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CRASH: Crash Recognition and Anticipation System Harnessing
with Context-Aware and Temporal Focus Attentions

Anonymous Authors

ABSTRACT
Accurately and promptly predicting accidents among surrounding
traffic agents from camera footage is crucial for the safety of au-
tonomous vehicles (AVs). This task presents substantial challenges
stemming from the unpredictable nature of traffic accidents, their
long-tail distribution, the intricacies of traffic scene dynamics, and
the inherently constrained field of vision of onboard cameras. To ad-
dress these challenges, this study introduces a novel accident antici-
pation framework for AVs, termed CRASH. It seamlessly integrates
five components: object detector, feature extractor, object-aware
module, context-aware module, and multi-layer fusion. Specifically,
we develop the object-aware module to prioritize high-risk ob-
jects in complex and ambiguous environments by calculating the
spatial-temporal relationships between traffic agents. In parallel,
the context-aware is also devised to extend global visual informa-
tion from the temporal to the frequency domain using the Fast
Fourier Transform (FFT) and capture fine-grained visual features
of potential objects and broader context cues within traffic scenes.
To capture a wider range of visual cues, we further propose a multi-
layer fusion that dynamically computes the temporal dependencies
between different scenes and iteratively updates the correlations
between different visual features for accurate and timely accident
prediction. Evaluated on real-world datasets—Dashcam Accident
Dataset (DAD), Car Crash Dataset (CCD), and AnAn Accident De-
tection (A3D) datasets—our model surpasses existing top baselines
in critical evaluation metrics like Average Precision (AP) and mean
Time-To-Accident (mTTA). Importantly, its robustness and adapt-
ability are particularly evident in challenging driving scenarios
with missing or limited training data, demonstrating significant
potential for application in real-world autonomous driving systems.

CCS CONCEPTS
• Applied computing→ Physical sciences and engineering.

KEYWORDS
TrafficAccident Anticipation; AutonomousDriving; Spatial-Temporal
Analysis; Fast Fourier Transform; Dynamic Visual Fusion

1 INTRODUCTION
The introduction of Advanced Driver Assistance Systems (ADAS)
and Autonomous Vehicles (AVs) marks a significant leap forward
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in our quest for safer roads [1, 13, 19]. By aiming to predict and
prevent traffic accidents before they happen, these technologies are
at the forefront of transforming our transportation landscape. This
capability is crucial, enabling vehicles to make decisions that avoid
collisions and protect passengers [6].

Despite the progress we have made, the road to reliable accident
anticipation is filled with hurdles. Traffic, by nature, is chaotic and
full of surprises. From a sudden stop in the flow to a pedestrian step-
ping out unexpectedly, the variables are endless. This complexity
is compounded when you consider the diversity of how accidents
can occur, the subtle yet vital visual cues that can get lost among
everyday traffic elements, and the unpredictable behavior of other
road users. The current solutions are inadequate in several ways
when they come to addressing these issues:

Firstly, existing methods are predominantly object-centric, rely-
ing on the detection of traffic agents within bounding boxes. They
often overlook crucial environmental elements—such as lane mark-
ings, pedestrian paths, and traffic signs—that are not captured by
rigid bounding box constraints, thereby failing to leverage a broader
spectrum of visual information and contextual cues.

Secondly, there exists a propensity within numerous models to
accord equal significance to all detectable entities within a traffic
scene, an approach that might neglect the layered semantic interre-
lations that subsist among different entities. Such an approach risks
overlooking essential insights that could significantly enhance the
precision of accident anticipation

Thirdly, observational constraints intrinsic to real-world driv-
ing scenarios introduce substantial impediments. These encompass
limitations of sensory apparatuses and environmental contingen-
cies such as obstructions, adverse meteorological conditions, or
traffic congestion. The majority of prevailing models, calibrated
and assessed under conditions of optimal observational integrity,
exhibit pronounced performance diminution when confronted with
data-deficient scenarios. This discordance underscores a critical
lacuna within contemporary research, necessitating models that
manifest robust performance under suboptimal observational con-
ditions.

In response to these articulated challenges, the present study in-
troduces "CRASH," an avant-garde accident anticipation framework
that meticulously integrates global contextual information with pro-
found spatio-temporal interactions. This initiative is spearheaded
by the introduction of a novel Object Focus Attention (OFA) mech-
anism within the object-aware module, which adeptly refines and
accentuates key local features, extrapolating the essential spatial-
temporal dynamics pivotal for accident prediction. Moreover, we
pioneer a context-aware module that harnesses Fast Fourier Trans-
form (FFT) along with our innovatively devised Context-aware
Attention Blocks (CAB). This ensemble endeavors to distill nu-
anced global visual information, thereby amplifying the model’s
contextual comprehension and broadening the ambit of visual cues

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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amenable for predictive analysis. To sum up, our contributions are
threefold:

(1) We present a novel context-aware module that extends global
interactions into the frequency domain using FFT and introduces
context-aware attention blocks to compute fine-grained correla-
tions between nuanced spatial and appearance changes in different
objections. Enhanced by the proposed multi-layer fusion, this
framework dynamically prioritizes risks in various regions, enrich-
ing visual cues for accident anticipation.

(2) To realistically simulate the variability and randomness of
missing data that is commonly encountered in real-world driving,
we augment the renowned DAA, A3D, and CCD datasets with
scenarios featuring missing data. This innovation expands the
research scope for accident detection models and provides compre-
hensive benchmarks for evaluating model performance.

(3) In benchmark tests conducted on the enhanced DAD [5],
A3D [39], and CCD [2] datasets, CRASH demonstrates superior
performance over state-of-the-art (SOTA) baselines across key met-
rics, such as Average Precision (AP) and mean Time-To-Accident
(mTTA). This showcases its remarkable accuracy and applicabil-
ity across a variety of challenging scenarios, including those with
10%-50% data-missing and limited 50%-75% training set scenes.

2 RELATEDWORK
The task of predicting traffic accidents requires models capable of
making timely and accurate predictions based on dashboard video
before accidents occur. This task is made complex by the inherent
variability of traffic scenes and the unpredictable movements of
road users.

The surge in deep learning applications within computer vi-
sion has catalyzed the exploration of advanced models for accident
anticipation. To tackle these challenges, recent studies have lever-
aged various deep learning approaches, including Convolutional
Neural Networks (CNNs) [5, 10, 15, 21, 25], sequential networks
[11, 31, 36, 37, 40? , 41] like Recurrent Neural Networks (RNNs),
Long Short-Term Memory (LSTM) units, and Gated Recurrent
Units (GRUs) to distill essential visual features from traffic scenes.
Moreover, Graph Neural Networks (GNNs) [18, 23, 33, 34, 39] and
transformer-based models [12, 35] have been investigated for their
potential to capture the complex spatial and temporal dynamics in
traffic scenes. In addition, generative models [3, 38] such as Gen-
erative Adversarial Networks (GANs), Variational Auto Encoders
(VAEs), and Diffusion models are also employed in this field. For
instance, Corcoran et al. [7] presented a dynamic-attention recur-
rent CNN to analyze both spatial and temporal features in traffic
scenes. Similarly, Bao et al. [2] utilized an uncertainty-aware graph
to model spatial relationships and predict traffic accidents, while
Liu et al. [22] focused on pedestrian intent prediction through
spatio-temporal analysis.

As research in traffic accident prediction deepens, a prominent
challenge emerges: how to effectively manage and interpret the
vast amount of information processed by models when dealing with
complex traffic scenes. In this context, the incorporation of atten-
tion mechanisms [17, 18] marks a significant advance in the field,
enhancing the ability of models to process complex interactions
and maintain temporal coherence, thereby improving prediction

accuracy and interpretability. In particular, the efforts of Karim et al.
[17] and Song et al. [29] have integrated spatial and temporal atten-
tion to prioritise relevant segments and regions in driving scenes.
Thakare et al. [32] proposed a convolutional autoencoder approach
for efficient feature extraction and classification, addressing com-
putational efficiency. Additionally, the interpretability of models
has gained prominence in research. Monjuru et al. [26] introduced
an explainable artificial intelligence (XAI) strategy, embedding the
Grad-CAM (Gradient-weighted Class Activation Mapping) atten-
tion mechanism within the GRUs to produce semantic feature maps.

Despite these advances, most studies focus on interactions be-
tween dynamic objects, overlooking crucial scene elements such
as traffic lights, pedestrian crossings, and sidewalks. Furthermore,
they typically rely on surface-level visual features that are close
to the accidents, failing to adequately capture potential accident
precursors in global scenes. Our work aims to fill this gap by in-
tegrating key scene elements and multi-layered features into our
proposed model, thereby enriching the visual scope of accident de-
tection. This integration allows for the capture of a wider range of
semantic information, significantly improving the model’s ability to
anticipate traffic accidents with improved accuracy and timeliness.

3 METHODOLOGY
3.1 Problem Formulation
The primary objective of this study is twofold: (1) to predict the
probability of a traffic accident occurring, and (2) if an accident
does occur, to predict it as early as possible. Similar to the previous
work [2], taking the 𝑇 frames of the dashboard video stream 𝑉 =

{𝑉1,𝑉2, . . . ,𝑉𝑇 } as input, the goal is to estimate the probability
𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑇 } of an accident in each frame. If an accident
occurs at time 𝑡 ∈ [1,𝑇 ], we define the Time-to-Accident (TTA)
as Δ𝑡 = 𝜏 − 𝑡𝑜 , where 𝜏 is the ground-truth accident time, and 𝑡𝑜
is the earliest frame in which the probability score 𝑝𝑡 exceeds a
predetermined threshold 𝑝𝑜 . Consequently, a video is classified as
containing an accident (positive) if 𝑝𝑡 ≥ 𝑝𝑜 for any 𝑡 ≥ 𝑡𝑜 and as
not containing an accident (negative) if 𝜏 = 0. Our proposed model
aims to enhance the precision of accident detection and maximise
the TTA, enabling the earliest possible anticipation of accidents.

3.2 Framework Overview
The overall pipeline of CRASH is shown in Fig. 1. It consists of five
critical components: object detector, feature extractor, object-aware
module, context-aware module, and multi-layer fusion. Initially,
the object detector and feature extractor produce the object 𝐹𝑜 and
context 𝐹𝑐 vectors for the raw input videos 𝑉 . Next, the object-
aware module is used to progressively update the spatial-temporal
representation of the object vectors, producing the object-aware
vectors 𝐹𝑜 . In parallel, the context vectors 𝐹𝑐 are fed into the context-
aware modules for global semantic feature extraction, resulting
in the context-aware vecotors 𝐹𝑐 . Finally, the multi-layer fusion
iteratively fuses andmulls over the output from the feature extractor
and these modules to identify and predict potential incidents that
could lead to accidents, generating the probability 𝑃 for each frame
of the input videos.

Object Detector. Given 𝑇 -frames dashboard video, a Cascade
R-CNN [4] is employed to detect the top-𝑛 dynamic objects with the
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Figure 1: The overall framework of CRASH (a) and the architecture of Temporal Focus Attention (b).

highest recognition scores within the video stream, such as vehicles,
motorcycles, and pedestrians. Then, we utilize the VGG-16 [28] to
embed these selected 𝑛 objects into 2D object vectors 𝐹𝑜 ∈ R𝑛×𝑑 ,
where 𝑑 is the embedding dimension.

Feature Extractor. The feature extractor is primarily responsi-
ble for extracting the semantic feature from the whole video𝑉 . The
VGG-16 and Multilayer Perception (MLP) are used in this extractor
to generate the context vectors 𝐹𝑐 ∈ R𝑑 .

Object-aware Module. Accidents usually occur due to specific
interactions between dynamic traffic agents, which are marked by
decreasing spatial distance or irregular trajectories. Therefore, it is
necessary to analyze each object’s position and past movements,
integrating data across both time and space. In this module, we
leverage the object vectors 𝐹𝑜 and the weighted dual-layer hidden
states 𝐻𝑡−1 = {𝐻1

𝑡−1, 𝐻
2
𝑡−1} ∈ R𝑛×𝑑 encoded by the two-layer

GRU and our proposed TFA attention mechanism in the multi-layer
fusion to focus on the traffic agents most likely to cause accidents.

Specifically, we propose a query-centric Object Focus Attention
(OFA) mechanism that maps dual-layer hidden states 𝐻1

𝑡−1, 𝐻
2
𝑡−1 to

distinct query values𝑄1
𝑡 , 𝑄

2
𝑡 at time step 𝑡 −1, each assigned unique

linear projection weights. This process facilitates the calculation
of spatial-temporal relationships between object vectors 𝐹𝑜 and
their associated contextual and semantic features within the hidden
states 𝐻𝑡−1. At time step 𝑡 , this process can be defined as follows:


𝑄1
𝑡 =𝑊 1

𝑄
(𝜙MLP (𝐻1

𝑡−1))
𝑄2
𝑡 =𝑊 2

𝑄
(𝜙MLP (𝐻2

𝑡−1))
𝐾𝑡 =𝑊𝐾 (𝜙MLP (𝐹𝑜 ))
𝑉𝑡 =𝑊𝑉 (𝜙MLP (𝐹𝑜 ))

(1)

where𝑊 1
𝑄

∈ R𝑑×𝑑 ,𝑊 2
𝑄

∈ R𝑑×𝑑 ,𝑊𝐾 ∈ R𝑑×𝑑 , and𝑊𝑉 ∈ R𝑑×𝑑
are all learnable weights. 𝜙MLP denotes the MLP. Furthermore, We
make matrix product on 𝐾𝑡 and𝑉𝑡 and use the generated similarity
query vectors𝑄1

𝑡 , 𝑄
2
𝑡 to weight the object vectors 𝐹𝑜 , producing the

enhanced object-aware vectors 𝐹𝑜 . Mathematically,

𝐹𝑜 = 𝜙Softmax (
𝑊𝛼𝑄

1
𝑡𝐾

T
𝑡 +𝑊𝛽𝑄

2
𝑡𝐾

T
𝑡√︁

𝑑𝑘

)𝑉𝑡 (2)

where𝑊𝛼 and𝑊𝛽 are both the linear projection weights for the
query vectors. Moreover, 𝜙Softmax represents the Softmax activation
function, and 𝑑𝑘 is the projection channel dimension.

Context-aware Module. In addition to establishing spatio-
temporal relationships between dynamic objects, modelling the
visual context of detected objects - such as lane markings, sidewalks,
and traffic signs - is crucial for distinguishing potential accident
causes from others. To the end, we present a context-aware module
that uses global context vectors to capture a wider range of visual
cues and contextual features. This module not only identifies focal
points within the input videos but also recognizes broader contex-
tual relationships within the entire visual scene, going beyond the
limitations of bounding boxes.

Departing from traditional methods that emphasize temporal
features, this module focuses on spectral features. Inspired by the
spectral and hierarchical transformers [14, 27] , we first use the 1D
convolutional layer to expand the number of channels to 𝑐 for the
context vectors 𝐹𝑐 . Thereafter, FFT is applied to transform context
vectors into the Fourier domain, transitioning from temporal to
spectral space. We then employ a parametrically learnable Spectral
Gating Unit (SGU) alongside innovative context-aware attention
blocks. This structure assigns weights to each frequency, enhancing
the detection of subtle edge and contour details within the global
visual scene. Formally,

𝑆𝑐 =𝑊𝑓 · 𝜙FFT (𝜙conv1D (𝐹𝑐 )) (3)

Here, 𝜙FFT represents the Fast Fourier Transform (FFT) function,
while 𝜙conv1D denotes a one-dimensional convolutional layer. Fur-
thermore,𝑊𝑓 ∈ R𝑐×𝑤×ℎ is a learnable weight matrix produced



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

by the SGU. The spectral features, denoted as 𝑆𝑐 ∈ R𝑐×ℎ×𝑤 , corre-
spond to the context vectors 𝐹𝑐 , where 𝑐 is the number of channels
and ℎ and𝑤 are the height and width of the feature map, respec-
tively. Importantly, since the spectral features 𝑆𝑐 are complex num-
bers rather than real numbers, they cannot be directly subjected
to gradient calculation and backpropagation. To address this, the
Context-aware Attention Block and Inverse Fast Fourier Transform
(IFFT) are introduced to further enhance the spectral features and
transform the spectral space back to physical space. Furthermore,
the features are processed by a MLP to eventually generate the
vision-conditioned context-aware vectors 𝐹𝑐 , which improve the
training stability of our model. It can be represented as follows:

𝐹𝑐 = 𝜙IFFT (𝜙CAB (𝑆𝑐 ))

= 𝜙IFFT

(
𝜙Softmax (𝜙MLP

[
𝜙AvgPool (𝑆𝑐 ) ⊕ 𝜙MaxPool (𝑆𝑐 )

]
⊙ 𝑆𝑐 )

)
(4)

where 𝜙IFFT denotes the IFFT function, while ⊕ and ⊙ signify the
concatenation operation and element-wise multiplication, respec-
tively. Correspondingly, 𝜙AvgPool and 𝜙MaxPool are the average and
maximum pooling layers, respectively. In addition, the context-
aware vectors 𝐹𝑣 ∈ R𝑑 , with embedding dimension 𝑑 = ℎ ×𝑤 .

Multi-layer Fusion. Accidents can occur unexpectedly at any
moment in traffic scenes, and typically occupy a small proportion
of the entire video stream, exhibiting a long-tail distribution. Most
existing methods tend to focus on anomalies within key frames of
the video stream. They directly feed the top-layer frame features
into a linear layer to predict the probability of an accident. However,
certain frames that are close to anomalous moments, despite lacking
direct abnormal phenomena, often contain enriched contextual
information that is crucial for assessing the likelihood of an accident.
To fully exploit the semantic and contextual features embedded in
every frame of the input video, we introduce the Temporal Focus
Attention (TFA) mechanism. Comprising 𝑘 attention layers, each
with two attention blocks as depicted in Fig. 1, this mechanism
systematically integrates representations from diverse frame before
preceding the prediction of accident probabilities. The core idea
is to expand the model’s recognition scope and reference range to
all visual information in the video stream, focusing dynamically
on the embedded features at each moment to improve the model’s
ability to identify key frames in input video.

From a technical perspective, the context 𝐹𝑐 , object-aware 𝐹𝑜 ,
and context-aware 𝐹𝑐 vectors are fused and encoded by a dual-layer
GRU, which can be expressed as follows:

𝑂𝑡 , ℎ
𝑖
𝑡 = 𝜙GRU (𝐹𝑐 ∥𝐹𝑐 ∥𝐹𝑜 ) (5)

where ∥ signifies the vector concatenation, while ℎ𝑖𝑡 represents the
hidden state of the 𝑖-th layer GRU at time step 𝑡 , and𝑂𝑖𝑡 is the GRU’s
final output for the 𝑡-th frame video, subsequently input into a MLP
to generate the accident probability score 𝑝𝑡 .

In the TFA layer, each block inputs the hidden states produced
by the dual-layer GRU from the past 𝑀 frames, denoted as 𝐻𝑡 =
{𝐻1
𝑡 , 𝐻

2
𝑡 }, with each 𝐻 𝑖𝑡 = {ℎ𝑖

𝑡−𝑀 , . . . , ℎ
𝑖
𝑡−2, ℎ

𝑖
𝑡−1} ∈ R𝑀×𝑑 , 𝑖 ∈

[1, 2]. Furthermore, these hidden states are projected into query
𝑄𝑖𝑡 , key 𝐾

𝑖
𝑡 , value 𝑉

𝑖
𝑡 vectors. Formally,

𝑄𝑖𝑡 = �̄�
𝑖
𝑄𝐻

𝑖
𝑡 , 𝐾𝑖𝑡 = �̄�

𝑖
𝐾𝐻

𝑖
𝑡 , 𝑉 𝑖𝑡 = �̄� 𝑖

𝑉𝐻
𝑖
𝑡 (6)

where �̄� 𝑖
𝑄
,�̄� 𝑖

𝐾
,�̄� 𝑖

𝑉
∈ R𝑑×𝑑 are learnable matrices for the linear

projection. The 𝑗-th attention head head𝑖𝑗 and the output 𝑅𝑖𝑦 from
𝑦-th RTA layer’s attention block is computed as:

𝑅𝑖𝑦 =

𝑚∑︁
𝑗=1

head𝑖𝑗 =
𝑚∑︁
𝑗=1

𝜙Softmax

(
𝑄𝑖𝑡 (𝐾𝑖𝑡 )𝑇√︁

𝑑𝑘

)
⊙ 𝑉 𝑖𝑡 (7)

where 𝑚 is the total number of the attention head. Inspired by
ResNet[16], the TFA block integrates Gated Linear Units (GLUs) [8]
for optimizing the output. This ensures effective backpropagation
of larger gradients to the initial layers, facilitating these layers to
learn as rapidly as the top layer. Mathematically,

𝑅𝑖𝑦 = 𝜙Softmax (𝜙MLP (𝜙GLUs (𝑅𝑖𝑦))) + 𝑅𝑖𝑦 (8)

where 𝑅𝑖𝑦 ∈ R𝑚×𝑑 is the enhanced output of 𝑦-the TFA layer for
𝑖-th attention block, and 𝜙GLUs is the GLUs function.

Finally, the outputs of 𝑖-th attention blocks 𝑅𝑖1, 𝑅
𝑖
2, . . . , 𝑅

𝑖
𝑘
across

𝑘 attention layers are dynamically aggregated using distinct learn-
able weights to obtain the final hidden state 𝐻𝑡 . This process is
formalized as follows:

𝑅𝑖weighted = 𝛾𝑖1 · 𝑅
𝑖
1 + 𝛾

𝑖
2 · 𝑅

𝑖
2 + . . . + 𝛾

𝑖
𝑘
· 𝑅𝑖
𝑘 (9)

where 𝛾𝑖1, 𝛾
𝑖
2, and 𝛾

𝑖
𝑘
, 𝑖 ∈ [1, 2] are the learnable parameters. The

final hidden states of the TFA layer can be defined mathematically
as𝐻𝑡 = 𝜙AvgPool (𝑅1

weighted) ⊕𝜙AvgPool (𝑅
2
weighted), which are fed into

the Object Focus Attention (OFA) in the object-aware module for
feature fusion.

3.3 Training Loss
We incorporate a multi-task learning paradigm into our training
loss, which can be bifurcated into two components: (1) anticipation
loss L𝑎 and (2) enhancement loss L𝑒 .

The anticipation loss L𝑎 is computed based on the discrepancy
between the model-predicted accident probabilities 𝑝𝑡 at time step 𝑡
and the ground-truth accident timing 𝜏 . To better align with the task
of real-world traffic accident anticipation, we refine the traditional
cross-entropy loss function in anticipation loss by integrating a
penalty term 𝑒

− 1
2 max( 𝜏−𝑡

𝑓
,0) into the positive loss component. This

adjustment applies increasing loss values to video stream that are
closer to the moment of an accident, encouraging the model to
predict accidents earlier. The anticipation loss L𝑎 is expressed as
follows:

L𝑎 =
1
𝐵

𝐵∑︁
𝑣=1

[
−𝑙𝑣

𝑇∑︁
𝑡=1

𝑒
− 1

2𝑚𝑎𝑥 ( 𝜏−𝑡
𝑓

,0)
𝑙𝑜𝑔 (𝑝𝑡 ) − (1 − 𝑙𝑣 )

𝑇∑︁
𝑡−1

𝑙𝑜𝑔 (1 − 𝑝𝑡 )
]

(10)

where 𝐵 is the batch size, 𝑙𝑣 represents the binary label of accident
occurrence within each video (1 for an accident, 0 for none), while
𝑇 is the total number of frames per video, and 𝑓 is the frames per
second (fps) of the video.

Furthermore, we introduce an innovative enhancement loss, L𝑒 ,
to mitigate the significant error accumulation in the initial stages
of the GRU within the multi-layer fusion. Specifically, position
encoding is integrated into all hidden states produced by the second-
layer GRU, and a classical multi-head self-attention mechanism
is employed to extract relevant semantic information from these
hidden states, resulting in the hidden state maps 𝑝𝑒 :

𝑝𝑒 = 𝜙𝑀𝐿𝑃 (𝜙𝑀𝐻𝐴 (𝜙𝑃𝐸 (ℎ2
1, ℎ

2
2, ..., ℎ

2
𝑇 ))) (11)
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where 𝜙𝑀𝐻𝐴 and 𝜙𝑃𝐸 denote the multi-head attention mechanism
and position encoding mechanism, respectively.

Next, we compute the enhancement loss L𝑒 using the hidden
state maps 𝑝𝑒 and the ground-truth accident timing 𝜏 . Formally,

L𝑒 =
1
𝐵

𝐵∑︁
𝑣=1

[−𝑙𝑣 log(𝑝𝑒 ) − (1 − 𝑙𝑣) log(1 − 𝑝𝑒 )] (12)

Eventually, the final loss is then calculated as the sum of anticipa-
tion loss L𝑎 and enhancement loss L𝑒 , adjusted for homoscedastic
uncertainty through Gaussian probability:

L =
𝜇1

2𝜌2
1
L𝑎 +

𝜇2

2𝜌2
2
L𝑒 + log(𝜌1𝜌2) (13)

where 𝜇1 and 𝜇2 are manually-set hyperparameters, while 𝜌1 and
𝜌2 represent uncertainty coefficients, initially set to 1. Overall,
the multi-task training loss is meticulously designed to provide
a dynamic balance between anticipating accidents and enhancing
model sensitivity to critical features, thus taking into account more
accident-related factors.

4 EXPERIMENT
4.1 Experiment Setup
We evaluate the efficacy of our model using three esteemed datasets:
Dashcam Accident Dataset (DAD), Car Crash Dataset (CCD), and
AnAnAccident Detection (A3D) datasets. These datasets, referred to
complete datasets, provide a unique perspective on traffic accidents
in various scenes. More details can be found in the Appendix.

Recognizing a gap in research concerning data omissions in
this field, the experiment setup is intentionally designed to simu-
late the variability and randomness of missing data encountered
in real-world scenarios. Specifically, we propose three specialized
versions of each primary dataset, referred to as missing datasets:
DAD-missing, A3D-missing, and CCD-missing. These datasets are
meticulously crafted to realistically mimic the variability and ran-
domness of data omissions encountered in real-world settings. They
include emulated missing observation rates of 10%, 20%, and 50%,
as well as a fixed pattern of missing one or two frames every five
frames (1/2 in 5 frames). These scenarios cover a broad spectrum of
potential data loss situations, from minimal to severe. A stochastic
mechanism is used to determine which observations are missing,
avoiding the introduction of bias and more accurately reflecting
the unpredictability inherent in real-world data collection. To eval-
uate the adaptability and effectiveness of our model, we conduct
training on reduced versions of the datasets, specifically 50% and
75% subsets. We then evaluate the performance of our proposed
model on both complete and missing datasets. These evaluations
aim to gauge the model’s adaptability to unfamiliar data and its
proficiency in handling data omissions, providing a comprehensive
evaluation of the robustness of our proposed model.

4.2 Evaluation Metrics
This study evaluates model performance by considering both the
accuracy (Average Precision) and timeliness (Time-to-Accident) of
model predictions.

Accuracy. Accident detection accuracy of the model is quanti-
fied by recall (R), which is defined as the ratio of correctly identified

Table 1: Comparison of models seeking balance between
mTTA and AP on the complete datasets. Bold and underlined
values represent the best and second-best performance in
each category. Instances where values are not available are
marked with a dash (“-”).

Model
DAD [5] CCD [2] A3D [39]

AP(%)↑ mTTA(s)↑ AP(%)↑ mTTA(s)↑ AP(%)↑ mTTA(s)↑
DSA [5] 48.1 1.34 99.6 4.53 93.4 4.41

L-RAI [42] 51.4 3.01 98.9 3.32 - -
AdaLEA [30] 52.3 3.43 99.2 3.45 92.9 3.16
DSTA [17] 59.2 2.60 99.6 4.87 94.2 4.81
UString [2] 53.7 3.53 99.5 4.73 94.4 4.92
GSC [34] 60.4 2.55 99.3 3.58 94.9 2.62
CRASH 65.3 3.05 99.6 4.91 96.0 4.92

accident videos (true positives, TP) to the actual number of acci-
dent videos (TP plus false negatives, FN). Prediction reliability is
assessed by precision (P), the ratio of TP to the sum of TP and false
positives (FP). To account for how recall and precision fluctuate
with threshold adjustments, we use average precision (AP) as an
overall measure of model accuracy. It calculated as the area under
the precision-recall curve 𝐴𝑃 =

∫
𝑃 (𝑅) 𝑑𝑅, serves as an overall

indicator of the model’s consistency in making accurate predictions
across different threshold levels, with higher AP values indicating
superior performance.

Timeliness. The Time-to-Accident (TTA) is the metric used to
evaluate the model’s predictive timeliness. It measures the interval
between the model’s initial accident prediction (once the risk level
surpasses a pre-set threshold) and the actual occurrence of the acci-
dent. A greater TTA indicates that the model can foresee accidents
well in advance, providing drivers with more response time. The
Mean Time-to-Accident (mTTA) calculates the average TTA values
across various thresholds. Under strict recall rate conditions, we
also evaluate the model’s early warning effectiveness at a recall of
80%, referred to as TTA@R80.

4.3 Implementation Details
The proposed model is implemented using PyTorch and trained on
an NVIDIA A40 (48GB) GPU over 80 epochs with a consistent batch
size of 10. We use the Adam optimiser, initialising the learning rate
at 1 × 10−4 uniformly across all datasets. The object detector is
configured to detect up to 19 candidate objects, and the embedding
dimension for VGG-16 is set to 4096, and the hidden state dimension
of the GRU is fixed at 512. In addition, the ReduceLROnPlateau
strategy is used to schedule the learning rate, which adjusts the
rate in response to the model’s performance across epochs. See
Appendix for more implementation details.

4.4 Evaluation Results
Compare with SOTA Baselines on Complete Datasets. Table
1 illustrates that our model exhibits SOTA performance across all
metrics on the DAD, A3D, and CCD datasets for considering the
trade-off between timeliness (mTTA) and accuracy (AP) of acci-
dent anticipation. Specifically, on the CCD and A3D datasets, our
model’s AP and mTTA metrics have already reached or exceeded
all baselines. On the DAD dataset, which covers a wide range of
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Table 2: Comparison of models for the evaluation metrics onmissing datasets. @R80 refers to the TTA@R80, which represents
the value of mTTA at a recall of 80%. Bold and underlined values represent the best and second-best performance.

Dataset Model drop-10% drop-20% drop-50% 1 in 5 2 in 5
AP(%)↑ mTTA(s)↑ @R80(s)↑ AP(%)↑ mTTA(s)↑ @R80(s)↑ AP(%)↑ mTTA(s)↑ @R80(s)↑ AP(%)↑ mTTA(s)↑ @R80(s)↑ AP(%)↑ mTTA(s)↑ @R80(s)↑

DAD [5]

Ustring [2] 53.51 2.50 2.81 52.27 2.47 2.24 52.37 1.62 2.26 52.62 2.14 1.73 48.86 1.86 1.77
DSTA [17] 56.78 2.48 2.90 55.89 2.48 2.90 54.84 2.11 2.89 55.46 2.59 2.76 53.01 2.16 3.05
GSC [34] 55.21 2.56 2.46 54.78 2.35 2.62 51.39 1.81 2.64 55.59 2.21 2.91 50.87 2.15 2.57
CRASH 65.24 2.84 3.13 64.64 2.76 2.99 63.34 2.37 2.94 64.38 2.51 3.09 64.39 2.40 3.05

A3D [39]
UString [2] 94.01 4.74 4.21 93.11 4.59 4.10 91.26 3.66 3.18 93.48 4.34 3.41 92.62 3.81 3.23
DSTA [17] 93.77 4.82 4.30 92.31 4.82 4.13 91.80 3.75 3.60 93.54 4.57 3.63 91.33 3.70 3.45
CRASH 95.96 4.88 4.81 94.83 4.77 4.20 94.54 4.24 4.18 94.88 4.74 4.56 95.41 4.81 4.58

CCD [2]
Ustring [2] 98.71 4.73 4.22 96.44 4.36 3.58 94.52 4.39 3.81 96.79 4.44 3.79 94.82 4.60 4.17
DSTA [17] 98.80 4.79 4.31 97.18 4.51 3.82 94.73 4.01 3.02 97.95 4.53 3.83 96.18 4.32 3.57
CRASH 99.30 4.89 4.54 98.93 4.69 4.50 98.46 4.53 4.28 98.91 4.76 4.42 98.78 4.61 4.11

Table 3: Comparison of models trained with limited training sets on evaluation metrics formissing dataset.

Dataset Model Drop-10% Drop-20% Drop-50% 1 in 5 Frames 2 in 5 Frames
AP(%)↑ mTTA(s)↑ @R80(s)↑ AP(%)↑ mTTA(s)↑ @R80(s)↑ AP(%)↑ mTTA(s)↑ @R80(s)↑ AP(%)↑ mTTA(s)↑ @R80(s)↑ AP(%)↑ mTTA(s)↑ @R80(s)↑

DAD [5] (75%)

Ustring [2] 55.10 2.61 3.20 49.52 2.45 2.65 45.94 2.24 2.67 47.57 2.85 3.99 45.48 2.46 3.11
DSTA [17] 54.12 2.40 2.91 53.13 2.59 3.09 50.52 2.16 2.91 53.24 2.55 3.16 49.43 2.48 2.76
GSC [34] 54.37 2.57 3.22 51.51 2.35 3.10 49.18 2.21 2.58 50.54 2.24 3.05 49.72 2.28 3.07
CRASH 62.46 2.64 3.31 60.04 2.57 3.32 58.37 2.31 3.02 61.25 2.66 3.27 57.91 2.56 3.18

A3D [39] (75%)
UString [2] 94.10 4.21 4.28 93.90 3.80 4.24 92.58 3.09 3.49 93.84 3.90 3.81 91.75 4.32 4.21
DSTA [17] 91.37 4.32 3.38 91.15 4.19 4.05 89.70 3.52 3.84 91.36 3.90 4.77 90.25 3.77 3.25
CRASH 95.61 4.82 4.60 95.42 4.71 4.47 93.63 4.41 3.98 94.48 4.65 4.01 94.14 4.65 4.38

CCD [2] (75%)
Ustring [2] 96.63 4.68 4.17 95.23 4.48 3.79 94.43 4.15 3.57 94.24 4.22 4.27 93.31 3.75 3.07
DSTA [17] 97.94 4.24 3.00 95.85 4.49 3.28 95.37 3.91 3.20 96.61 4.02 2.57 94.66 4.14 3.30
CRASH 98.13 4.72 4.44 97.37 4.65 4.32 96.90 4.23 3.88 97.00 4.36 4.41 95.94 4.29 3.67

DAD [5] (50%)

Ustring [2] 53.22 2.36 2.70 52.05 2.51 3.96 50.39 2.24 2.79 50.80 2.43 2.89 48.68 2.22 2.27
DSTA [17] 51.64 2.62 2.26 49.97 2.24 2.67 46.03 1.90 2.46 51.19 1.89 2.96 44.65 2.13 2.70
GSC [34] 54.18 2.59 2.79 52.98 2.39 3.30 51.09 1.94 2.64 51.39 2.06 2.88 50.43 2.15 2.66
CRASH 58.22 2.70 3.01 57.60 2.58 3.31 57.71 2.28 3.20 58.73 2.32 3.07 58.11 2.26 3.13

A3D [39] (50%)
UString [2] 92.23 4.48 3.96 92.25 4.47 4.11 91.59 3.98 3.99 91.75 4.31 4.18 90.29 4.28 4.17
DSTA [17] 89.26 4.08 4.24 88.88 4.03 3.86 86.70 3.76 3.20 90.48 4.05 3.71 87.12 3.60 4.02
CRASH 94.98 4.80 4.43 93.67 4.59 3.97 92.47 4.63 4.59 94.32 4.75 4.49 93.87 4.46 4.77

CCD [2] (50%)
Ustring [2] 94.51 4.37 3.87 92.91 4.32 3.68 91.13 4.04 3.84 91.38 4.45 3.91 90.74 4.21 4.03
DSTA [17] 96.68 4.21 2.65 95.79 4.19 4.40 95.52 3.92 2.47 96.09 4.20 3.56 94.65 4.27 3.13
CRASH 97.31 4.37 4.12 97.08 4.46 4.08 96.78 4.31 3.95 97.08 4.46 3.95 96.07 4.35 4.16

Table 4: Comparison of models for the best AP on DAD
datasets. @R80 denotes the TTA@R80. Instances where val-
ues are not available are marked with a dash (“-”).

Model Backbone Publication AP(%)↑ mTTA(s)↑ @R80(s)↑
L-RAI[42] VGG-16 ACCV’16 51.40 - -
DSA [5] VGG-16 ACCV’16 63.50 1.67 1.85

UniFormerv2 [20] Transformer ICCV’23 65.24 - -
VideoSwin [24] Transformer CVPR’22 65.45 - -
MVITv2 [9] Transformer CVPR’21 65.45 - -
DSTA [17] VGG-16 TITS’22 66.70 1.52 2.39
UString [2] VGG-16 ACM MM’20 68.40 1.63 2.18
GSC [34] VGG-16 IEEE TIV’23 68.90 1.33 2.14
CRASH VGG-16 - 70.86 1.91 2.20

Table 5: Comparison of models for the evaluation metrics on
limited training sets. @R80 represents the TTA@R80.

Dataset Model 75% Training Set 50% Training Set
AP(%)↑ mTTA(s)↑ @R80(s)↑ AP(%)↑ mTTA(s)↑ @R80(s)↑

DAD [5]

Ustring [2] 51.15 2.67 2.40 52.68 2.38 2.74
DSTA [17] 52.79 2.71 2.65 52.78 2.52 2.83
GSC [34] 58.14 2.76 2.84 56.32 2.38 3.05
CRASH 64.10 2.76 3.12 61.41 2.62 3.23

A3D [39]
Ustring [2] 94.28 4.54 3.69 93.30 4.58 4.01
DSTA [17] 92.86 4.58 3.16 91.75 4.11 3.98
CRASH 94.92 4.73 4.57 94.98 4.65 4.49

CCD [2]
Ustring [2] 98.55 4.77 4.28 97.05 4.27 4.36
DSTA [17] 98.69 4.58 3.92 97.21 4.49 4.39
CRASH 99.17 4.87 4.76 98.19 4.71 4.40

urban scenarios and traffic complexities, our model achieves an
optimal AP of 65.30%, surpassing the second-ranked GSC model
by 8.11%. Additionally, it maintained a competitive mTTA of 3.05
seconds. These results demonstrate our model’s superior capability
to navigate through complex and variable traffic scenes, including
different levels of congestion, urban roads, and traffic conditions.

Furthermore, Table 4 presents a detailed comparison of ourmodel
against the top baselines on the DAD dataset, highlighting the
model’s superior performance. Our model achieves the highest
AP value and the corresponding highest mTTA value within the
5-second accident detection horizon. This indicates an average lead
time before an accident of 1.91 seconds, which is 14.37% higher
than the second-place DSA, providing more time to take preventive
measures. Notably, comparing mTTA values without considering
AP is not practically significant in real-world driving scenarios.
Therefore, our experiments exclude such comparisons.
Performance Comparison onMissing Datasets. Table 2 demon-
strates the robustness of our model in handling missing observa-
tions. Our model significantly outperforms all other baselines when
tested on datasets with 10%, 20% and 50% randomlymissing datasets.
On the A3D-missing, CCD-missing, and DDA-missing datasets, our
model outperforms the leading models with an average improve-
ment of at least 10.59% in AP and 6.69% in mTTA. With 10% of the
data missing, our model outperforms all SOTA baselines tested on
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complete data, demonstrating significantly higher values in both AP
and mTTA metrics—evidencing its superior predictive capability.

As expected, the performance of the model is directly influenced
by the amount of input data available. The more input frames that
are omitted, the greater the impact on predictive performance. How-
ever, even in datasets with significant data omission (Drop-50%),
our model’s performance remained superior to other baselines and
competitive with models tested on complete data. Furthermore, in
datasets with continuous data loss (1 in 5 and 2 in 5 frames), our
model’s metrics were still better than most state-of-the-art (SOTA)
baselines, demonstrating its robustness and broad applicability in
real-world driving scenarios.
PerformanceComparison onLimitedTraining Sets.To demon-
strate the scalability and efficiency of our model, we train it and
some open-source baselines on a reduced portion of the training
sets (50% and 75%) and evaluate them on both complete and missing
datasets. Our model significantly outperforms all other baselines,
as detailed in Table 3, despite severe performance drops observed
in top models like GSC and Ustring. Remarkably, our model still
stands out with significantly higher AP and mTTA values across
the board in missing data scenarios, even when trained on substan-
tially less data, as shown in Table 5. This finding emphasizes the
model’s capacity to minimize training data requirements, show-
casing its adaptability in situations characterized by data loss and
fragmentation errors common in the perception process.

Figure 2: Attention weights of hidden states over all TFA
blocks in 8 TFA layers.

4.5 Ablation Studies
Ablation Study for Core Components. Table 6 reports the ab-
lation results of five critical components in CRASH: Object Focus
Attention, Context-aware Attention Block, Fast Fourier Transform,
Temporal Focus Attention, and enhancement loss L𝑒 .

Evaluation across the DAD, A3D, and CCD datasets shows that
models lacking any of these components exhibit reduced perfor-
mance, as evidenced by significant decreases in AP, mTTA, and
TTA@80%metrics compared to the holistic model. In particular, the
integration of CAB and FFT emerges as a significant performance
enhancer, underscoring their indispensable role in the context-
aware module to improve the model’s ability to capture contextual

Table 6: Ablation results for core components.

Dataset OFA CAB FFT TFA L𝑒 AP(%)↑ mTTA(s)↑ @R80(s)↑

DAD [5]

" " " " " 65.3 3.05 3.18
% " " " " 61.2 2.46 2.88
" % " " " 59.5 2.02 2.48
" " % " " 60.5 2.28 2.61
" " " % " 62.8 2.51 2.96
" " " " % 64.9 2.65 2.82

A3D [39]

" " " " " 96.0 4.92 4.95
% " " " " 92.6 4.49 4.71
" % " " " 91.1 4.50 3.73
" " % " " 92.4 4.58 4.06
" " " % " 92.8 4.28 3.90
" " " " % 94.4 4.85 4.23

CCD [2]

" " " " " 99.5 4.91 4.97
% " " " " 96.8 4.67 4.20
" % " " " 94.5 4.76 4.26
" " % " " 96.2 4.77 4.46
" " " % " 97.6 4.77 4.39
" " " " % 98.5 4.88 4.62

cues and thus improve prediction accuracy. Importantly, OFA sig-
nificantly improves model performance by detecting critical inter-
actions between traffic entities, which are essential for accurate
accident prediction. It identifies potential anomalous intentions and
movement trends of traffic agents within scenes, enabling the model
to focus on the high-risk objectors. In addition, the inclusion of the
enhancement loss L𝑒 refines the hidden states of the model, while
TFA enhances the semantic features within these states. This focus
on key hidden states for anticipatory analysis, combined with the
sophisticated information processing of other components, greatly
improves the model’s prediction reliability.

Case Study for TFA Mechanism. To further demonstrate the
effectiveness of the proposed TFA mechanism, we visualize the dis-
tribution of attention weights across eight attention layers within
two distinct TFA blocks. As illustrated in Fig. 2, the higher attention
layers, particularly layers 4 to 8, receive a greater proportion of
attention weights. This observation suggests that the influence on
these upper layers increases with the number of attention layers,
likely due to enhanced vector interactions. Contrary to initial ex-
pectations, the top layer does not dominate in terms of attention
weights. Instead, the mid-upper layers (4-7) receive heightened
attention, suggesting they may contain critical semantic features
for accident prediction. This deviates markedly from traditional
techniques that typically rely on the top layer’s representations for
accident prediction, which may overlook critical semantic features
inherent in other layers.

In light of these findings, we introduced the TFA mechanism
to allocate weights dynamically across different attention layers.
This allocation is meticulously calibrated based on the continuous
evolution of hidden states within the video sequence, ensuring that
each layer contributes optimally based on its informational content.
Subsequently, the multi-layer fusion iteratively fuses and updates
these outputs from these diversified TFA attention layers using the
assigned weights, providing the object-aware module with a wide
range of visual cues. In summary, the TFA mechanism promotes a
more nuanced understanding and exploitation of the hierarchical
features within the network, enabling the detection of subtle cues
that are critical for early and accurate accident anticipation.
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Figure 3: Qualitative Results of CRASH in rainy weather (a) and low nighttime lighting (b), heavy fog (c), and dense multi-agent
traffic scenes (d) on the DAD dataset. The orange bar graph represents the loss of video data for that frame.

4.6 Qualitative Results
Fig. 3 illustrates the accident anticipation capabilities of our model
in challenging real-world driving scenarios. CRASH demonstrates a
consistent ability to accurately identify impending accidents across
a wide range of environmental conditions and to issue timely warn-
ings at least 3 seconds in advance of potential incidents (TTA>3)
in complete datasets, as shown in Fig. 3 (a-b). Remarkably, even
in scenarios featuring by data missing, as highlighted in Fig. 3 (c),
our model calculates the likelihood of an accident in real-time with
remarkable accuracy. In addition, Fig. 3 (d) reveals that our model
remains capable of predicting accidents at least 1.45 seconds in ad-
vance (TTA>1.45) in scenarios with up to 20% missing data despite
being trained on only 50% of the training set. These qualitative
results highlight the exceptional robustness of the model and its
potential to tackle corner-case traffic scenarios.

5 CONCLUSION
This study introduces a novel accident anticipation framework
CRASH for autonomous driving, which integrates five key com-
ponents: object detector, feature extractor, object-aware module,
context-aware module, and multi-layer fusion. These components
work in concert to analyze and interpret various features, capture
the fine-grained correlations between different traffic agents, and
account for the inherent uncertainty and long-tail effects in the
accident anticipation. Rigorous evaluations conducted on the DAD,
A3D, and CCD demonstrate the robustness and adaptability of
CRASH, demonstrating its superior performance even in scenarios
with data constraints andmissing data. In addition, we introduce the
enhancing versions of these datasets—DAD-missing, A3D-missing,
and CCD-missing—to simulate the variability and randomness of
real-world data omissions, further refining accident anticipation
methodologies in data-missing scenes.
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