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ABSTRACT

Evaluating the adversarial robustness of deep networks to gradient-based attacks
is challenging. While most attacks consider ω2- and ω→-norm constraints to craft
input perturbations, only a few investigate sparse ω1- and ω0-norm attacks. In
particular, ω0-norm attacks remain the least studied due to the inherent complex-
ity of optimizing over a non-convex and non-differentiable constraint. However,
evaluating adversarial robustness under these attacks could reveal weaknesses
otherwise left untested with more conventional ω2- and ω→-norm attacks. In this
work, we propose a novel ω0-norm attack, called ε-zero, which leverages a dif-
ferentiable approximation of the ω0 norm to facilitate gradient-based optimization,
and an adaptive projection operator to dynamically adjust the trade-off between
loss minimization and perturbation sparsity. Extensive evaluations using MNIST,
CIFAR10, and ImageNet datasets, involving robust and non-robust models, show
that ε-zero finds minimum ω0-norm adversarial examples without requiring any
time-consuming hyperparameter tuning, and that it outperforms all competing
sparse attacks in terms of success rate, perturbation size, and efficiency.

1 INTRODUCTION

Early research has revealed that machine learning models are fooled by adversarial examples, i.e.,
slightly-perturbed inputs optimized to cause misclassifications (Biggio et al., 2013; Szegedy et al.,
2014). The discovery of this phenomenon has, in turn, demanded a more careful evaluation of
the robustness of such models, especially when deployed in security-sensitive and safety-critical
applications. Most of the gradient-based attacks proposed to evaluate the adversarial robustness of
Deep Neural Networks (DNNs) optimize adversarial examples under different ωp-norm constraints.
In particular, while convex ω1, ω2, and ω→ norms have been widely studied (Chen et al., 2018; Croce
& Hein, 2021), only a few ω0-norm attacks have been considered to date. The main reason is that
finding minimum ω0-norm solutions is known to be an NP-hard problem (Davis et al., 1997), and
thus ad-hoc approximations must be adopted to overcome issues related to the non-convexity and
non-differentiability of such (pseudo) norm. Although this is a challenging task, attacks based on the
ω0 norm have the potential to uncover issues in DNNs that may not be evident when considering other
attacks (Carlini & Wagner, 2017b; Croce & Hein, 2021). In particular, ω0-norm attacks, known to
perturb a minimal fraction of input values, can be used to determine the most sensitive characteristics
that influence the model’s decision-making process, offering a different and relevant threat model to
benchmark existing defenses and a different understanding of the model’s inner workings.

Unfortunately, current ω0-norm attacks exhibit a largely suboptimal trade-off between their success
rate and efficiency, i.e., they are either accurate but slow or fast but inaccurate. In particular,
the accurate ones use complex projections and advanced initialization strategies (e.g., adversarial

Code is available at https://github.com/sigma0-advx/sigma-zero.
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Figure 1: The leftmost plot shows the execution of ε-zero on a two-dimensional problem. The
initial point x (red dot) is updated via gradient descent to find the adversarial example xω (green star)
while minimizing the number of perturbed features (i.e., the ω0 norm of the perturbation). The gray
lines surrounding x demarcate regions where the ω0 norm is minimized. The rightmost plot shows the
adversarial images (top row) and the corresponding perturbations (bottom row) found by ε-zero
during the three steps highlighted in the leftmost plot, along with their prediction and ω0 norm.

initialization) to find smaller input perturbations but suffer from time or memory limitations, hindering
their scalability to larger networks or high-dimensional data (Brendel et al., 2019a; Césaire et al.,
2021). Other attacks execute faster, but their returned solution is typically less accurate and largely
suboptimal (Matyasko & Chau, 2021; Pintor et al., 2021). This results in overestimating adversarial
robustness and, in turn, contributes to spreading a false sense of security, hindering the development
of effective defense mechanisms (Carlini et al., 2019; Pintor et al., 2022). Developing a reliable,
scalable, and compelling method to assess the robustness of DNN models against sparse perturbations
with minimum ω0 norm remains thus a relevant and challenging open problem.

In this work, we propose a novel ω0-norm attack, named ε-zero, which iteratively promotes the
sparsity of the adversarial perturbation by minimizing its ω0 norm (see Figure 1 and Sect. 2). To over-
come the limitations of previous approaches, our attack leverages two main technical contributions:
(i) a smooth, differentiable approximation of the ω0 norm to enable the minimization of the attack
loss via gradient descent; and (ii) an adaptive projection operator that dynamically increases sparsity
to further reduce the perturbation size while keeping the perturbed sample in the adversarial region.

Our experiments (Sect. 3) provide compelling evidence of the remarkable performance of ε-zero.
We evaluate it on 3 well-known benchmark datasets (i.e., MNIST, CIFAR10, and ImageNet), using
22 different models from Robustbench (Croce et al., 2021) and the corresponding official repositories.
We compare the performance of ε-zero against more than 10 competing attacks, totaling almost
450 different comparisons. Our analysis shows that ε-zero outperforms state-of-the-art attacks in
terms of both attack success rate and perturbation size (lower ω0 norm), while being also significantly
faster (i.e., requiring fewer queries and lower runtime). Our attack also provides some additional
advantages: (i) it does not require any sophisticated, time-consuming hyperparameter tuning; (ii)
it does not require being initialized from an adversarial input; (iii) it is less likely to fail, i.e., it
consistently achieves an attack success rate of 100% for sufficiently-large perturbation budgets,
thereby enabling more reliable robustness evaluations (Carlini et al., 2019). We thus believe that
ε-zero will foster significant advancements in the development of better robustness evaluation
tools and more robust models against sparse attacks. We conclude the paper by discussing related
work (Sect. 4), along with the main contributions and future research directions (Sect. 5).

2 ω-ZERO : MINIMUM ε0-NORM ATTACKS

We present here ε-zero, a gradient-based attack that finds minimum ω0-norm adversarial examples.

Threat Model. We assume that the attacker has complete access to the target model, including
its architecture and trained parameters, and exploits its gradient for staging white-box untargeted
attacks (Carlini & Wagner, 2017b; Biggio & Roli, 2018). This setting is useful for worst-case
evaluation of the adversarial robustness of DNNs, providing an empirical assessment of the perfor-
mance degradation that may be incurred under attack. Note that this is the standard setting adopted
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in previous work for gradient-based adversarial robustness evaluations (Carlini & Wagner, 2017b;
Brendel et al., 2019b; Croce et al., 2021; Pintor et al., 2021).

Problem Formulation. In this work, we seek untargeted minimum ω0-norm adversarial perturbations
that steer the model’s decision towards misclassification (Carlini & Wagner, 2017b). To this end, let
x → X = [0, 1]d be a d-dimensional input sample, y → Y = {1, . . . , l} its associated true label, and
f : X ↑ ! ↓↔ Y the target model, parameterized by ω → !. While f outputs the predicted label, we
will also use fk to denote the continuous-valued output (logit) for class k → Y . The goal of our attack
is to find the minimum ω0-norm adversarial perturbation εω such that the corresponding adversarial
example xω = x + εω is misclassified by f . This can be formalized as:

εω → arg min
ω

↗ε↗0 , (1)

s.t. f(x + ε,ω) ↘= y , (2)

x + ε → [0, 1]d , (3)

where ↗ · ↗0 denotes the ω0 norm, which counts the number of non-zero components. The hard
constraint in Eq. (2) ensures that the perturbation ε is valid only if the target model f misclassifies
the perturbed sample x + ε, while the box constraint in Eq. (3) ensures that the perturbed sample lies
in [0, 1]d.1 Since the problem in Eqs. (1)-(3) can not be solved directly, we reformulate it as:

εω → arg min
ω

L(x + ε, y, ω) +
1

d
ω̂0(ε) (4)

s.t. x + ε → [0, 1]d , (5)

where we use a differentiable approximation ω̂0(ε) instead of ||ε||0, and normalize it with respect to
the number of features d to ensure that its value is within the interval [0, 1]. The loss L is defined as:

L(x, y,ω) = max

(
fy(x,ω) ≃ max

k ↑=y
fk(x,ω), 0

)
+ I(f(x,ω) = y) . (6)

The first term in L represents the logit difference, which is positive when the sample is correctly
assigned to the true class y, and clipped to zero when it is misclassified (Carlini & Wagner, 2017b).
The second term merely adds 1 to the loss if the sample is correctly classified.2 This ensures that
L = 0 only when an adversarial example is found and L ⇐ 1 otherwise. In practice, when minimizing
the objective in Eq. (4), this loss term induces an alternate optimization process between minimizing
the loss function itself (to find an adversarial example) and minimizing the ω0-norm of the adversarial
perturbation (when an adversarial example is found). It is also worth remarking that, conversely to
the objective function proposed by Carlini & Wagner (2017b), our objective does not require tuning
any trade-off hyperparameters to balance between minimizing the loss and reducing the perturbation
size, thereby avoiding a computationally expensive line search for each input sample.

ω0-norm Approximation. Besides the formalization of the attack objective, one of the main technical
advantages of ε-zero is the smooth, differentiable approximation of the ω0 norm, thereby enabling
the use of gradient-based optimization. To this end, we first note that the ω0-norm of a vector can
be rewritten as ↗x↗0 =

∑d
i=1 sign(xi)2, and then approximate the sign function as sign(xi) ⇒

xi/
√

x2
i + ε, where ε > 0 is a smoothing hyperparameter that makes the approximation sharper as

ε ↔ 0. This, in turn, yields the following smooth approximation of the ω0 norm:

ω̂0(x, ε) =
d∑

i=1

x2
i

x2
i + ε

,ε > 0, ω̂0(x, ε) → [0, d] . (7)

Adaptive Projection ”ε . The considered ω0-norm approximation allows optimizing Eq. (4) via
gradient descent. However, using such a smooth approximation tends to promote solutions that are
not fully sparse, i.e., with many components that are very close to zero but not exactly equal to zero,
thereby yielding inflated ω0-norm values. To overcome this issue, we introduce an adaptive projection
operator ”ε that sets to zero the components with a perturbation intensity lower than a given sparsity

1Note that, when the source point x is already misclassified by f , the solution is simply ωω = 0.
2While a sigmoid approximation may be adopted to overcome the non-differentiability of the I term at the

decision boundary, we simply set its gradient to zero everywhere, without any impact on the experimental results.
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Algorithm 1 ε-zero Attack Algorithm.
Input: x → [0, 1]d, the input sample; y, the true class label; ω, the target model; N, the number of

iterations; ϑ0 = 1.0, the initial step size; ε = 10↓3, the ω0-norm smoothing hyperparameter;
ϖ0 = 0.3, the initial sparsity threshold; t = 0.01, the sparsity threshold adjustment factor.

Output: xω, the minimum ω0-norm adversarial example.
1 ε ⇑ 0; εω ⇑ →; ϖ ⇑ ϖ0; ϑ ⇑ ϑ0

2 for i in 1, . . . , N do
3 ⇓g ⇑ ⇓ω[L(x + ε, y,ω) + 1

d ω̂0(ε, ε)] ω Gradient Descent for Eq. (4).

4 ⇓g ⇑ ⇓g/↗⇓g↗→ ω Gradient Normalization.

5 ε ⇑ clip(x + [ε ≃ ϑ ·⇓g]) ≃ x ω Box Constraints.

6 ε ⇑ ”ε (ε) ω Adaptive Projection Operator.

7 ϑ = cosine_annealing(ϑ0, i) ω Learning Rate Decay.

8 if L(x + ε, y, ω) ⇔ 0: ϖ+ = t · ϑ, else ϖ≃ = t · ϑ ω Adaptive Adjustment for ε.

9 if L(x + ε, y, ω) ⇔ 0 ↖ ↗ε↗0 < ↗εω↗0: εω ⇑ ε
10 end
11 if L(x + εω, y,ω) > 0: εω ⇑ ↙
12 return xω ⇑ x + εω

threshold ϖ in each iteration. The sparsity threshold ϖ is initialized with a starting value ϖ0 and then
dynamically adjusted for each sample during each iteration; in particular, it is increased to find sparser
perturbations when the current sample is already adversarial, while it is decreased otherwise. The
updates to ϖ are proportional to the step size and follow its annealing strategy, as detailed below.

Solution Algorithm. Our attack, given as Algorithm 1, solves the problem in Eqs. (4)-(5) via a fast
and memory-efficient gradient-based optimization. After initializing the adversarial perturbation
ε = 0 (line 1), it computes the gradient of the objective in Eq. (4) with respect to ε (line 3). The
gradient is then normalized such that its largest components (in absolute value) equal ±1 (line 4).
This stabilizes the optimization by making the update independent from the gradient size, and also
makes the selection of the step size independent from the input dimensionality (Rony et al., 2018;
Pintor et al., 2021). We then update ε to minimize the objective via gradient descent while also
enforcing the box constraints in Eq. (5) through the usage of the clip operator (line 5). We increase
sparsity in ε by zeroing all components lower than the current sparsity threshold ϖ (line 6), as
discussed in the previous paragraph. We then decrease the step size ϑ via cosine annealing (line 7), as
suggested by Rony et al. (2018); Pintor et al. (2021), and adjust the sparsity threshold ϖ accordingly
(line 8). In particular, if the current sample is adversarial, we increase ϖ by t · ϑ to promote sparser
perturbations; otherwise, we decrease ϖ by the same amount to promote the minimization of L. The
above process is repeated for N iterations while keeping track of the best solution found, i.e., the
adversarial perturbation εω with the lowest ω0 norm (line 9). If no adversarial example is found, the
algorithm sets εω = ↙ (line 11). It terminates by returning xω = x + εω (line 12).

Remarks. To summarize, the main contributions behind ε-zero are: (i) the use of a smooth
ω0-norm approximation, along with the definition of an appropriate objective (Eq. 4), to enable
optimizing ω0-norm adversarial examples via gradient descent; and (ii) the introduction of an adaptive
projection operator to further improve sparsity during the optimization. Our algorithm leverages also
common strategies like gradient normalization and step size annealing to speed up convergence. As
reported by our experiments, ε-zero provides a more effective and efficient ω0-norm attack that
(i) is robust to different hyperparameter choices; (ii) does not require any adversarial initialization;
and (iii) enables more reliable robustness evaluations, being able to find adversarial examples also
when the competing attacks may fail (Carlini et al., 2019; Pintor et al., 2022).

3 EXPERIMENTS

We report here an extensive experimental evaluation comparing ε-zero against 11 state-of-the-art
sparse attacks, including both ω0- and ω1-norm attacks. We test all attacks using different settings on
18 distinct models and 3 different datasets, yielding almost 450 different comparisons in total.
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3.1 EXPERIMENTAL SETUP

Datasets. We consider the three most popular datasets used for benchmarking adversarial robustness:
MNIST (LeCun & Cortes, 2005), CIFAR-10 (Krizhevsky, 2009) and ImageNet (Krizhevsky et al.,
2012). To evaluate the attack performance, we use the entire test set for MNIST and CIFAR-10 (with
a batch size of 32), and a subset of 1000 test samples for ImageNet (with a batch size of 16).

Models. We use a selection of both baseline and robust models to evaluate the attacks under different
conditions. We evaluate ε-zero on a vast set of models to ensure its broad effectiveness and expose
vulnerabilities that may not be revealed by other attacks (Croce & Hein, 2021). For the MNIST
dataset, we consider two adversarially trained convolutional neural network (CNN) models by Rony
et al. (2021), i.e., CNN-DDN and CNN-Trades. These models have been trained to be robust to
both ω2 and ω→ adversarial attacks. We denote them M1 and M2, respectively. For the CIFAR-10
and ImageNet datasets, we employ state-of-the-art robust models from RobustBench (Croce et al.,
2021) and the paper’s official repositories. For CIFAR-10, we adopt ten models, denoted as C1-C12.
C1 (Carmon et al., 2019) and C2 (Augustin et al., 2020) combine training data augmentation with
adversarial training to improve robustness to ω→ and ω2 attacks. C3 (Croce & Hein, 2021) and
C4 (Jiang et al., 2023) are ω1 robust models. C5 (Croce et al., 2021) is a non-robust WideResNet-
28-10 model. C6 (Gowal et al., 2021) uses generative models to artificially augment the original
training set and improve adversarial robustness to generic ωp-norm attacks. C7 (Engstrom et al., 2019)
is an adversarially trained model that is robust against ω2-norm attacks. C8 (Chen et al., 2020) is
a robust ensemble model. C9 (Xu et al., 2023) is a recently proposed adversarial training defense
robust to ω2 attacks. C10 (Addepalli et al., 2022) enforces diversity during data augmentation and
combines it with adversarial training. Lastly, C11 (Zhong et al., 2024) and C12 (Zhong et al., 2024)
are two adversarially trained models robust against ω0-norm adversarial perturbations. For ImageNet,
we consider a pretrained ResNet-18 denoted with I1 (He et al., 2015), and five robust models to
ω→-attacks, denoted with I2 (Engstrom et al., 2019), I3 (Hendrycks et al., 2021), I4 (Debenedetti
et al., 2023), I5 (Wong et al., 2020), and I6 (Salman et al., 2020). Lastly, in the appendix, we present
two ω0-robust models, C11 (Zhong et al., 2024) and C12 (Zhong et al., 2024), for CIFAR-10, along
with two large ω→-robust models, I7 (Peng et al., 2023) and I8 (Mo et al., 2022), for ImageNet.

Attacks. We compare ε-zero against the following state-of-the-art minimum-norm attacks, in
their ω0-norm variants: the Voting Folded Gaussian Attack (VFGA) attack (Césaire et al., 2021), the
Primal-Dual Proximal Gradient Descent (PDPGD) attack (Matyasko & Chau, 2021), the Brendel &
Bethge (BB) attack (Brendel et al., 2019a), including also its variant with adversarial initialization
(BBadv),3 and the Fast Minimum Norm (FMN) attack (Pintor et al., 2021). We also consider two
state-of-the-art ω1-norm attacks as additional baselines, i.e., the Elastic-Net (EAD) attack (Chen et al.,
2018) and SparseFool (SF) by Modas et al. (2019). All attacks are set to manipulate the input values
independently; e.g., for CIFAR-10, the number of modifiable inputs is 3 ↑ 32 ↑ 32 = 3072.

Hyperparameters. We run our experiments using the default hyperparameters from the original
implementations provided in the authors’ repositories, AdversarialLib (Rony & Ben Ayed) and
Foolbox (Rauber et al., 2017). We set the maximum number of iterations to N = 1000 to ensure that
all attacks reach convergence (Pintor et al., 2022).4 For ε-zero, we set ϑ0 = 1, ϖ0 = 0.3, t = 0.01,
and ε = 10↓3, and keep the same configuration for all models and datasets.5

Evaluation Metrics. For each attack, we report the Attack Success Rate (ASR) at different values of
k, denoted with ASRk, i.e., the fraction of successful attacks for which ↗εω↗0 ⇔ k, and the median
value of ↗εω↗0 over the test samples, denoted with ω̃0.6 We compare the computational effort of each
attack considering the mean runtime (s) (per sample), the mean number of queries (q) (i.e., the total
number of forwards and backwards required to perform the attack, divided by the number of samples),
and the Video Random Access Memory (VRAM) consumed by the Graphics Processing Unit (GPU).
We measure the runtime on a workstation with an NVIDIA A100 Tensor Core GPU (40 GB memory)
and two Intel® Xeo® Gold 6238R processors. We evaluate memory consumption as the maximum
VRAM used among all batches, representing the minimum requirement to run without failure.

3We utilize the Foolbox DatasetAttack (Foolbox, 2017) for adversarial initialization.
4Additional results using only N = 100 steps are reported in Appendix B.1.
5To show that no specific hyperparameter tuning is required, additional results are reported in Appendix A.2.
6If no adversarial example is found for a given x, we set →ωω→0 = ↑, as done by Brendel et al. (2019a).
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Table 1: Minimum-norm comparison results on MNIST, CIFAR10 and ImageNet with N = 1000.
For each attack and model (M), we report ASR at k = 24, 50,↙, median perturbation size ω̃0, mean
runtime s (in seconds), mean number of queries q (in thousands), and maximum VRAM usage (in
GB). When VFGA exceeds the VRAM limit, we re-run it using a smaller batch size, increasing its
runtime t. We denote those cases with the symbol ‘ϱ’. Remaining models in Appendix B, Table 6.

Attack M ASR24 ASR50 ASR→ ω̃0 s q VRAM M ASR24 ASR50 ASR→ ω̃0 s q VRAM
MNIST

SF 6.66 6.76 96.98 469 1.07 0.18 0.06 1.03 1.21 91.68 463 2.87 0.86 0.07
EAD 3.83 53.66 100.0 49 0.47 6.28 0.05 2.13 55.57 100.0 48 0.50 6.73 0.05

PDPGD 26.77 74.08 100.0 38 0.23 2.00 0.04 16.91 66.30 100.0 42 0.23 2.00 0.04
VFGA 43.58 82.42 99.98 27 0.05 0.77 0.21 5.00 39.33 99.95 57 0.05 1.33 0.21

FMN 35.90 93.74 100.0 29 0.21 2.00 0.04 50.74 91.84 99.41 24 0.22 2.00 0.04
BB 71.23 97.86 100.0 18 0.90 2.99 0.05 56.53 91.62 100.0 18 0.74 3.71 0.05

BBadv 67.06 91.23 100.0 19 0.77 2.01 0.07 29.17 40.88 100.0 89 0.71 2.01 0.07
ε-zero

M1

83.79 99.98 100.0 16 0.31 2.00 0.04

M2

98.03 100.0 100.0 9 0.31 2.00 0.04
CIFAR-10

SF 18.71 18.77 56.39 3072 11.31 1.40 1.62 20.46 24.36 58.29 3072 1.63 0.48 0.66
EAD 16.32 30.38 100.0 90 1.92 5.70 1.47 13.01 13.23 100.0 800 0.94 4.89 0.65

PDPGD 26.84 42.50 100.0 63 0.64 2.00 1.32 22.30 35.13 100.0 75 0.41 2.00 0.59
VFGA 51.06 75.37 99.92 24 0.59 0.78 11.71 28.47 49.98 99.72 51 0.32 1.25 4.44

FMN 48.89 74.70 100.0 26 0.59 2.00 1.31 27.45 48.87 100.0 52 0.24 2.00 0.60
BB 13.27 14.24 14.70 → 0.63 2.05 1.47 16.88 22.91 27.64 → 1.04 2.25 0.65

BBadv 65.96 90.57 100.0 16 4.68 2.01 1.64 36.47 72.43 100.0 34 5.28 2.01 0.64
ε-zero

C1

76.53 95.38 100.0 11 0.73 2.00 1.53

C3

38.60 73.02 100.0 32 0.43 2.00 0.71
SF 19.66 21.22 98.74 3070 3.62 0.46 1.90 31.76 43.07 91.14 69 4.32 1.49 0.66

EAD 9.73 11.42 100.0 360 2.53 5.62 1.89 24.21 24.78 100.0 768 1.04 4.99 0.65
PDPGD 28.02 45.15 100.0 55 1.12 2.00 1.8 26.89 42.38 100.0 66 0.40 2.00 0.60

VFGA 39.58 66.50 99.62 34 0.48 0.94 16.53 46.71 69.47 99.83 28 0.25 0.82 4.22
FMN 39.30 71.70 100.0 33 1.08 2.00 1.8 43.06 62.96 100.0 34 0.35 2.00 0.59

BB 38.73 56.78 58.64 33 2.31 2.89 1.89 25.95 27.98 29.50 → 0.54 2.09 0.65
BBadv 70.07 96.31 100.0 17 3.92 2.01 1.99 53.17 82.46 100.0 22 3.03 2.01 0.65

ε-zero

C2

74.63 97.55 100.0 15 1.41 2.00 1.92

C4

55.42 82.92 100.0 20 0.42 2.00 0.72
ImageNet

EAD 35.4 36.3 100.0 460 4.13 2.69 0.46 27.0 28.4 100.0 981 19.25 5.49 1.41
VFGA 57.9 72.5 99.9 14 1.22ω 1.08 > 40 46.7 59.5 97.9 31 6.93ω 1.98 > 40

FMN 62.6 81.0 100.0 12 0.73 2.00 0.66 49.1 67.7 100.0 25 1.98 2.00 2.30
BBadv 77.5 93.2 100.0 7 231.67 2.01 0.72 64.7 85.5 100.0 14 205.11 2.01 2.41

ε-zero

I1

82.6 95.9 100.0 5 1.18 2.00 0.84

I3

66.7 86.9 100.0 13 2.76 2.00 2.52
EAD 46.8 51.0 100.0 42 18.10 5.45 1.42 32.8 33.5 100.0 572 11.43 5.34 1.68

VFGA 54.7 63.4 96.7 12 8.21ω 2.35 > 40 40.0 46.5 95.5 66 33.88ω 3.97 > 40
FMN 57.8 67.0 100.0 9 1.97 2.00 2.30 40.3 47.2 100.0 58 4.28 2.00 2.97

BBadv 71.0 82.3 100 4 182.65 2.01 2.40 46.8 59..8 100.0 31 178.06 2.01 3.07
ε-zero

I2

76.9 87.4 100.0 3 2.75 2.00 2.52

I4

50.7 65.1 100.0 23 5.72 2.00 3.20

3.2 EXPERIMENTAL RESULTS

We report the success rate and computational effort metrics of ε-zero against minimum-norm
attacks in Table 1 and fixed-budget attacks in Table 3-4. In these tables, we consider the most robust
models for each dataset, and we provide the remaining results in Appendix B. Finally, for ImageNet,
we narrow our analysis to EAD, FMN, BBadv, and VFGA minimum-norm attacks, as they surpass
competing attacks on MNIST and CIFAR-10 in terms of ASR, perturbation size, or execution time.

Effectiveness. The median values of ||εω||0, denoted as ω̃0, and the ASRs are reported in Table 1 for
all models and datasets. To facilitate comparison, the attacks are sorted from the least to the most
effective, on average. In all dataset-model configurations, ε-zero significantly outperforms all the
considered attacks. Taking the best-performing attack among the fastest competitors as a reference
(i.e., FMN), ε-zero is able to find smaller perturbations and higher ASRs in all configurations.
In particular, on CIFAR-10, ε-zero reduces the median number of manipulated features from
52 to 32 against the most robust model (C3), with an average reduction of 49% across all models.
On ImageNet, this improvement is even more pronounced, with a reduction of up to 58%. In the
best case (I4), the median ↗εω↗0 is reduced from 58 to 23, and in the worst case (I2), from 9 to
3. Alternatively, the most competitive attack in finding small perturbations is BBadv, which is
significantly slower and requires starting from an already-adversarial input. The ASR→ of BB
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Figure 2: Robustness evaluation curves (ASR vs. perturbation budget k) for M2 on MNIST (left), C1
on CIFAR-10 (middle), and I1 on ImageNet (right).

(i.e., without adversarial initialization) indeed decreases with increasing input dimensionality (e.g.,
CIFAR-10). This occurs because BB often stops unexpectedly before reaching the specified number
of steps due to initialization failures; in particular, Table 1 shows that the median perturbation size
found by BB is sometimes ↙, as its ASR→ is lower than 50%. Although BBadv does not suffer
from the same issue, as it leverages adversarial initialization, it is still outperformed by ε-zero.
Specifically, ε-zero reduces the ω0 norm of the adversarial examples from 16 to 11 in the best
case (C1), while achieving an average improvement of 24% across all dataset-model configurations.

Efficiency. We evaluate the computational effort required to run each attack by reporting in Table 1
the mean runtime s (in seconds), the mean number of queries q issued to the model (in thousands),
and the maximum VRAM used. Note that, while the runtime s and the consumed VRAM may
depend on the attack implementation, the number of queries q counts the total number of forward and
backward passes performed by the attack, thus providing a fairer evaluation of the attack complexity.
In fact, some attacks perform more than 2000 queries even if N = 1000, i.e., they perform more than
one forward and one backward pass per iteration (see, e.g., EAD and BB). Other attacks, instead,
might use less than 2000 queries as they implement early stopping strategies. The results indicate
that ε-zero exhibits similar runtime performance when compared to the fastest algorithms FMN,
PDPGD, and VFGA, while preserving higher effectiveness. In contrast, when compared against
the BBadv attack, which competes in terms of ω̃0, our attack is much faster across all the dataset-
model configurations, especially for Imagenet. For example, ε-zero is 10 times faster than BBadv
on C4 and 100 times faster on I3 on ImageNet. This confirms that ε-zero establishes a better
effectiveness-efficiency trade-off than that provided by state-of-the-art ω0-norm attacks.

Reliability. Complementary to Table 1, we present the robustness evaluation curves in Figure 2 for
each attack on M2, C1, and I1. In Appendix B.3, we include similar curves for all other configurations.
These curves go beyond the only median statistic and ASRk, providing further evidence that ε-zero
achieves higher ASRs with smaller ω0-norm perturbations compared to the competing attacks. More
importantly, the ASR of ε-zero reaches almost always 100% as the perturbation budget grows,
meaning that its optimization only rarely fails to find an adversarial example. In Appendix B.1,
we further demonstrate that even when the number of iterations is reduced to N = 100, ε-zero
consistently achieves an ASR→ of 100% across all models. This is not observed with other attacks,
which often fail when using fewer iterations, thereby increasing the risk of overestimating adversarial
robustness. These results reinforce our previous findings, confirming that ε-zero can help mitigate
the issue of overestimating adversarial robustness – a crucial aspect to foster scientific progress in
defense developments and evaluations (Carlini et al., 2019; Pintor et al., 2022).

Ablation Study. In Table 2 we present an ablation study to evaluate the relevance of ε-zero’s
components. Our findings indicate that all the non-trivial components in ε-zero are essential for
ensuring the effectiveness of the attack. Specifically, we observe that the ω0-norm approximation
ω̂0 (Eq. 7, line 3) leads the optimization algorithm to perturb all input features, albeit with small
contributions. The projection operator (line 6) plays a crucial role by significantly decreasing the
number of perturbed features, effectively removing the least significant contributions. Furthermore,
gradient normalization (line 4) accelerates convergence, enhancing efficiency. Lastly, the adaptive
projection operator (line 8) fine-tunes the results, reduces the number of perturbed features, and
mitigates the dependency on hyperparameter choices. These results underline the importance of each
component in ε-zero, highlighting their contributions to the overall performance of the attack.
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Table 2: Ablation study on the ε-zero components integrated in Algorithm 1. Columns describe
respectively: Gradient normalization factor (line 4); dynamic projection adjustment line 8; projection
operator ”ε (line 6); and the ω0 norm approximation ω̂0 (line 3).

Model Normalization Adaptive ϖ Projection ω̂0 ASR10 ASR50 ASR ω̃0

C10

↭ ↭ ↭ ↭ 21.68 73.02 100.0 32
↭ ↭ ↭ 21.89 71.66 100.0 32

↭ ↭ ↭ 16.81 39.76 100.0 65
↭ ↭ 12.95 13.23 100.0 505

↭ 12.95 12.95 100.0 3004
↭ ↭ 12.95 12.95 100.0 3070

C5

↭ ↭ ↭ ↭ 37.27 82.92 100.0 20
↭ ↭ ↭ 37.01 79.83 100.0 21

↭ ↭ ↭ 29.56 52.83 100.0 46
↭ ↭ 25.46 32.84 100.0 144

↭ 23.78 23.78 100.0 3064
↭ ↭ 23.78 23.78 100.0 3068

Table 3: Fixed-budget comparison results with N = 1000 (N = 2000 for Sparse-RS) on MNIST
and CIFAR-10 at budgets k = 24, 50, 100. Columns q24 and s24 show the average number of queries
(in thousands) and the average execution time per sample (in seconds) at k = 24.

Attack M ASR24 ASR50 ASR100 q24 s24 VRAM M ASR24 ASR50 ASR100 q24 s24 VRAM
MNIST

PGD-ω0

M1

73.99 99.90 100.0 2.00 0.09 0.04

M2

61.87 94.15 98.50 2.00 0.09 0.04
Sparse-RS 79.54 96.35 99.79 0.83 0.21 0.04 98.92 99.96 100.0 0.24 0.07 0.04

sPGDp 65.55 97.97 99.99 0.46 0.09 0.05 67.92 98.57 99.97 0.92 0.08 0.05
sPGDu 82.79 99.65 100.0 0.09 0.08 0.05 62.25 98.11 99.99 1.00 0.09 0.05

ε-zero 83.71 99.98 100.0 0.43 0.02 0.06 98.11 100.0 100.0 0.14 0.01 0.06
CIFAR-10

PGD-ω0

C1

38.18 59.67 87.19 2.00 0.78 1.90

C3

22.99 36.20 67.54 2.00 0.35 0.69
Sparse-RS 72.51 86.59 94.28 0.77 0.36 1.95 30.87 45.65 63.26 1.47 0.28 0.68

sPGDp 66.37 89.21 99.36 0.74 0.41 2.06 31.82 58.62 93.19 1.39 0.17 0.73
sPGDu 66.33 91.07 99.75 0.72 0.41 2.06 36.16 70.06 98.07 1.30 0.16 0.73

ε-zero 77.08 95.33 99.95 0.65 0.29 2.07 38.67 73.00 98.53 1.33 0.15 0.75
PGD-ω0

C2

32.41 59.19 89.22 2.00 0.57 2.46

C4

34.35 44.99 68.61 2.00 0.35 0.70
Sparse-RS 59.24 79.81 92.43 1.04 0.35 2.46 49.35 63.01 76.51 1.11 0.37 0.68

sPGDp 58.91 88.15 99.42 0.89 0.39 2.57 50.41 75.86 97.52 1.02 0.18 0.73
sPGDu 64.8 93.15 99.92 0.76 0.48 2.56 55.89 84.64 99.56 0.91 0.19 0.73

ε-zero 75.09 97.67 100.0 0.65 0.17 2.68 55.69 82.72 99.07 0.94 0.11 0.75

Comparison with Fixed-budget Attacks. We complement our analysis by comparing ε-zero
with three fixed-budget ω0-norm attacks, i.e., the ω0-norm Projected Gradient Descent (PGD-ω0)
attack (Croce & Hein, 2019), the Sparse Random Search (Sparse-RS) attack (Croce et al., 2022),7
and the Sparse-PGD attack (Zhong et al., 2024). For Sparse-PGD, we consider the implementation
with sparse (sPGDp) and with unprojected (sPGDu) gradient. In contrast to minimum-norm attacks,
fixed-budget attacks optimize adversarial examples within a given maximum perturbation budget k.
For a fairer comparison,as done in fixed-budget approaches, we early stop the ε-zero optimization
process as soon as an adversarial example with an ω0-norm perturbation smaller than k is found.
In these evaluations, we set N = 1000 for ε-zero, PGD-ω0, sPGDp, and sPGDu, while using
N = 2000 for Sparse-RS. Therefore, when using N = 1000 steps for ε-zero (which amounts to
performing 1000 forward and 1000 backward calls), we set N = 2000 steps for Sparse-RS (which

7Sparse-RS is a gradient-free (black-box) attack, which only requires query access to the target model. We
consider it as an additional baseline in our experiments, but it should not be considered a direct competitor of
gradient-based attacks, as it works under much stricter assumptions (i.e., no access to input gradients).
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Table 4: Fixed-budget comparison results with N = 1000 (N = 2000 for Sparse-RS) on ImageNet
at budgets k = 100, 150. See the caption of Table 3 for further details.

Attack M ASR100 ASR150 q100 s100 VRAM M ASR100 ASR150 q100 s100 VRAM
ImageNet

Sparse-RS

I1

89.3 91.5 0.39 0.32 1.29

I2

81.1 84.1 0.53 0.5 4.39
sPGDp 95.4 98.5 0.31 0.16 1.40 85.6 91.2 0.33 0.64 4.48
sPGDu 93.6 97.8 0.33 0.12 1.40 82.6 88.7 0.37 0.39 4.49

ε-zero 99.7 100.0 0.19 0.06 1.79 94.7 97.1 0.15 0.17 4.90
Sparse-RS

I3

69.1 72.2 0.81 0.62 4.39

I4

45.9 47.4 1.17 1.12 5.72
sPGDp 85.4 93.4 0.32 0.55 4.49 66.3 74.9 0.73 1.39 5.84
sPGDu 83.9 92.1 0.35 0.39 4.49 66.0 76.0 0.72 1.01 5.84

ε-zero 97.7 99.6 0.34 0.37 4.90 78.8 85.8 0.49 0.70 6.29

amounts to performing 2000 forward calls).8 Furthermore, to compute the ASR at different k
(ASRk), we separately execute fixed-budget attacks for k = 24, 50, 100 features on MNIST and
CIFAR-10, and with k = 100, 150 features on ImageNet (excluding PGD-ω0 due to computational
demands), reporting only the maximum number of queries and execution time across all distinct runs.
We report the average query usage at k (qk) and the average execution time per sample at k (sk). We
report the execution time of sk for the smaller k, as it requires, on average, more iterations due to
the more challenging problem. The results, shown in Tables 3-4, confirm that ε-zero outperforms
competing approaches in 17 out of 18 configurations (see Appendix B.2 for additional results). Only
against C4 the fixed-budget attack sPGDu slightly increases the ASR. The advantages of ε-zero
become even more evident when looking at the results on ImageNet, where, on average, it improves
the ASR100 of 9.6% across all models in Table 4. The results also indicate that early stopping
enables ε-zero to save a significant number of queries and runtime while preserving a high ASR.
In Appendix B.2, we also report additional comparisons with N = 2500 and N = 5000, i.e. a more
favorable scenario for the competing attacks, confirming that ε-zero remains competitive even at
higher budgets.

Summary. Our experiments show that ε-zero: (i) outperforms minimum-norm attacks by im-
proving the success rate and decreasing the ω0 norm of the generated adversarial examples (see
Table 1 and Appendix B.1); (ii) is significantly faster and scales easily to large datasets (see Ta-
ble 1 and Appendix B.1); (iii) is robust to hyperparameter selection, not requiring sophisticated
and time-consuming tuning (see Appendix A.2); (iv) does not require any adversarial initialization
(see Table 1); (v) provides more reliable adversarial robustness evaluations, consistently achieving
100% ASRs (see Table 1, Figure 2, Appendix B.3); and (vi) remains competitive against fixed-budget
attacks even when given the same query budget (Table 3-4).

4 RELATED WORK

Optimizing ω0-norm adversarial examples with gradient-based algorithms is challenging due to non-
convex and non-differentiable constraints. We categorize them into two main groups: (i) multiple-
norm attacks extended to ω0, and (ii) attacks specifically designed to optimize the ω0 norm.

Multiple-norm Attacks Extended to ω0. These attacks have been developed to work with multiple
ωp norms, including extensions for the ω0 norm. While they can find sparse perturbations, they often
rely heavily on heuristics in this setting. Brendel et al. (2019a) initialize the attack from an adversarial
example far away from the clean sample and optimizes the perturbation by following the decision
boundary to get closer to the source sample. In general, the algorithm can be used for any ωp norm,
including ω0, but the individual optimization steps are very costly. Pintor et al. (2021) propose the
FMN attack that does not require an initialization step and converges efficiently with lightweight
gradient-descent steps. However, their approach was developed to generalize over ωp norms, but does
not make special adaptations to minimize the ω0 norm specifically. Matyasko & Chau (2021) use

8N = 2000 is suggested as a lower bound number of iterations to ensure the convergence of Sparse-RS
by Croce et al. (2022). Additional results with N = 5000/10000 for Sparse-RS can be found in Appendix B.2.
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relaxations of the ω0 norm (e.g., ω1/2) to promote sparsity. However, this scheme does not strictly
minimize the ω0 norm, as the relaxation does not set the lowest components exactly to zero.

ϑ0-specific Attacks. Croce et al. (2022) introduced Sparse-RS, a random search-based attack that,
unlike minimum-norm attacks, aims to find adversarial examples that are misclassified with high
confidence within a fixed perturbation budget. On the same track we find Sparse-PGD (Zhong et al.,
2024) and PGD-ω0 (Croce & Hein, 2019), white-box fixed-budget alternatives to Sparse-RS. Lastly,
Césaire et al. (2021) induces folded Gaussian noise to selected input components, iteratively finding
the set that achieves misclassification with minimal perturbation. However, it requires considerable
memory to explore possible combinations and find an optimal solution, limiting its scalability.

Overall, current implementations of ω0-norm attacks present a crucial suboptimal trade-off between
their success rate and efficiency, i.e., they are either accurate but slow (e.g., BB) or fast but inaccurate
(e.g., FMN). This is also confirmed by a recent work that has benchmarked more than 100 gradient-
based attacks (Cinà et al., 2025) on 9 additional robust models. In that open-source benchmark,
ε-zero consistently and significantly outperformed all the existing implementations of competing
ω0-norm attacks, establishing a performance very close to that of the empirical oracle (obtained by
ensembling all the attacks tested). In summary, our attack combines the benefits of the two families
of attack detailed above, i.e., effectiveness and efficiency, providing the state-of-the-art solution for
adversarial robustness evaluations of DNNs when considering ω0-norm attacks.

5 CONCLUSIONS AND FUTURE WORK

In this work, we propose ε-zero, a novel attack aimed to find minimum ω0-norm adversarial
examples, based on the following main technical contributions: (i) a differentiable approximation
of the ω0 norm to define a novel, smooth objective that can be minimized via gradient descent; and
(ii) an adaptive projection operator to enforce sparsity in the adversarial perturbation, by zeroing
out the least relevant features in each iteration. ε-zero also leverages specific optimization tricks
to stabilize and speed up the optimization. Our extensive experiments demonstrate that ε-zero
consistently discovers more effective and reliable ω0-norm adversarial perturbations across all models
and datasets while maintaining computational efficiency and robustness to hyperparameters choice.
In conclusion, ε-zero emerges as a highly promising candidate to evaluate robustness against
ω0-norm perturbations and promote the development of novel robust models against sparse attacks.

Ethics Statement. Based on our comprehensive analysis, we assert that there are no identifiable
ethical considerations or foreseeable negative societal consequences that warrant specific attention
within the limits of this study. This study will rather help improve the understanding of adversarial
robustness of DNNs and identify potential ways to improve it.

Reproducibility. To ensure the reproducibility of our work, we have detailed the experimental setup
in Section 3.1, where we describe the datasets, models, and attacks used, along with their respective
sources. Additionally, we have provided our source code as part of the supplementary material, which
will be made publicly available as open source upon acceptance.
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