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Figure 1: Full demonstration of the structure-sensitive characteristic of Deepfake manipulations regarding facial landmarks.
Four benign and four Deepfake manipulations are included. Notation 𝜌 refers to the Euclidean distances between landmarks of
the raw and manipulated faces.

1 DETAILED STATISTICS ON LANDMARK
OFFSET DISTRIBUTIONS

In the main paper content, we displayed the offset distributions of
facial landmarks regarding four benign and four Deepfake manipu-
lations on 10K sampled images at the 256 resolution. Specifically,
for every sampled raw image, a manipulated image is generated for
each image manipulation and is computed the Euclidean distance
with the raw image. In this section, we exhibited the landmark
offsets on the sampled target image for all four benign and four
Deepfake manipulations in Figure 1. Additionally, in Table 1, the
averaged Euclidean distances at 128 and 256 resolutions, denoted
as 𝜌128 and 𝜌256, are reported. The distances consistently demon-
strate similar findings as the main paper content discloses such
that Deepfake manipulations drastically modify image structures.
In particular, swapping an identity brings changes in shape and
layout within a face and can lead to relatively critical Euclidean
distances away from the original facial landmarks. Meanwhile, even
larger 𝜌 values can be observed with respect to the reenactment
manipulations that modify the entire expression and head pose.
On the contrary, when encountering benign manipulations, the
average 𝜌 values at both resolution levels are consistently below
100, regardless of specific operation types.

2 EXTENSIVE ROBUSTNESS EVALUATION ON
MORE BENIGN MANIPULATIONS

In the main content of this paper, the model is trained adversarially
against Jpeg and SimSwap [2] and evaluated on four benign and
seven Deepfake manipulations. While the four benign manipula-
tions (GaussianNoise, GaussianBlur, MedianBlur, and Jpeg) are the
most commonly seen ones that can best imitate real-life scenarios
upon spreading images on the internet, in this section, we further
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Figure 2: Visualizations of the effects for each benign manip-
ulation.

conducted evaluations on the trained model at the 128 resolution
on CelebA-HQ [7] with more benign manipulations that are also
popularly discussed in recent studies, namely, Identity, Dropout,
Resize, SaltPepper, Brightness, Contrast, Saturation, and Hue. The
visualizations of the effects for each manipulation are displayed in
Figure 2 and the comparative results regarding the bit-wise water-
mark recovery accuracy are listed in Table 2. As a result, while the
contrastive models are mostly vulnerable regarding some of the ma-
nipulations, SepMark [10] and our approach favorably maintain the
robustness with the highest average watermark recovery accuracies
of 99.98% and 99.97%, respectively. Although slightly surpassed by
SepMark, the proposed LampMark promisingly maintains accura-
cies above 99.90% for all benign manipulations discussed in this
section.
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Table 1: Landmark offsets betweenmanipulated and original images, where 𝜌128 and 𝜌256 refer to the average Euclidean distances
at 128 and 256 resolutions, respectively.

GaussianNoise GaussianBlur MedianBlur Jpeg SimSwap [2] InfoSwap [4] StarGAN [3] StyleMask [1]

𝜌128 60.854 57.454 55.312 55.870 184.772 183.624 454.812 339.513
𝜌256 91.770 63.443 63.069 73.341 346.389 344.951 691.076 565.585

Table 2: Watermark robustness evaluation against further benign manipulations. Bit-wise watermark recovery accuracies are
computed regarding each manipulation.

Manipulations HiDDeN [12] MBRS [6] RDA [11] CIN [8] ARWGAN [5] SepMark [10] Ours

Identity 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%
Dropout 82.44% 99.99% 94.76% 99.99% 97.25% 99.99% 99.99%
Resize 82.01% 99.99% 99.94% 99.17% 93.73% 99.99% 99.99%
SaltPepper 52.30% 99.37% 66.62% 93.95% 64.55% 99.96% 99.97%
Brightness 75.34% 99.96% 99.96% 98.47% 99.02% 99.99% 99.97%
Contrast 70.02% 98.43% 99.68% 99.99% 98.97% 99.99% 99.95%
Saturation 78.10% 99.92% 99.83% 99.99% 99.01% 99.99% 99.97%
Hue 71.30% 31.56% 80.85% 99.98% 87.93% 99.99% 99.91%

Average 76.43% 91.15% 92.70% 98.94% 92.56% 99.98% 99.97%

Figure 3: Visualization of the binary key values from time
steps 0 to 9 in white and dark grids with a key length of 20.

3 EXPLANATION ONWATERMARK
CONFIDENTIALITY

In order to ensure watermark confidentiality, a cellular automaton
encryption system is devised following Rule 30 [9] in the main
content, with equations denoted as follows,

𝑠𝑡+1𝑖 =


𝑠𝑡
𝑙−1 ⊕ (𝑠𝑡0 ∨ 𝑠𝑡1), for 𝑖 = 0,

𝑠𝑡𝑖−1 ⊕ (𝑠𝑡𝑖 ∨ 𝑠𝑡𝑖+1), for 0 < 𝑖 < 𝑙 − 1,

𝑠𝑡
𝑙−2 ⊕ (𝑠𝑡

𝑙
∨ 𝑠𝑡0), for 𝑖 = 𝑙 − 1.

(1)

In specific, given an initial key 𝑘0 with binary values, the bit values
of the succeeding keys at each time step are determined by every
three consecutive bit values iteratively at the preceding time step.
In this section, we demonstrated the unpredictable and complex
characteristics of this encryption system by transforming a sample

Figure 4: Visualization of the binary key values in white and
dark grids in real cases with key lengths of 64 and 128.

initial key 𝑘0 of length 20 for nine time steps. To begin with, we
randomly initialized an initial key 𝑘0 of length 20.

𝑘0: 0 1 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0

Then, based on the rule and equation, the next key 𝑘1 is denoted
accordingly.

𝑘1: 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0

Particularly, the bit value 1 at the first index of 𝑘1 is determined
by values at the last index and the first two indices, 0 0 1, of 𝑘0.
Similarly, all bit values are computed iteratively over the indices.
Thereafter, the keys 𝑘𝑖 for 2 <= 𝑖 <= 9 are derived as follows.

𝑘2: 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1

𝑘3: 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1

𝑘4: 1 1 1 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 1

𝑘5: 1 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1

𝑘6: 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1

𝑘7: 1 0 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1

𝑘8: 1 1 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 0 0 1

𝑘9: 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1
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Following the rule and equation, the nine keys are nonrepeated
as expected. To visualize, we plotted the ten keys, including 𝑘0, in
white and dark grids for binary values 1 and 0, respectively. It can be
easily observed in Figure 3 that there are no identical rows, implying
the uniqueness of each key. Suppose 𝑘3, 𝑘5, and 𝑘8 are randomly
drafted as the encryption keys applied to the raw watermarks, the
derived encrypted watermarks after sequential XOR operations are
unpredictable, and it is complex to recover the raw watermarks
without knowing the encryption keys. Lastly, we visualized the
keys in real cases of our experiments, setting the key lengths to
64 and 128. As a result, in Figure 4, the key sequences with both
lengths successfully maintain the key uniqueness, demonstrating
watermark confidentiality.
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