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Figure 1: Full demonstration of the structure-sensitive characteristic of Deepfake manipulations regarding facial landmarks.
Four benign and four Deepfake manipulations are included. Notation p refers to the Euclidean distances between landmarks of

the raw and manipulated faces.

1 DETAILED STATISTICS ON LANDMARK
OFFSET DISTRIBUTIONS

In the main paper content, we displayed the offset distributions of
facial landmarks regarding four benign and four Deepfake manipu-
lations on 10K sampled images at the 256 resolution. Specifically,
for every sampled raw image, a manipulated image is generated for
each image manipulation and is computed the Euclidean distance
with the raw image. In this section, we exhibited the landmark
offsets on the sampled target image for all four benign and four
Deepfake manipulations in Figure 1. Additionally, in Table 1, the
averaged Euclidean distances at 128 and 256 resolutions, denoted
as p12s and pase, are reported. The distances consistently demon-
strate similar findings as the main paper content discloses such
that Deepfake manipulations drastically modify image structures.
In particular, swapping an identity brings changes in shape and
layout within a face and can lead to relatively critical Euclidean
distances away from the original facial landmarks. Meanwhile, even
larger p values can be observed with respect to the reenactment
manipulations that modify the entire expression and head pose.
On the contrary, when encountering benign manipulations, the
average p values at both resolution levels are consistently below
100, regardless of specific operation types.

2 EXTENSIVE ROBUSTNESS EVALUATION ON
MORE BENIGN MANIPULATIONS

In the main content of this paper, the model is trained adversarially
against Jpeg and SimSwap [2] and evaluated on four benign and
seven Deepfake manipulations. While the four benign manipula-
tions (GaussianNoise, GaussianBlur, MedianBlur, and Jpeg) are the
most commonly seen ones that can best imitate real-life scenarios
upon spreading images on the internet, in this section, we further
2024-04-16 05:46. Page 1 of 1-3.
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Figure 2: Visualizations of the effects for each benign manip-
ulation.

conducted evaluations on the trained model at the 128 resolution
on CelebA-HQ [7] with more benign manipulations that are also
popularly discussed in recent studies, namely, Identity, Dropout,
Resize, SaltPepper, Brightness, Contrast, Saturation, and Hue. The
visualizations of the effects for each manipulation are displayed in
Figure 2 and the comparative results regarding the bit-wise water-
mark recovery accuracy are listed in Table 2. As a result, while the
contrastive models are mostly vulnerable regarding some of the ma-
nipulations, SepMark [10] and our approach favorably maintain the
robustness with the highest average watermark recovery accuracies
of 99.98% and 99.97%, respectively. Although slightly surpassed by
SepMark, the proposed LampMark promisingly maintains accura-
cies above 99.90% for all benign manipulations discussed in this
section.
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Table 1: Landmark offsets between manipulated and original images, where p123 and pys¢ refer to the average Euclidean distances

at 128 and 256 resolutions, respectively.

GaussianNoise GaussianBlur MedianBlur ~ Jpeg  SimSwap [2] InfoSwap [4] StarGAN [3] StyleMask [1]
P128 60.854 57.454 55.312 55.870 184.772 183.624 454.812 339.513
P256 91.770 63.443 63.069 73.341 346.389 344.951 691.076 565.585

Table 2: Watermark robustness evaluation against further benign manipulations. Bit-wise watermark recovery accuracies are

computed regarding each manipulation.

Manipulations HiDDeN [12] MBRS [6] RDA [11] CIN[8] ARWGAN [5] SepMark [10] Ours

Identity 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%
Dropout 82.44% 99.99% 94.76% 99.99% 97.25% 99.99% 99.99%
Resize 82.01% 99.99% 99.94% 99.17% 93.73% 99.99% 99.99%
SaltPepper 52.30% 99.37% 66.62% 93.95% 64.55% 99.96% 99.97%
Brightness 75.34% 99.96% 99.96% 98.47% 99.02% 99.99% 99.97%
Contrast 70.02% 98.43% 99.68% 99.99% 98.97% 99.99% 99.95%
Saturation 78.10% 99.92% 99.83% 99.99% 99.01% 99.99% 99.97%
Hue 71.30% 31.56% 80.85% 99.98% 87.93% 99.99% 99.91%
Average 76.43% 91.15% 92.70% 98.94% 92.56% 99.98% 99.97%
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Figure 3: Visualization of the binary key values from time
steps 0 to 9 in white and dark grids with a key length of 20.

3 EXPLANATION ON WATERMARK
CONFIDENTIALITY
In order to ensure watermark confidentiality, a cellular automaton

encryption system is devised following Rule 30 [9] in the main
content, with equations denoted as follows,

slt_1 ® (sé \% s{), fori=0,
sf“ = sl.t_1 ® (sf \Y% sfﬂ), foro<i<lI-1, (1)
¢ £y o .
Sj_y ® (57 V), fori=1-1.

In specific, given an initial key ko with binary values, the bit values
of the succeeding keys at each time step are determined by every
three consecutive bit values iteratively at the preceding time step.
In this section, we demonstrated the unpredictable and complex
characteristics of this encryption system by transforming a sample

Time Steps
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Bit Index

Figure 4: Visualization of the binary key values in white and
dark grids in real cases with key lengths of 64 and 128.

initial key ko of length 20 for nine time steps. To begin with, we
randomly initialized an initial key ko of length 20.

ko: @1 01 0100011100010 100

Then, based on the rule and equation, the next key k; is denoted
accordingly.

kk: 1711111101101 101111180

Particularly, the bit value 1 at the first index of kj is determined

by values at the last index and the first two indices, @ @ 1, of ko.
Similarly, all bit values are computed iteratively over the indices.

Thereafter, the keys k; for 2 <= i <=9 are derived as follows.

kp: 1200006111111 1T1100%011
k3: 11 0001100000001 10111
ky: 77170111 170000011111801
ks: 1711100110001 1000111
ke: 1717170111 1T11011T1101101
kz: 17111000011 100111111
ks: 171710110001 10611T1100001
kg: 111111171111 00110011
2024-04-16 05:46. Page 2 of 1-3.
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Following the rule and equation, the nine keys are nonrepeated
as expected. To visualize, we plotted the ten keys, including ko, in
white and dark grids for binary values 1 and 9, respectively. It can be
easily observed in Figure 3 that there are no identical rows, implying
the uniqueness of each key. Suppose k3, ks, and kg are randomly
drafted as the encryption keys applied to the raw watermarks, the
derived encrypted watermarks after sequential XOR operations are
unpredictable, and it is complex to recover the raw watermarks
without knowing the encryption keys. Lastly, we visualized the
keys in real cases of our experiments, setting the key lengths to
64 and 128. As a result, in Figure 4, the key sequences with both
lengths successfully maintain the key uniqueness, demonstrating
watermark confidentiality.
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