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1 DATASETS
We evaluate the efficacy of our model using three esteemed datasets:
Dashcam Accident Dataset (DAD) [2], Car Crash Dataset (CCD) [1],
and AnAn Accident Detection (A3D) [3] datasets, which provide a
unique perspective on traffic accidents in various scenes.

DAD. The dataset comprises 620 dashcam videos from six major
cities, such as Taiwan. Each video lasts 5 seconds at 20 fps and
captures various accident types in congested urban settings. From
these videos, 1750 segments are extracted and split into a 70%
training set and a 30% testing set, with accidents predefined to
occur in the final 10 frames of the footage.

A3D. The dataset comprises 1500 videos captured by car cameras
in different East Asian cities, demonstrating diverse weather and
lighting conditions. Each video is 5 seconds long, recorded at 20
fps, with 80% allocated for training and 20% for testing. Positive
segments contain accidents that occur at the 80th frame.

CCD. The dataset consists of 4500 dashcam videos captured in
diverse real-world driving conditions, such as day and night, clear
and rainy weather. Each video is 5 seconds long and recorded at 10
fps. The dataset is split into a training set of 80% (3600 videos) and
a testing set of 20% (900 videos), with accidents randomly placed in
the last 2 seconds for the positive videos.

2 IMPLEMENTATION DETAILS
Our proposed model is implemented using PyTorch and trained on
an NVIDIA A40 (48GB) GPU over 80 epochs with a consistent batch
size of 10. We use the Adam optimiser, initialising the learning rate
at 1 × 10−4 uniformly across all datasets. The object detector is
configured to detect up to 19 candidate objects, and the embedding
dimension for VGG-16 is set to 4096, and the hidden state dimension
of the GRU is fixed at 512. In addition, the ReduceLROnPlateau
strategy is used to schedule the learning rate, which adjusts the
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rate in response to the model’s performance across epochs. Further
specifics regarding the implementation and essential parameter
settings of our model are provided as follows:

Object Detector and Feature Extractor. These two modules
accept the input dimension of video 𝑉 as (𝐵,𝑇 ,𝑊 ,𝐻 ), where 𝐵 de-
notes the batch size,𝑇 represents the number of frames contained in
the input video, and𝑊 and 𝐻 correspond to the pixel length of the
video’s width and height, respectively. In our implementation, 𝐵 is
fixed at 10, and𝑇 is determined based on the actual circumstances of
different datasets, where for DAD and A3D it is 100, while for CCD
it is 50. The output of the Object Detector—object vectors 𝑂𝐹—is
a feature matrix of size (𝐵,𝑇 , 𝑁 ,𝑑), where 𝑁 represents the top-𝑁
dynamic objects detected by the Cascade R-CNN with the highest
recognition scores within the video stream. These objects are em-
bedded into 𝐷-dimensional vectors through VGG-16 and further
dimensionally reduced to 𝑑 dimensions by a Multilayer Perception
(MLP) to decrease the computational load. In the experiments, 𝑁
is set to 19, 𝐷 is set to 4096, and 𝑑 is set to 512, implying that up
to 19 detected objects are considered for accident prediction. After
extracting context features through VGG-16 and performing dimen-
sionality reduction, the output context vector 𝐶𝐹 from the Feature
Extractor has dimensions (𝐵,𝑇 , 1, 𝑑). For convenience in computa-
tion, we also set the dimensionality of scene features to 𝑑 . At time
step 𝑡 , we use the corresponding 𝐹𝑜 and 𝐹𝑐 for accident prediction,
with their dimensions being (𝐵, 𝑁,𝑑) and (𝐵, 1, 𝑑), respectively.

Object-awareModule. At time step 𝑡 , 𝐹𝑜 and the weighted dual-
layer hidden state 𝐻𝑡−1 = {𝐻1

𝑡−1, 𝐻
2
𝑡−1} serve as inputs, where the

dimensions of 𝐻𝑡−1 are (𝐵, 2, 𝑑), and both 𝐻1
𝑡−1 and 𝐻2

𝑡−1 have
dimensions (𝐵, 1, 𝑑). During the Object Focus Attention process,
𝐻1
𝑡−1 and 𝐻2

𝑡−1 are transformed into 𝑄1
𝑡 and 𝑄2

𝑡 through matrix
multiplication, while 𝐹𝑜 is converted into 𝐾𝑡 and 𝑉𝑡 . Two learnable
weight parameters,𝑊𝛼 and𝑊𝛽 , are initialized with random values
between 0 and 1. Ultimately, the output 𝐹𝑜 of the Object-aware
Module has the shape (𝐵, 1, 𝑑).

Context-aware Module. The input context vector 𝐹𝑐 with di-
mensions (𝐵, 1, 𝑑) is fed into the Context-aware Module. Initially,
a one-dimensional convolution is employed to expand its chan-
nels, and the features within each channel are reshaped into 2-
dimensional vectors. Subsequently, the Fast Fourier Transform
(FFT), implemented via torch.fft.rfft2, is applied to transition
the features into the frequency domain, resulting in the spectral
features 𝑆𝑐 . These features have dimensions (𝐵,𝐶,ℎ,𝑤), where 𝐶
represents the number of channels, set to 3, and𝑤 and ℎ correspond
to the width and height of the feature map, respectively, with the re-
lationship 𝑑 = 𝑤 ×ℎ. Finally, through Context-aware Attention and
the Inverse Fast Fourier Transform (IFFT), 𝑆𝑐 is transformed back
into the physical space, yielding the final output 𝐹𝑐 with dimensions
(𝐵, 1, 𝑑).

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Qualitative Results of the CRASH on the DAD dataset: (a) and (b) depict scenarios without accidents, while (c) and (d)
illustrate scenarios with accidents. The blue bars represent the model’s output of the probability of an accident occurrence,
with the threshold uniformly set at 0.5

Multi-layer Fusion. Finally, the outputs from the Feature Ex-
tractor, Object-aware Module, and Context-aware Module are con-
catenated into a mixed feature 𝐹𝑚 with the dimensions of (𝐵, 1, 𝑑 +
𝑑 + 𝑑). 𝐹𝑚 is subsequently passed into a two-layer Gated Recur-
rent Unit (GRU) to obtain the current time step’s hidden state
ℎ𝑡 = {ℎ1

𝑡 , ℎ
2
𝑡 }, with dimensions (𝐵, 2, 𝑑). By concatenating the first

and second layers of all hidden states from the past𝑀 frames, we ob-
tain𝐻𝑡 = {𝐻1

𝑡 , 𝐻
2
𝑡 }, and both𝐻1

𝑡 and𝐻2
𝑡 have dimensions (𝐵,𝑀,𝑑).

In the Temporal Focus Attention, the number of layers is set to 𝐾 ,
with each layer having 2 blocks that perform multi-head attention
operations on 𝐻1

𝑡 and 𝐻2
𝑡 , respectively. In our implementation, the

number of layers 𝐾 and the number of heads are both set to 8. The
output of each layer is then weighted, aggregated, and concatenated
to obtain the final output 𝐻𝑡 with dimensions (𝐵, 2, 𝑑).

3 QUALITATIVE RESULTS
In our research, through a comparative analysis of the experimental
results on the DAD and CCD datasets, we delve into the model’s pre-
dictive performance on non-accident (negative) and accident (pos-
itive) videos, showcasing these through visualization techniques.
Specifically, in Fig. 1 and Fig. 2, the first two images illustrate non-
accident scenarios, while the latter two depict accident scenarios.
For instance, in the scene presented in Fig. 1 (a), numerous elec-
tric scooter riders navigate through constantly changing distances
among each other. Despite the complexity of the scene, the model’s
accident prediction score remains at a high level without ever reach-
ing the preset threshold. Fig. 1 (b) captures a moment where an elec-
tric scooter suddenly enters the framewithin 20 frames, rapidly clos-
ing the distance with the main subject. Consequently, the model’s
predicted score climbs, nearing the threshold, but as the electric



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

CRASH: Crash Recognition and Anticipation System Harnessing with Context-Aware and Temporal Focus Attentions
(Appendix) ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: Qualitative Results of the CRASH on the CCD dataset: (a) and (b) depict scenarios without accidents, while (c) and (d)
illustrate scenarios with accidents. The blue bars represent the model’s output of the probability of an accident occurrence,
with the threshold uniformly set at 0.5

scooter distances itself, the score correspondingly decreases. In Fig.
2 (a-b), we specifically highlight the model’s predictive capability
when encountering obscured views (such as wipers obstructing the
view) and scenarios at night-time intersections, where the predic-
tion scores are generally lower, with only minor fluctuations as it
adjusts to new scenes. These observations fully demonstrate our
model’s high sensitivity to accident prediction and its adaptability
to varying traffic environments. By making careful evaluations, the
model effectively reduces the risk of false positives, showcasing
its accuracy and stability in predicting accidents in complex traffic
scenarios.

To thoroughly test the model’s ability to predict accidents, we
specifically select a series of complex scenarios for analysis, includ-
ing nighttime (as shown in Fig. 2 (c)) and snowy conditions (as
depicted in Fig. 2 (d)). Despite the presence of numerous interfering

factors, such as streetlights and car headlights, which could affect
the clarity of the footage, our model is still able to accurately iden-
tify the participants in the accident using the object detector and
make timely predictions. Notably, in most cases, the subjects in-
volved in the accidents are present in the video from the beginning.
However, we also consider special circumstances—as illustrated in
Fig. 1(c), where the subject likely to be involved in an accident only
appears 60 frames into the video, merely 30 frames (approximately
1.5 seconds) before the accident occurs. Our model is capable of
analyzing and predicting the intention of a blue sedan to make a
right turn and the trajectory of an electric scooter within a short
time frame, issuing a prediction by the 67th frame. Furthermore, in
Fig .1 (d), we demonstrate a relatively rare situation where a traffic
accident is caused by the actions of the driver itself, rather than a
direct collision with another road user. By analyzing the abnormal
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trajectory and body movements of a motorcycle rider, our model
was able to predict a potential risk 1.45 seconds before the accident
occurred.

These experimental results showcase our model’s capacity to
assess the risk of accidents in complex traffic environments, based
on the dynamic behaviors of different road users. It not only accu-
rately identifies the subjects involved in accidents but also provides
early warnings, thereby proving the model’s predictive validity and
interpretability.
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