
Class caption: “A

sketch of a dog.”

Synthetic caption: “a
sketch of an

american bulldog
standing”

Merged caption: “A
detailed sketch of
an American Bulldog

standing.”

Dataset: DTD
Class caption: “A

photo of a waffled
texture.”

Synthetic caption: “i
made chocolate chip
banana waffles and
ate them with milk”

Merged caption: “I
made chocolate chip
banana waffles and
enjoyed them with
milk, capturing a
photo of their

delightful waffled
texture.”

Dataset: FGVCAircraft
Class caption: “A

photo of a EMB-120,
a type of
aircraft.”

Synthetic caption: “The
airplane is blue
and white and
sitting on the

runway”

Merged caption: “A
photo of an

EMB-120, a type of
aircraft, shows a
blue and white

airplane parked on
the runway.”

Dataset: Flowers102
Class caption: “A

photo of a passion
flower, a type of

flower.”

Synthetic caption: “a
purple flower with

an orange bud”

Merged caption: “A
photo of a passion
flower, which is a

type of flower
characterized by
its purple color
and orange bud.”

Dataset: FRU92
Class caption: “A

photo of a candied
date, a type of

fruit.”

Synthetic caption:
“nuts in small bag
with chinese and
chinese chinese

written”

Merged caption: “A
photo of a candied
date, a type of

fruit, along with
nuts in a small bag

with Chinese
characters written

on it.”

Dataset: Monkeys10
Class caption: “A
photo of a bald

uakari, a type of
monkey.”

Synthetic caption: “a
monkey holds a

piece of food, and
is eating it”

Merged caption: “A
photo captures a

bald uakari, a type
of monkey, holding
a piece of food and
enjoying a meal.”

Figure 19: Random Samples from FoMo-In-Flux. We showcase some sample captions generated
using our three-stage pipeline for a few of the datasets in FoMo-In-Flux. The Class caption is
the templated caption using the class-name, Synthetic caption is the caption generated using
BLIP-2, and the Merged caption is the final merged caption using Capsfusion (merging both Class
caption and Synthetic caption).

42

K Data Statement

Dataset Title: FoMo-in-Flux

Dataset Curator(s): N/A

Dataset Version: 1.0

Dataset Citation: N/A

Data Statement Authors: N/A

Data Statement Version: 1.0

Data Statement Citation and DOI: N/A

K.1 Executive Summary

FoMo-in-Flux is an aggregate benchmark comprising over 2.53M images from 63 classification
and retrieval datasets, including 61 existing datasets and 2 newly introduced ones, described in
appendix B. On top of image and labels provided by the original datasets, we provide a caption for
each image, generated using the pipeline described in appendix J.

K.2 Curation Rationale

Fomo-in-Flux is a benchmark for continual multimodal pretraining that emphasizes adaptation
across distinct subdomains over long time horizons, while allowing for finegrained controllability
of particular concepts and classes presented at respective update steps for a data-centric perspective
on continual multimodal pretraining. The constituent datasets were selected based on availability,
licensing, quality of labels, diversity of data domains, quality of the resulting captions, and the degree
of adoption in the computer vision and machine learning research communities.

K.3 Documentation for Source Datasets

The licensing information for source datasets, as well as relevant citations, are provided in table 2
and table 3. We release the captions, as well as the Obscure Animals and Obscure Things datasets
under the MIT license (https://opensource.org/license/mit).

K.4 Language Varieties

All the class labels and captions are in English.

K.5 Speaker Demographic

N/A

K.6 Annotator Demographic

The captions were created using an automated pipeline and based on original class labels, as outlined
in appendix J. For selected simpler datasets, we use the templated captions directly, as shown in
table 2 and table 3. For the information about annotators of source datasets, please see the references
in table 2 and table 3.

K.7 Speech Situation and Text Characteristics

N/A

K.8 Preprocessing and Data Formatting

The class labels are used as-is with no modification. All images are resized to 224x224 pixels.

43

https://opensource.org/license/mit

K.9 Capture Quality

N/A

K.10 Limitations

Although great care was taken to ensure the correctness of the dataset and random samples of the
captions were manually inspected for a quality check, we did not verify the captions for all 2.53M
samples. Given the dependence on BLIP-2 [96] and Capsfusion [207], the captions might reflect the
biases and idiosyncracies of these models.

Moreover, as an aggregate benchmark, Fomo-in-Flux reflects the data collection and annotation
biases of the source datasets. However, by pooling diverse sources of data, we avoid a systematic
dataset-wide curation bias.

K.11 Broad Impact

Our dataset helps assess the continual multimodal pretraining performance across various methods,
data stream orderings, learning rate schedulers, and compute budgets. The insights gained will help
optimize continual pretraining, facilitating fewer large-scale model updates. This optimization, in
turn, will help decrease energy consumption and lower carbon emissions associated with continual
adaptation of foundation models, and overall encourage a more economical and ecological treatment
of these large architectures.

K.12 Metadata

License: https://opensource.org/license/mit

Annotation Guidelines: N/A

Annotation Process: Automatic

Dataset Quality Metrics: N/A

Errata: N/A

K.13 Disclosures and Ethical Review

N/A

K.14 Other

N/A

K.15 Glossary

N/A

About this data statement

A data statement is a characterization of a dataset that provides context to allow developers and users
to better understand how experimental results might generalize, how software might be appropriately
deployed, and what biases might be reflected in systems built on the software.

This data statement was written based on the template for the Data Statements Version 2 Schema.
The template was prepared by Angelina McMillan-Major, Emily M. Bender, and Batya Friedman
and can be found at http://techpolicylab.uw.edu/data-statements.

44

https://opensource.org/license/mit
http://techpolicylab.uw.edu/data-statements

L Paper Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] We ensure that the main claims accurately reflect the
contributions.

(b) Did you describe the limitations of your work? [Yes] Provided in the Supplementary
Material.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Provided
in Supplementary Material.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We ensure that our paper conforms to ethics review guidelines.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] See Supple-
mentary material for details.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See H.1 for details.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A] We fix the random seed in our experiments for fairness
and report error bars in the supplementary material to demonstrate that randomness in
performance is minimal.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Supplementary Material for
details.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We appropriately

cited existing resources including links. See Supplementary Material.
(b) Did you mention the license of the assets? [Yes] We provide licenses for all original

datasets whenever possible. See Supplementary Material.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We have included scripts to regenerate it alongside our generated captions in Croissant
format in Supplementary Material.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] We use existing publically accessible datasets for images, and
merely recaption them using them off-the-shelf captioning models.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] Yes, we ran checks to ensure no PII or offensive
content was added during our curation process.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] We have no human experiments.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A] We have no human experiments.
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A] We have no human experiments.

We provide additional details including datasheet for our dataset, along with our benchmark provided
in Croissant format, reproducible scripts for all of our experiments and our visualization interface in
the supplementary material.

45

