
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MEMORY-EFFICIENT FINE-TUNING VIA STRUCTURED
NEURAL NETWORK PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning is an important step in adapting foundation models such as large
language models to downstream tasks. To make this step more accessible to
users with limited computational budgets, it is crucial to develop fine-tuning
methods that are memory and computationally efficient. Sparse Fine-tuning (SFT)
and Low-rank adaptation (LoRA) are two frameworks that have emerged for
addressing this problem, and have been adopted widely in practice. In this work,
we develop a new SFT framework, based on ideas from neural network pruning. At
a high level, we first identify ”important” neurons/nodes using feature importance
metrics from network pruning (specifically, we use the structural pruning method),
and then perform fine-tuning by restricting to weights involving these neurons.
Using experiments on both vision and language tasks, we demonstrate that our
method significantly improves the memory efficiency of SFT without increasing
training time complexity and implementation complexity, while achieving accuracy
comparable to state-of-the-art methods such as LoRA and its variants.

1 INTRODUCTION

The paradigm of pre-training followed by fine-tuning has seen tremendous success in the last few years.
Very large models (often referred to as foundation models) are first trained, typically using very large
amounts of data and computational resources, using self-supervised learning approaches (Dosovitskiy,
2020; Achiam et al., 2023; Dubey et al., 2024; Zhou et al., 2024). When building a model for a new
task (which could be a supervised learning task), the idea is to start with the foundation model and
then tune its parameters, possibly after adding additional classification layers, by training using task-
specific data. The pre-train then fine-tune paradigm has been shown to have significant advantages
over training a new model from scratch for the new task. Often, high accuracy can be obtained using
much smaller datasets for the new task.

Despite the success, fine-tuning a model with billions of parameters requires access to heavy com-
putational resources, even when the task datasets are fairly small. Fortunately, it has been observed
(e.g., see (Panigrahi et al., 2023) and references therein) that fine-tuning can often be done by tuning
only a small fraction of the model parameters. Parameter-efficient fine-tuning (PEFT) methods
have thus been proposed to carry out this idea and deal with the challenge of making fine-tuning
more accessible (Lialin et al., 2023). Commonly used PEFT methods include Low-Rank Adaptation
(LoRA, Hu et al. 2022) sparse fine-tuning (SFT, Sung et al. 2021; Guo et al. 2021; Ansell et al. 2022;
Nikdan et al. 2024). LoRA, the most widely used PEFT, achieves memory efficiency by simply
making low-rank updates to the weight matrices in the different layers. In contrast, SFT learns a
sparse matrix for updates, typically an unstructured one. Due to this lack of structure, SFT methods
typically have a higher memory usage during the fine-tuning process than LoRA. As the scale of
LLMs increases, continuing to advance the field of PEFT is essential, and there has thus been a large
body of work towards making progress (see also methods such as Malladi et al. (2023)).

The methods above for fine-tuning resemble the literature on neural network compression or “network
pruning” (Han et al., 2015; Han, 2017). This line of work, starting with the seminal paper of LeCun
et al. (1989), aims to develop smaller models that have the same functional behavior as a much larger
neural network. The primary applications are in deploying NN models on edge devices that are
power- and resource- constrained. Ideas such as low rank factorization and sparsity, combined with
quantization (representing the weights using 8-bit or 4-bit data types; e.g., see (Gholami et al., 2022))

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

have played a key role in NN compression. Another prominent class of methods are unstructured and
structured pruning (Cheng et al., 2024). The former zeros out less important parameters (resulting in
a sparse weight matrix), while structured pruning removes the least important neurons or channels
(resulting in a smaller dimensional weight matrix). Both reduce the model’s space and computational
complexity without significantly degrading accuracy. Despite similarity in methods, to our knowledge,
pruning techniques have not been directly useful in model fine-tuning.

Although numerous works have explored unstructured pruning and SFT, a key challenge persists:
unstructured sparse matrices require additional implementations for the training process to achieve
memory efficiency. This often involves optimizing tensor computations by selectively processing
only non-zero elements, e.g. torch.sparse1, compressed sparse column/row (CSC/CSR, Mofrad et al.,
2019), semi-structured formats (Holmes et al., 2021), etc. The tradeoff in these approaches lies in the
fact that they all increase time complexity to achieve reduced memory complexity. Therefore, some
approaches also leverage C++ for acceleration, as seen in works like (Nikdan et al., 2024; 2023)2.
The necessity for such additional implementations complicates the practical application of these
methods and increases the difficulty of further advancing this field.

In this work, we study the question: Can sparse fine-tuning be improved by incorporating techniques
from neural network compression and matrix decomposition to create a memory- and parameter-
efficient framework, while avoiding additional implementations of sparse operations and without
increasing the training time complexity? We answer this question in the affirmative, by proposing
a new SFT framework for fine-tuning LLMs and Vision Transformers that achieves memory- and
parameter-efficiency while maintaining or even improving performance on downstream tasks. Our
approach utilizes structured NN pruning to identify a subset of fine-tuning parameters and employs a
matrix decomposition-based computation for efficient fine-tuning. This design enables the integration
of ideas from model compression, SFT, and matrix decomposition methods.

The rest of the paper is organized as follows. We outline our contributions in Section 1.1. We then
discuss existing PEFT methods in Section 2 and describe our approach in detail in Section 3. Section 4
describes the settings of our experiments. We then present and discuss our results in Section 5. We
also analyze the memory efficiency of our method. Section 6 concludes with some directions for
future work along our lines.

1.1 OUR CONTRIBUTIONS

At a high level, our contributions are as follows:

• We enhance SFT by combining network pruning and matrix decomposition, achieving
significant memory efficiency. Our method uses standard tensor operations, eliminating the
need for custom implementations for sparse tensors.

• By replacing unstructured sparse matrices with structured ones, we achieve memory effi-
ciency lower than the popular LoRA with comparable trainable parameters. Our modular
approach enables the integration of pruning techniques for neuron importance and works
with all layer types, including LayerNorm and BatchNorm, which LoRA cannot directly
handle.

• We validate our method across diverse fine-tuning tasks (language and vision) and provide
practical guidance on hyperparameter and training configuration selection to maximize
efficiency and accuracy.

2 BACKGROUND AND RELATED WORK

Parameter-Efficient and Memory-Efficient Fine-Tuning: In various language and vision tasks, the
“pre-train then fine-tune” paradigm has been shown highly effective. PEFT methods fine-tune a small

1The beta version of torch.sparse please see https://pytorch.org/docs/stable/sparse.
html

2The implementation of their forward pass, backward pass, and back-propagation can be found in https:
//github.com/IST-DASLab/spops, where the tensor operations are mostly implemented by C++.

2

https://pytorch.org/docs/stable/sparse.html
https://pytorch.org/docs/stable/sparse.html
https://github.com/IST-DASLab/spops
https://github.com/IST-DASLab/spops


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

subset of the parameters of a large pre-trained model in order to accelerate the training process. We
begin by introducing SFT and LoRA, two popular approaches for PEFT.

Sparse Fine-Tuning: SFT formulates the fine-tuning process as learning another weight matrix Ws:

Ŵ = W +Ws, (1)

h = f(Ŵ,x) = f(W +Ws,x), (2)

where h ∈ Rdout and x ∈ Rdin are the input and output of the hidden layer, respectively, f(·)
is the forward function, W ∈ Rdout×din represents the frozen pre-trained parameters, and Ŵ ∈
Rdout×din denotes the final parameters used during inference for the fine-tuning task. The matrix
Ws ∈ Rdout×din is sparse and is initialized at 0. Such a decomposition is done for every layer in
the neural network. SFT methods try to limit the number of parameters to fine-tune. For selecting
non-zero indices, Guo et al. (2021) propose learning a mask for Ws (using a standard Backprop
algorithm), while Sung et al. (2021) uses Fisher information to identify important indices in W.
Ansell et al. (2022) fine-tune the whole model for one epoch, then use Ws itself as an importance
score to decide which parameters to fine-tune subsequently. However, the key challenge of all SFT
methods is that they do not sufficiently reduce memory usage, as Ws keeps the dimensionality of W,
and thus standard libraries do not yield memory improvements.

Techniques for Memory Efficient Training: To address memory redundancy when computing
sparse tensors, various data formats, such as compressed sparse column/row (CSC/CSR, Mofrad
et al., 2019; Lu et al., 2024) and semi-structured formats (Holmes et al., 2021) are proposed. These
formats enable efficient element-wise operations like Sparse Matrix Multiplication (SpMM), which
is crucial for performing dot products and matrix multiplications efficiently. Upon these techniques,
sparse backpropagation is built to efficiently train models (Zhang et al., 2020; Gale et al., 2020; Peste
et al., 2021; Schwarz et al., 2021; Hoefler et al., 2021; Jiang et al., 2022; Nikdan et al., 2023; Xu
et al., 2024). Beyond sparse tensor techniques, NVIDIA also offers memory optimization techniques
for efficient training, see their memory optimizations page3.

However, these techniques come with trade-offs, particularly in terms of time complexity and
implementation complexity. Achieving memory efficiency often requires a significant increase in
time complexity. To mitigate this, some approaches employ optimizations implemented in C++
or lower-level languages, such as those used in (Gale et al., 2020; Nikdan et al., 2023; 2024), to
accelerate the training process.

Low-Rank Adaptation (LoRA): Instead of requiring Ws to be sparse, low-rank adaptation aims to
find update matrices that are of small rank:

Ŵ = W +
α

r
BA (3)

h = f(Ŵ,x) = f(W +
α

r
BA,x) = f(W,x) + f(

α

r
BA,x), (4)

where α is the LoRA scaling hyper-parameter, B ∈ Rdout×r, A ∈ Rr×din are the low-rank ma-
trices with r ≪ din, dout. During inference, the BA term can be merged into W to maintain
the inference latency of the original model. During training, owing to the fact that f is additive
for both the self-attention blocks and the subsequent multilayer perceptron (MLP) layers of trans-
formers (Vaswani, 2017), backpropagation can be performed efficiently for the B,A parameters.
Due to LoRA’s simplicity and effectiveness, numerous variants have been proposed to enhance the
performance.(Dettmers et al., 2022; Liu et al., 2024; Guo et al., 2024; Li et al., 2024; Kopiczko
et al., 2024; Nikdan et al., 2024; Dettmers et al., 2024). These methods have achieved exceptional
performance, often comparable to dense fine-tuning across a range of tasks.

Neural Network Pruning: Neural network pruning is a widely applied technique that leverages
parameter sparsity to decrease model complexity and accelerate inference (LeCun et al., 1989; Han
et al., 2015; Han, 2017; Hoefler et al., 2021). Most pruning methods first evaluate the “importance”
of neural network weights (or neurons), and remove the least important parameters. Unstructured
pruning methods maintain the network architecture (number of layers and the number of neurons
within a layer) but zero out a large subset of the weights. Structured pruning, on the other hand, finds

3NVIDIA’s memory optimization techniques are available at https://pytorch.org/torchtune/
stable/tutorials/memory_optimizations.html

3

https://pytorch.org/torchtune/stable/tutorials/memory_optimizations.html
https://pytorch.org/torchtune/stable/tutorials/memory_optimizations.html


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the dependency of parameters (Liu et al., 2021; Fang et al., 2023; Ma et al., 2023), evaluates the
importance of parameters by group, and removes the dependent group of components like channels or
neurons, thereby reducing the network’s size. Both of these methods rely on subsequently retraining
the model to recover the accuracy that may be lost during pruning. While network pruning has been
very successful for classical NN architectures, applying the methods to LLMs can be very expensive:
first, computing importance scores by gradient-based methods can require large memory budgets;
second, the retraining step can be prohibitive for large models. Thus, memory efficient LLM pruning
has been a research area in itself (Sun et al., 2024; Frantar & Alistarh, 2023).

3 OUR METHOD

We now present our main contribution, Structured-Pruning-based Sparse Fine-Tuning (SPSFT),
illustrated in Figure 1.

W

𝑖1

𝑖2

𝑖3

𝑖4

𝑖5

W𝑓W W

𝜂1

⋮

𝜂𝑖

⋮

Importance score 𝜼W: 𝑑𝑜𝑢𝑡  × 𝑑𝑖𝑛 W𝑓: 𝑟 × 𝑑𝑖𝑛

Figure 1: The illustration of SPSFT: we evaluate the importance score for each neuron to select the
fine-tuning indices. Then we construct the lower-dimensional fine-tuning parameter matrix Wf .

3.1 PROPOSED METHOD

SPSFT utilizes structured neural network pruning to select a subset of the parameters for fine-tuning.
We evaluate the importance score η for each of the neurons and select the ones with the top-r
importance scores, where r is a parameter that is decided by the desired number of fine-tuning
parameters. The choice of the importance score turns out to be important and we discuss it in
detail in Section 3.2. Suppose the indices of the top r neurons are i1, i2, . . . , ir. We next construct
a lower-dimensional parameter matrix Wf ∈ Rr×din and a row selection matrix M ∈ Rdout×r

that is zero everywhere, except for Mijj = 1 for all j ∈ [r]. Following the notations defined in
Section 2, we initialize Wf to be zeros and the final parameters Ŵ are defined as Equation 1 where
Ws = MWf .

Let us now examine how to implement the backpropagation step so as to be memory-efficient. If
the computation graph were to pass through W +MWf (as a naı̈ve implementation would), the
gradients would be computed for all din × dout parameters, which is redundant. Instead, we use the
additivity of the forward function: we have, analogous to the setting of LoRA,

f(Ŵ,x) = f(W +MWf ,x) = f(W,x) + f(MWf ,x), (5)

Since W remains frozen during fine-tuning, backpropagation only needs to keep track of the deriva-
tives of the second term on the RHS. Since M is now a fixed matrix, the only trainable parameters are
those in Wf . Therefore, f(Wf ,x) will not be cached, while LoRA requires the cache of f(A,x) for
computing ∂h

∂B (backpropagation, Rumelhart et al. 1986). We explain this in detail in Appendix D.4
and we show that this benefit of memory usage is significant in Section 5.3. We discuss the memory
usage and comparison with the LoRA method of (Hu et al., 2022) in Section 5.4.

An important strength of our approach is its flexibility: it can easily incorporate any desired choice of
importance scores. At the other end, it can also incorporate new ideas in PEFT research. For example,
quantization (QLoRA, Dettmers et al. 2024), parameter sharing (VeRA, Kopiczko et al. 2024), and
combining SFT with LoRA (RoSA, Nikdan et al. 2024) can be used.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 IMPORTANCE METRIC

Importance evaluation plays a crucial role in our approach, as discussed above. We try various choices
in our work: the first is the simple ℓ2 norm of the weight vector corresponding to each neuron; the
second is the widely-used Taylor importance score (LeCun et al., 1989). We also consider different
variants of Taylor importance, as we discuss below. However, for large models like Llama-3, it
turns out that the computational overhead required for computing Taylor importances is already
prohibitively large!4 In these cases, we only use the norm (or magnitude) of the weight vector per
neuron as the importance score. We remark that norm-based importance can be quite powerful on its
own, as is the case with norm-sampling in the matrix approximation literature (Frieze et al., 2004).

In our experiments on image classification tasks, we also consider a “class aware” variant of Taylor
importance, which may be of independent interest. The motivation here comes from the observation
that the importance of a neuron may depend on the class of an input example (as a toy example, a
whisker detecting neuron may be very important to the cat class, but not much to others; hence not
too important on average). Another motivation comes from the observation that when we perform a
vanilla (class agnostic) fine-tuning, the accuracy of some classes can be much worse than others —
an undesirable outcome. This is shown in Table 1.

#labels Mean Min Q1 Med Q3 Max

CIFAR100 100 90.18 65 88 92 95 99

Tiny-ImageNet 200 87.55 62 84 88 92 100

Table 1: The distribution of accuracies across different labels is summarized by statistics including
the minimum (Min), first quartile (Q1), median (Med), third quartile (Q3), and maximum (Max)
accuracies. #labels is the number of labels. The reported accuracies are the validation results of dense
fine-tuned DeiT for 5 epochs. Models and Datasets are described in Section 4.

We define the class-wise Taylor importance as follows: for neuron i and label t,

ηt
i := |L(Dt, F́ci)− L(Dt, F )| ≈ |w⊤∇wL(Dt, F )|, (6)

where F is the forward function of the entire model, L(Dt, F ) denotes the average loss of F over
inputs in class t, F́ci

represents the forward without channel/neuron ci, and w is the parameter vector
of channel ci. One natural choice of importance of neuron i motivated by the above discussion is
maxt η

t
i . We find that this score is “too sensitive” (importance of neurons may be over-estimated

because of just one class), leading to lower overall accuracy. On the other hand, the average (over
t) of ηti corresponds to the standard Taylor importance. We find that the intermediate quantity of
Quantiles-Mean, defined as the average of the 0%, 10%, 20%, . . . , 100% quantiles of the ηt

i , works
well in reducing the accuracy imbalance across labels, and also achieving a high overall accuracy.
Formally,

ηi =

∑10
k=0 Qk({ηi

t}pt=1)

11
, (7)

where Qk represents the k × 10-th quantile. See Appendix A for more details.

4 EXPERIMENTAL SETUP

4.1 DATASETS

We use several datasets for different tasks. For image classification tasks, we use Tiny-ImageNet
(Tavanaei, 2020), CIFAR100 (Krizhevsky et al., 2009), and caltech101(Li et al., 2022) to analyze
the fine-tuning strategies. For language classification tasks, we use GLUE (Wang et al., 2019) for
training and evaluation. In these tasks, we fine-tune the models on the training split and analyze the
results on validation split. For text generation tasks, we will randomly sample 256 instances from
the training split of Stanford-Alpaca dataset (Taori et al., 2023) to fine-tune LLM, then evaluate the
zero-shot performance on 7 tasks from EleutherAI LM Harness (Gao et al., 2021). More details of
datasets can be found in Appendix C.

4The Taylor importance here refers to computing the exact value without relying on approximations of the
importance score or the gradient matrix used for deriving the importance score.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2 MODELS AND BASELINES

We begin by fine-tuning small models to analyze fine-tuning strategies and select hyperparame-
ters. This includes fine-tuning DeiT (Touvron et al., 2021), ViT, ResNet101 (He et al., 2016), and
ResNeXt101 (Xie et al., 2017) on CIFAR100 and Tiny-ImageNet as well as fine-tuning DeBERTaV3-
base (He et al., 2023) on GLUE. We compare the results of our SPSFT to fine-tuning the entire model
and fine-tuning only the classification layers. For simplicity, we refer to these as dense fine-tuning
and head fine-tuning, respectively. Dense fine-tuning serves as the baseline. In these experiments, we
fix the fine-tuning ratio at 5% for our approach, meaning the total number of fine-tuning parameters
will be approximately 5% of the backbone parameters plus the parameters of the classification layers.

We then fine-tune the full-precision Llama-2-7B and Llama-3-8B, i.e. float32, using our SPSFT
and baseline. While DoRA (Liu et al., 2024), RoSA (Nikdan et al., 2024), and some other LoRA
variants have shown improvements, they often come at the cost of increased time complexity, memory
complexity, or both. Similarly, most SFT methods and dense fine-tuning demand substantial memory
during training. Therefore, we use LoRA as the baseline in our experiments. The classification layers
of Llama are frozen, and we only fine-tune the linear layers in the attention blocks and the subsequent
MLP blocks.

4.3 TRAINING DETAILS

We implement our fine-tuning framework based on torch-pruning5 (Fang et al., 2023), PyTorch
(Paszke et al., 2019), PyTorch-Image-Models (Wightman, 2019), and the HuggingFace Transformers
library (Wolf et al., 2020). All the experiments are conducted on a single A100-80GB GPU and the
optimizer is Adam (Kingma & Ba, 2015). We fine-tune all models for a fixed number of epochs,
without performing model selection based on validation data.

Structured pruning often considers parameter dependencies in importance evaluation (Liu et al., 2021;
Fang et al., 2023; Ma et al., 2023). This becomes the following process in our work: first, searching
for dependencies using a structured pruning tool; next, evaluating the importance of parameter groups;
and finally, fine-tuning the parameters within those important groups collectively. For instance, if
Wa

·j and Wb
i· are dependent, where Wa

·j is the j-th column in parameter matrix of layer a and Wb
i· is

the i-th row in parameter matrix of layer b, then Wa
·j and Wb

i· will be fine-tuned simultaneously while
the corresponding Ma

dep for Wa
·j becomes column selection matrix and Wa

s becomes Wa
f,depM

a
dep.

Consequently, 2.5% fine-tuning parameters for layer b will result in additional 2.5% fine-tuning
parameters in each dependent layer (e.g. layer a has Wa

f and Wa
f,dep). Therefore, for the 5% of

desired fine-tuning ratio, the fine-tuning ratio with considering dependencies is set to 2.5%6 for
the approach that includes dependencies. More details for dependencies of NN can be found in
Appendix B.

Image models: The learning rate is set to 10−4 with cosine annealing decay (Loshchilov & Hutter,
2017), where the minimum learning rate is ηmin = 10−9. All image models used in this study are
pre-trained on ImageNet.

DeBERTaV3: The learning rate is set to 2 · 10−5 with linear decay, where the decay rate is 0.01. The
model is fine-tuned on the full training split of 8 tasks from the GLUE benchmark. The maximum
sequence length is fixed to 256 with longer sequences truncated and shorter sequences padded.

Llama: For LoRA, we fix α = 16, with a dropout rate of 0.1. The learning rate is set to 10−4 with
linear decay, and the decay rate is 0.01. For our SPSFT method, we control the trainable parameters
by using rank instead of fine-tuning ratio to intuitively compare with LoRA. The learning rate is
set to 2 · 10−5 with the same decay setting. The linear learning rate decays are applied following a
warmup phase over the first 3% of training steps. The maximum sequence length is fixed to 2048
with longer sequences truncated and shorter sequences padded.

5Torch-pruning is not required, all their implementations are based on PyTorch.
6In some complex models, considering dependencies results in slightly more than twice the number of

trainable parameters. However, in most cases, the factor is 2.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 RESULTS AND DISCUSSION

We now present the results of fine-tuning image and language classification models using our
framework. Whenever possible, we report three results: dense-fine-tuning, our method SPSFT, and
head fine-tuning (where all the layer weights are frozen and only a “classification head” is added in
the end). We show results across several epochs to compare how training evolves for the different
fine-tuning strategies. Following this, we examine the performance of our approach by utilizing
various importance metrics and evaluating the impact of involving parameter dependencies, as we will
explain. Finally, we apply our approach SPSFT to fine-tuning Llama models and compare the results
with those obtained using LoRA. Note that memory efficiency is not emphasized for small-scale
models, as dataset-related memory—particularly with large batch sizes—dominates consumption in
these cases. The main advantage of our method in these cases is the reduced FLOPs due to fewer
trainable parameters.

5.1 HYPERPARAMETER SETTINGS

CIFAR100 Tiny-ImageNet Caltech101

Dense Head SPSFT Dense Head SPSFT Dense Head SPSFT

#ep loss, acc loss, acc loss, acc loss, acc loss, acc loss, acc loss, acc loss, acc loss, acc

DeiT DeiT DeiT

#param: 86.0M 0.2M 4.6M 86.1M 0.3M 4.8M 86.0M 0.2M 4.6M

5 0.36, 90.18 0.76, 80.25 0.37, 88.70 0.54, 87.55 0.60, 85.09 0.40, 89.69 0.11, 97.33 1.09, 89.02 0.30, 95.41
10 0.44, 90.04 0.64, 81.83 0.42, 88.62 0.69, 86.32 0.54, 85.72 0.49, 88.96 0.11, 97.55 0.53, 93.22 0.17, 96.28
30 0.62, 89.03 0.55, 83.42 0.64, 88.61 0.94, 84.27 0.52, 86.06 0.72, 88.67 0.11, 97.11 0.22, 95.06 0.12, 96.50

ViT ViT ViT

#param: 85.9M 0.1M 4.5M 86.0M 0.2M 4.6M 85.9M 0.1M 45.2M

5 0.38, 90.13 1.01, 74.78 0.40, 88.13 0.51, 88.45 0.65, 84.10 0.36, 90.87 0.12, 97.16 1.60, 85.70 0.43, 93.96
10 0.45, 89.85 0.85, 77.05 0.45, 87.55 0.66, 86.78 0.58, 84.95 0.44, 90.48 0.11, 97.20 0.85, 89.98 0.23, 95.54
30 0.62, 88.78 0.71, 79.51 0.69, 87.83 0.96, 84.20 0.55, 85.49 0.61, 90.56 0.12, 97.24 0.33, 92.65 0.16, 96.02

ResNet101 ResNet101 ResNet101

#param: 42.7M 0.2M 2.2M 42.9M 0.4M 2.4M 42.7M 0.2M 2.2M

5 0.50, 86.21 1.62, 60.78 0.59, 82.36 0.92, 77.78 1.64, 62.06 0.76, 79.66 0.14, 96.50 1.25, 82.33 0.48, 92.56
10 0.58, 86.41 1.39, 63.06 0.60, 82.33 1.10, 76.81 1.50, 63.19 0.79, 79.54 0.14, 96.54 0.69, 90.24 0.23, 95.58
30 0.80, 84.72 1.21, 65.63 0.80, 82.49 1.54, 74.09 1.43, 64.47 1.08, 78.58 0.18, 95.80 0.31, 93.00 0.16, 95.89

ResNeXt101 ResNeXt101 ResNeXt101

#param: 87.0M 0.2M 4.9M 87.2M 0.4M 5.1M 87.0M 0.2M 4.9M

5 0.47, 87.30 1.42, 65.07 0.47, 85.94 0.86, 79.51 1.46, 65.59 0.61, 83.88 0.12, 97.07 1.25, 83.16 0.28, 95.84
10 0.56, 87.17 1.23, 67.55 0.53, 86.04 1.01, 79.27 1.35, 66.73 0.69, 83.47 0.13, 96.89 0.68, 90.94 0.18, 96.28
30 0.71, 86.59 1.08, 69.45 0.69, 86.33 1.41, 76.55 1.29, 67.93 0.90, 82.83 0.16, 96.63 0.31, 92.87 0.14, 96.76

Table 2: Fine-tuning on CIFAR100 and Tiny-ImageNet. #ep and #param represent the number of
epochs and the number of trainable parameters, where SPSFT is our method with Taylor importance.
All reported losses and accuracies are based on validation results. Bold denotes the best results of
each fine-tuning approach (in the same column) on the same model and dataset.

We report the results of three approaches over several epochs as table 2 and table 3. Overall, dense
fine-tuning over higher epochs is more prone to overfitting, while head fine-tuning shows the exact
opposite trend. Except for the results on caltech1017, the loss patterns across all models consistently
reflect this trend, and most accuracy results further support this conclusion. However, our approach
demonstrates a crucial advantage by effectively balancing the tradeoff between performance and
computational resources.

Table 2 clearly shows that both our approach and dense fine-tuning achieve optimal results within a
few epochs, while head fine-tuning requires more training. Notably, all models have been pre-trained
on ImageNet-1k, which may explain the strong performance observed with head fine-tuning on Tiny-
ImageNet. However, even with this advantage, dense fine-tuning still outperforms head fine-tuning,
and our approach surpasses both. In just 5 epochs, our approach achieves results comparable to dense
fine-tuning on all datasets with significantly lower trainable parameters.

7The inconsistent trend observed in Caltech101 results is likely due to its significantly smaller sample size.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

task CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B

#train 8.5k 393k 3.7k 108k 364k 2.5k 67k 7k

method #param epochs mcc acc acc acc acc acc acc corr

Dense 184.42M 3 69.96 89.42 89.71 93.57 92.08 80.14 95.53 90.44
Dense 5 69.48 89.29 87.74 93.36 92.08 83.39 94.72 90.14
Dense 10 68.98 88.55 90.20 93.15 91.97 80.51 93.81 90.71

Head 592.13K 3 24.04 62.64 68.38 70.73 80.18 52.71 65.48 5.66
Head 5 45.39 61.75 68.38 72.32 80.59 47.29 78.44 26.88
Head 10 47.32 63.98 68.38 71.99 80.96 47.29 74.66 49.59

SPSFT 103.57M 3 64.08 89.58 81.62 93.10 90.70 70.40 95.18 86.58
SPSFT 5 65.40 90.21 86.03 93.17 90.93 74.37 95.30 87.36
SPSFT 10 65.56 89.55 87.50 93.15 91.57 80.14 95.41 89.14

Table 3: Fine-tuning DeBERTaV3 on GLUE. ‘mcc’, ‘acc’, and ‘corr’ represent ‘Matthews correlation’,
‘accuracy’, and ‘Pearson correlation’, respectively. #param is the number of trainable parameters. All
reported metrics are based on validation results, and are percentages. Bold denotes the best results of
each fine-tuning approach on the same task.

In contrast to Table 2, the results in Table 3 show more variation. Although the validation loss
follows a similar trend, we report only the evaluation metrics due to the different patterns observed in
these metrics. One potential reason for this variation is the varying amounts of training data across
the GLUE tasks. As shown in the table, tasks with fewer samples often require more epochs to
achieve better performance for both dense fine-tuning and our approach. Conversely, for tasks with
large amounts of training data such as ‘MNLI’, ‘QNLI’, ‘QQP’, and ‘SST-2’, the results show tiny
improvement from 3 to 10 epochs. Nevertheless, the results still demonstrate that our approach
significantly balances the tradeoff between performance and computational resources. Our method
achieves near dense fine-tuning performance with remarkably less trainable parameters.

5.2 IMPORTANCE SCORE AND PARAMETER DEPENDENCY

data CIFAR100 Tiny-ImageNet Caltech101

model dep ℓ2 Taylor QMTaylor ℓ2 Taylor QMTaylor ℓ2 Taylor

DeiT % 88.05 88.70 89.37 89.31 89.69 89.75 95.01 95.41
! 86.43 87.33 88.08 85.56 85.92 86.49 65.35 78.04

ViT % 87.13 88.06 88.51 90.78 90.87 90.90 92.69 93.96
! 85.24 86.83 87.91 88.83 88.95 89.67 56.30 77.82

RN % 82.25 82.36 83.50 79.83 79.66 80.02 93.13 92.56
! 78.63 78.62 81.18 69.87 69.24 72.51 54.68 52.71

RNX % 86.12 85.94 86.93 83.88 83.88 84.17 95.71 95.84
! 84.71 85.01 85.48 79.39 78.95 79.54 92.13 91.82

Table 4: Fine-tuning image models by our SPSFT for 5 epochs. “dep” refers to whether parameter
dependencies are involved or not. ℓ2, Taylor, and QMTaylor represent the magnitude, Taylor
importance, and Quantiles-Mean Taylor importance (Equation 7). Note that QMTaylor is not applied
to fine-tuning Caltech101 due to its significantly imbalanced labels. All reported results are validation
accuracies. Bold indicates the superior results achieved through dependency searching compared to
not searching. Underline highlights the best fine-tuning results.

We utilize various importance metrics to fine-tune both models using our approach, with and without
incorporating parameter dependencies, and report the results to compare their performances. Search-
ing for dependencies in structured pruning is natural, as dependent parameters are pruned together.
However, important neurons in a given layer do not always have dependent neurons that are also
important in their respective layers. As demonstrated in Table 4, fine-tuning without considering
parameter dependencies outperforms fine-tuning incorporating dependencies in all cases. For im-
portance metrics, although the differences between them are not substantial, all results consistently
conclude that the Quantile-Mean Taylor importance demonstrates a slight improvement over the
standard Taylor importance. Furthermore, both the Quantile-Mean Taylor and standard Taylor metrics
outperform the magnitude importance.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5 suggests a different conclusion: the impact of parameter dependencies on performance is
minor, nearly negligible8. However, searching for dependencies involves additional implementations
and computational overhead. Combining the results of image models, the conclusion is not searching
for the parameter dependencies. For importance metrics, this experiment shows that magnitude and
Taylor importance perform similarly.

task CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B

imp dep mcc acc acc acc acc acc acc corr

Taylor % 65.56 89.55 87.50 93.15 91.57 80.14 95.41 89.14
! 67.49 89.85 87.25 93.30 91.63 79.42 95.07 89.98

ℓ2 % 65.40 89.77 83.33 92.64 91.34 74.73 94.04 88.69
! 66.80 90.22 84.07 93.94 91.57 79.06 95.07 87.39

Table 5: Fine-tuning DeBERTaV3 on GLUE by our SPSFT for 10 epochs. “dep” refers to whether
parameter dependencies are involved or not. Taylor and ℓ2 indicate the magnitude and Taylor
importance. The importance score is Taylor. We do not apply QMTaylor since the number of labels is
tiny. ‘mcc’, ‘acc’, and ‘corr’ represent ‘Matthews correlation’, ‘accuracy’, and ‘Pearson correlation’,
respectively. All reported metrics are based on validation results. Bold indicates the best results of
whether considering dependencies.

5.3 MAIN RESULTS OF LLM

We apply our SPSFT method to fine-tuning Llama2-7B and Llama3-8B, comparing the results
with those obtained through LoRA fine-tuning. We use the magnitude of the neuron vector as the
importance metric due to its lower memory requirements. In contrast, gradient-based metrics such
as Taylor and Hessian are as memory-intensive as dense fine-tuning of LLMs. Notably, Sun et al.
(2024) propose Wanda, a memory-efficient metric for pruning LLMs. However, it still necessitates
one epoch of data forwarding and requires memory more than inference for computing the input
vector’s norm. For epochs choosing, Table 3 shows that 5 or 10 epochs are reasonable for tasks with
less than 10,000 training samples. Given that the maximum sequence lengths of Llama are longer
than DeBERTaV3, we have opted for only 5 epochs and report the corresponding results to balance
computational resources and performance.

Table 6 highlights the remarkable memory efficiency of our approach9. We explore two fine-tuning
strategies: fine-tuning all linear layers and fine-tuning only the MLP layers, with results presented
for both. The former requires slightly more memory for the same number of trainable parameters
(see Appendix D.5 for details). Since Llama models are pre-trained on extensive datasets, their
attention blocks likely already capture key patterns for token interactions. Our results reveal that
freezing these attention blocks maintains performance levels nearly equivalent to fine-tuning all
layers. Furthermore, the memory advantage of our approach scales proportionally, with potential
savings reaching approximately 50 times for Llama-3-405B.

5.4 MEMORY EFFICIENCY

We now discuss the memory usage of our approach compared to LoRA (Hu et al., 2022). In fine-tuning
using LoRA, the backpropagation process involves storing gradients for h, B, and A, alongside the
parameter values and optimizer states (e.g., momentum). Additionally, for computing ∂h

∂B , LoRA
either caches f(A,x) during the forward pass or uses activation checkpointing to recompute f(A,x)
in the backward pass (Herrmann et al., 2019; Singh et al., 2022). Our method offers two key memory-
savings: (1) Since M is not trainable, we eliminate the need to cache the hidden state f(Wf ,x),
significantly reducing memory usage. The savings scale with the product of the number of fine-tuning
layers, batch size, token length, and rank. Further details are provided in Appendix D.4. (2) The
dimensions of Wf in our approach match those of A, substantially reducing the number of trainable

8The results of using magnitude importance on the RTE task show significant variation, but this is likely due
to the small sample size and the hardness of the task, which result in the unstable performances observed in our
experiments. Aside from RTE, the results on other tasks are not significantly different.

9Also refer to the full table in Appendix D.3, even with r = 128, our method’s memory usage remains
significantly lower than that of LoRA with r = 16.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Model, ft setting mem #param ARC-c ARC-e BoolQ HS OBQA rte WG Avg

Llama2(7B), LoRA, r = 64 23.46GB 159.9M(2.37%) 44.97 77.02 77.43 57.75 32.0 62.09 68.75 60.00
Llama2(7B), SPSFT, r = 128 17.62GB 145.8M(2.16%) 43.60 76.26 77.77 57.16 32.6 63.54 69.30 60.03

Llama2(7B), FA-LoRA, r = 64 17.25GB 92.8M(1.38%) 43.77 77.57 77.74 57.45 31.0 66.06 69.06 60.38
Llama2(7B), FA-SPSFT, r = 128 15.21GB 78.6M(1.17%) 43.00 76.22 77.83 57.11 31.2 63.54 69.38 59.75

Llama3(8B), LoRA, r = 64 30.37GB 167.8M(2.09%) 53.07 81.40 82.32 60.67 34.2 69.68 73.56 64.98
Llama3(8B), SPSFT, r = 128 24.49GB 159.4M(1.98%) 52.47 80.05 81.28 60.17 34.6 70.04 72.61 64.46

Llama3(8B), FA-LoRA, r = 64 24.55GB 113.2M(1.41%) 52.47 81.36 82.23 60.17 35.0 70.04 73.56 64.98
Llama3(8B), FA-SPSFT, r = 128 22.41GB 92.3M(1.15%) 52.13 80.05 81.35 60.20 34.2 69.31 72.85 64.30

Table 6: Fine-tuning Llama on Alpaca dataset for 5 epochs and evaluating on 7 tasks from EleutherAI
LM Harness. ”mem” represents the memory usage, with further details provided in Appendix D.1.
#param is the number of trainable parameters, where the difference of #param between the two
approaches depends on the architecture of Llama, as some layers have din ̸= dout. Note that 10
million trainable parameters only account for less than 0.15GB of memory requirement. FA indicates
that we freeze attention layers, but not including MLP layers followed by attention blocks. HS,
OBQA, and WG represent HellaSwag, OpenBookQA, and WinoGrande datasets. More details of
datasets can be found in Appendix C. The ablation study for different r and the comparison with other
LoRA variants can be found in Appendix D. All reported results are accuracies on the corresponding
tasks. Bold indicates the best results of two approaches on the same task.

parameters under the same rank r. While the reduction factor may not always be exactly 2, as
din ̸= dout in some layers, the memory efficiency is consistently significant.

Concretely, consider a mixed precision training scenario (Micikevicius et al., 2018) where we fine-
tune Llama-3-405B using LoRA with r = 256 and the Adam optimizer. Assume the pre-trained
model parameters are stored as float32, and the LoRA parameters as float16. Each trainable parameter,
along with its gradient, requires a total of 4 bytes, while the Adam optimizer’s states (master weights,
velocities, and momentums) add another 12 bytes per parameter. For LoRA, the trainable parameters
consume approximately 405×2%×16 = 129.6GB of memory. Using our method with the same rank
parameter, memory savings are at least 405× 1%× 12 = 48.6GB. Besides, Llama-3-405B supports
the token length of 32768 and consists of 126 attention blocks, each with 7 linear layers, so the cache
of hidden states f(A,x) is 126× 7× b× 32768× 256× 4Byte = 29bGB where b is the batch size.
This calculation excludes LoRA’s dropout layer and the cache of ∂L

∂f(B,x) (see Appendix D.4 for
details), meaning the actual memory savings in practice can be even greater. Even when the rank
is doubled to match LoRA’s trainable parameter count, our approach maintains significant memory
savings by eliminating the cache requirements.

6 CONCLUSIONS AND FUTURE WORK

We propose a parameter-efficient fine-tuning (PEFT) framework that integrates various techniques
and importance metrics from model compression, sparse fine tuning (SFT), and matrix decomposition
research. Using our method, we can fine-tune LLMs and vision transformers using significantly less
computation resources than the popular LoRA (Low-Rank Adaptation) technique, while achieving
similar accuracy. We also explore the effects of using different importance metrics from model
compression. There are several future directions: (1) For importance metrics, while Quantile-Mean
Taylor shows slight improvements, these gains are relatively minor compared to the standard Taylor
metric in some cases of DeiT and ViT. We may wish to explore better metrics for classification tasks
with a large number of labels. (2) Developing memory-efficient importance metrics for LLMs is
another future direction. Gradient-based importance metrics, although effective in small-scale models,
are constrained by high memory requirements when applied to LLMs. As LLMs continue to expand
in size and complexity, exploring memory-efficient importance metrics that deliver comparable
performance is essential for further advancements in this field. (3) Our results show that fine-tuning a
small number of neurons can significantly improve model performance on downstream tasks. This
observation naturally raises the question: do the selected neurons play a distinctive role in specific
tasks? This question is related to the explainability of neural networks, which is an extensive area of
research. It will be interesting to understand if (and how) individual neurons chosen for fine-tuning
contribute to the new task.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Alan Ansell, Edoardo Ponti, Anna Korhonen, and Ivan Vulić. Composable sparse fine-tuning for cross-
lingual transfer. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1778–1796, 2022.

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. The second PASCAL recognising textual entailment challenge. 2006.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo Giampiccolo, and Bernardo Magnini. The
fifth PASCAL recognizing textual entailment challenge. 2009.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. SemEval-2017 task 1:
Semantic textual similarity multilingual and crosslingual focused evaluation. In Steven Bethard,
Marine Carpuat, Marianna Apidianaki, Saif M. Mohammad, Daniel Cer, and David Jurgens
(eds.), Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017),
pp. 1–14, Vancouver, Canada, August 2017. Association for Computational Linguistics. doi:
10.18653/v1/S17-2001. URL https://aclanthology.org/S17-2001.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning:
Taxonomy, comparison, analysis, and recommendations. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL recognising textual entailment
challenge. In Machine learning challenges. evaluating predictive uncertainty, visual object
classification, and recognising tectual entailment, pp. 177–190. Springer, 2006.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

William B Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the International Workshop on Paraphrasing, 2005.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards any
structural pruning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 16091–16101, 2023.

11

https://aclanthology.org/S17-2001


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algorithms for finding low-rank
approximations. J. ACM, 51(6):1025–1041, November 2004. ISSN 0004-5411. doi: 10.1145/
1039488.1039494. URL https://doi.org/10.1145/1039488.1039494.

Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. Sparse gpu kernels for deep learning.
In SC20: International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–14. IEEE, 2020.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
language model evaluation. Version v0. 0.1. Sept, 10:8–9, 2021.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-Power Computer
Vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL recognizing
textual entailment challenge. In Proceedings of the ACL-PASCAL workshop on textual entailment
and paraphrasing, pp. 1–9. Association for Computational Linguistics, 2007.

Demi Guo, Alexander Rush, and Yoon Kim. Parameter-efficient transfer learning with diff pruning.
In Annual Meeting of the Association for Computational Linguistics, 2021.

Han Guo, Philip Greengard, Eric Xing, and Yoon Kim. LQ-loRA: Low-rank plus quantized matrix
decomposition for efficient language model finetuning. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
xw29VvOMmU.

Song Han. Efficient methods and hardware for deep learning. PhD thesis, Stanford University, 2017.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-
style pre-training with gradient-disentangled embedding sharing. In The Eleventh International
Conference on Learning Representations, 2023.

Julien Herrmann, Olivier Beaumont, Lionel Eyraud-Dubois, Julien Hermann, Alexis Joly, and Alena
Shilova. Optimal checkpointing for heterogeneous chains: how to train deep neural networks with
limited memory. arXiv preprint arXiv:1911.13214, 2019.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. Journal of
Machine Learning Research, 22(241):1–124, 2021.

Connor Holmes, Minjia Zhang, Yuxiong He, and Bo Wu. Nxmtransformer: semi-structured sparsifi-
cation for natural language understanding via admm. Advances in neural information processing
systems, 34:1818–1830, 2021.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Peng Jiang, Lihan Hu, and Shihui Song. Exposing and exploiting fine-grained block structures
for fast and accurate sparse training. Advances in Neural Information Processing Systems, 35:
38345–38357, 2022.

12

https://doi.org/10.1145/1039488.1039494
https://openreview.net/forum?id=xw29VvOMmU
https://openreview.net/forum?id=xw29VvOMmU


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations (ICLR), 2015.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. VeRA: Vector-based random matrix
adaptation. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=NjNfLdxr3A.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Fei-Fei Li, Marco Andreeto, Marc’Aurelio Ranzato, and Pietro Perona. Caltech 101, Apr 2022.

Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatziakis, Pengcheng He, Weizhu Chen, and Tuo
Zhao. Loftq: LoRA-fine-tuning-aware quantization for large language models. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=LzPWWPAdY4.

Vladislav Lialin, Vijeta Deshpande, and Anna Rumshisky. Scaling down to scale up: A guide to
parameter-efficient fine-tuning. arXiv preprint arXiv:2303.15647, 2023.

Liyang Liu, Shilong Zhang, Zhanghui Kuang, Aojun Zhou, Jing-Hao Xue, Xinjiang Wang, Yimin
Chen, Wenming Yang, Qingmin Liao, and Wayne Zhang. Group fisher pruning for practical
network compression. In International Conference on Machine Learning, pp. 7021–7032. PMLR,
2021.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/
forum?id=3d5CIRG1n2.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In Interna-
tional Conference on Learning Representations, 2017.

Xudong Lu, Aojun Zhou, Yuhui Xu, Renrui Zhang, Peng Gao, and Hongsheng Li. SPP: Sparsity-
preserved parameter-efficient fine-tuning for large language models. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
9Rroj9GIOQ.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. LLM-pruner: On the structural pruning of large
language models. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=J8Ajf9WfXP.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
precision training. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=r1gs9JgRZ.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018.

Mohammad Hasanzadeh Mofrad, Rami Melhem, Yousuf Ahmad, and Mohammad Hammoud. Multi-
threaded layer-wise training of sparse deep neural networks using compressed sparse column. In
2019 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–6. IEEE, 2019.

13

https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=LzPWWPAdY4
https://openreview.net/forum?id=LzPWWPAdY4
https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=9Rroj9GIOQ
https://openreview.net/forum?id=9Rroj9GIOQ
https://openreview.net/forum?id=J8Ajf9WfXP
https://openreview.net/forum?id=r1gs9JgRZ
https://openreview.net/forum?id=r1gs9JgRZ


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Mahdi Nikdan, Tommaso Pegolotti, Eugenia Iofinova, Eldar Kurtic, and Dan Alistarh. SparseProp:
Efficient sparse backpropagation for faster training of neural networks at the edge. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pp. 26215–26227. PMLR, 23–29 Jul 2023.
URL https://proceedings.mlr.press/v202/nikdan23a.html.

Mahdi Nikdan, Soroush Tabesh, Elvir Crnčević, and Dan Alistarh. RoSA: Accurate parameter-
efficient fine-tuning via robust adaptation. In Forty-first International Conference on Machine
Learning, 2024. URL https://openreview.net/forum?id=FYvpxyS43U.

Abhishek Panigrahi, Nikunj Saunshi, Haoyu Zhao, and Sanjeev Arora. Task-specific skill localization
in fine-tuned language models. In International Conference on Machine Learning, pp. 27011–
27033. PMLR, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Alexandra Peste, Eugenia Iofinova, Adrian Vladu, and Dan Alistarh. Ac/dc: Alternating com-
pressed/decompressed training of deep neural networks. Advances in neural information processing
systems, 34:8557–8570, 2021.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of EMNLP, pp. 2383–2392. Association for
Computational Linguistics, 2016.

Jorma J Rissanen. Fisher information and stochastic complexity. IEEE transactions on information
theory, 42(1):40–47, 1996.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Jonathan Schwarz, Siddhant Jayakumar, Razvan Pascanu, Peter E Latham, and Yee Teh. Powerpropa-
gation: A sparsity inducing weight reparameterisation. Advances in neural information processing
systems, 34:28889–28903, 2021.

Sonali Singh, Anup Sarma, Sen Lu, Abhronil Sengupta, Mahmut T Kandemir, Emre Neftci, Vi-
jaykrishnan Narayanan, and Chita R Das. Skipper: Enabling efficient snn training through
activation-checkpointing and time-skipping. In 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 565–581. IEEE, 2022.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of EMNLP, pp. 1631–1642, 2013.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. In The Twelfth International Conference on Learning Representations,
2024.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems, 34:24193–24205, 2021.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Amirhossein Tavanaei. Embedded encoder-decoder in convolutional networks towards explainable ai.
arXiv preprint arXiv:2007.06712, 2020.

14

https://proceedings.mlr.press/v202/nikdan23a.html
https://openreview.net/forum?id=FYvpxyS43U
https://github.com/tatsu-lab/stanford_alpaca


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
conference on machine learning, pp. 10347–10357. PMLR, 2021.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. 2019.
In the Proceedings of ICLR.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments.
arXiv preprint 1805.12471, 2018.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of NAACL-HLT, 2018.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38–45, 2020.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1492–1500, 2017.

Mengwei Xu, Wangsong Yin, Dongqi Cai, Rongjie Yi, Daliang Xu, Qipeng Wang, Bingyang Wu,
Yihao Zhao, Chen Yang, Shihe Wang, et al. A survey of resource-efficient llm and multimodal
foundation models. arXiv preprint arXiv:2401.08092, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics, 2019.

Zhekai Zhang, Hanrui Wang, Song Han, and William J Dally. Sparch: Efficient architecture for sparse
matrix multiplication. In 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 261–274. IEEE, 2020.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun Luo, Zipeng Qin, Shaoqing Lu, Anya Jia,
Linqi Song, Mingjie Zhan, et al. Solving challenging math word problems using gpt-4 code
interpreter with code-based self-verification. In The Twelfth International Conference on Learning
Representations, 2024.

A IMPORTANCE METRICS

Taylor importance is the Taylor expansion of the difference between the loss of the model with and
without the target neuron:

ηi = L(D, F́ci
)− L(D, F )

≈ −w⊤∇wL(D, F ) +
1

2
w⊤∇2

wL(D, F )w

(∗)
≈ 1

2
w⊤∇2

wL(D, F )w

(∗∗)
≈ 1

2
(Gw)⊤(Gw),

where G = ∇wL(D, F ). (**) is from the result of Fisher information Rissanen (1996):

∇2
wL(D, F ) ≈ ∇wL(D, F )⊤∇wL(D, F ).

15

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Note that (*) is from ∇wL(D, F ) ≈ 0, as removing one channel/neuron from a large neural network
typically results in only a negligible reduction in loss. To efficiently compute ηi, the equation can be
further derived as:

ηi ≈ (Gw)⊤(Gw) =
∑
j

(
1

|D|
∑
x∈D

∂L(x, F )

∂wj
wj)

2 ≈
∑
j

| 1

|D|
∑
x∈D

∂L(x, F )

∂wj
wj |,

where w = (w1, . . . , wj , . . .).

Magnitude importance is the ℓ2-norm of the neuron vector computed as
√∑

j w
2
j .

B PARAMETER DEPENDENCY

Dependencies of parameters between neurons or channels across different layers exist in NNs. These
include basic layer connections, residual connections, tensor concatenations, summations, and more,
as shown in Figure 2. The black neurons connected by real lines represent the dependent parameters
that are in the same group. Pruning any black neurons results in removing the parameters connected
by the real lines. Liu et al. (2021) introduced a group pruning method for CNN models that treats
residual connections as grouped dependencies, evaluating and pruning related channels within the
same group simultaneously. Similarly, Fang et al. (2023) proposed a novel group pruning technique
named Torch-Pruning, which considers various types of dependencies and achieves state-of-the-art
results. Ma et al. (2023) further applied this procedure to pruning LLMs. Torch-Pruning can be
applied to prune a wide range of neural networks, including image transformers, LLMs, CNNs, and
more, making it a popular toolkit for neural network pruning.

(a) Basic connection (b) Residual connection (c) Concatenation

෍

(d) Summation

concat

Figure 2: Common dependencies of parameters in neural networks.

Section 4.3 has described how the parameter dependency works in our approach, we explain it in
detail here. Using the same example Wa

·j and Wb
i·. Constructing the fine-tuning parameters Wb

f

leads to constructing the fine-tuning parameters Wa
f,dep with the corresponding Ma

dep becoming a
column selection matrix and the forward function of layer a becoming the following equation.

f(Ŵa,x) = f(Wa,x) + f(MaWa
f ,x) + f(Wa

f,depM
a
dep,x).

Note that in this example, the dependency is connection between the output feature (or channel) of b
and the input feature (or channel) of a, where Wa ∈ Rda

out×da
in ,Wb ∈ Rdb

out×db
in and dain = dbout.

C DETAILS OF DATASETS

C.1 VISION BENCHMARKS

CIFAR100: CIFAR100 (Krizhevsky et al., 2009) has 100 classes with 600 images of size 32x32
per class, while the CIFAR10 has 10 classes with 6000 images per class. In this study, we
use the CIFAR100 downloaded from huggingface (https://huggingface.co/datasets/
uoft-cs/cifar100) with 500 training images and 100 validation images per class. In our ex-
periments, we resize the images to 256x256, crop the center to 224x224, and normalize them using
the CIFAR mean (0.507, 0.487, 0.441) and standard deviation (0.267, 0.256, 0.276) for the three
channels.

16

https://huggingface.co/datasets/uoft-cs/cifar100
https://huggingface.co/datasets/uoft-cs/cifar100


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Tiny-ImageNet: Tiny-ImageNet (Tavanaei, 2020) has 200 classes with images of size 64x64, while
the full ImageNet-1k (Deng et al., 2009) has all 1000 classes where each image is the standard
size 224x224. In this study, we use the Tiny-ImageNet downloaded from huggingface (https://
huggingface.co/datasets/zh-plus/tiny-imagenet) with 500 training images and
50 validation images per class. In our experiments, we resize the images to 256x256, crop the
center to 224x224, and normalize them using the mean (0.485, 0.456, 0.406) and standard deviation
(0.229, 0.224, 0.225) for the three channels.

caltech101: Caltech101 (Li et al., 2022) consists of 101 classes, with images of varying sizes typi-
cally having edge lengths between 200 and 300 pixels. Each class contains approximately 40 to 800
images, resulting in a total of around 9,000 images. In this study, we use the Caltech101 dataset pro-
vided by PyTorch (https://pytorch.org/vision/main/generated/torchvision.
datasets.Caltech101.html), allocating 75% of the images for training and the remaining
25% for validation. In our experiments, we preprocess the images by resizing them to 256×256,
cropping the center to 224×224, and normalizing them using the mean (0.485, 0.456, 0.406) and
standard deviation (0.229, 0.224, 0.225) for the three channels.

C.2 GENERAL LANGUAGE UNDERSTANDING EVALUATION BENCHMARK (GLUE)

CoLA: The Corpus of Linguistic Acceptability (CoLA) is a dataset for assessing linguistic accept-
ability (Warstadt et al., 2018). This task is a binary classification for predicting whether a sentence
is grammatically acceptable. The dataset is primarily from books and journal articles on linguistic
theory.

MNLI: The Multi-Genre Natural Language Inference (MultiNLI) is a dataset designed to evaluate
a model’s ability to perform natural language inference (NLI). The task is to predict whether the
premise entails the hypothesis, contradicts the hypothesis, or neither. The data set contains 433k
sentence pairs annotated with textual entailment information (Williams et al., 2018).

MRPC: The Microsoft Research Paraphrase Corpus (Dolan & Brockett, 2005) is a dataset designed
for evaluating paraphrase detection systems. It consists of sentence pairs, with binary labels of
whether the two sentences in the pair are equivalent. The data are automatically extracted from online
news and labeled by humans.

QNLI: The Stanford Question Answering Dataset (SQuAD) is a dataset designed for machine
comprehension of text (Rajpurkar et al., 2016). The dataset consists of question-paragraph pairs,
where one of the sentences in the paragraph contains the answer to the corresponding question. The
paragraphs are from Wikipedia and the questions are written by human annotators.

QQP: The Quora Question Pairs (QQP) dataset is a dataset of question pairs (https://data.
quora.com/First-Quora-Dataset-Release-Question-Pairs). The task is to de-
termine whether two questions are semantically equivalent.

RTE: The Recognizing Textual Entailment (RTE) datasets are a series of challenges that evaluate
models’ ability to determine whether a premise can entail a given hypothesis (Dagan et al., 2006;
Bar-Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009). The data are constructed
based on the texts from Wikipedia and news. The datasets have been used to evaluate the performance
of both traditional language models and the state-of-the-art LLMs.

SST-2: The Stanford Sentiment Treebank is a dataset of sentences extracted from movie reviews
(Socher et al., 2013). Each sentence is labeled as either positive or negative. The task is to predict
whether the sentence is positive or negative.

STS-B: The Semantic Textual Similarity Benchmark (STSB) is a dataset with sentence pairs collected
from news headlines, video and image captions, and natural language inference data (Cer et al., 2017).
The task is to predict the semantic similarity between pairs of sentences. Each pair of sentences is
annotated with a similarity score ranging from 0 to 5, where 0 indicates no semantic similarity and 5
indicates semantically equivalent.

17

https://huggingface.co/datasets/zh-plus/tiny-imagenet
https://huggingface.co/datasets/zh-plus/tiny-imagenet
https://pytorch.org/vision/main/generated/torchvision.datasets.Caltech101.html
https://pytorch.org/vision/main/generated/torchvision.datasets.Caltech101.html
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C.3 TEXT-GENERATION DATASETS

Stanford Alpaca: Alpaca is an instruction dataset designed for instruction training of pre-trained
language models (Taori et al., 2023). It contains 52002 instruction-response pairs generated by
OpenAI’s text-davinci-003 engine or written by humans. Note that there is only a training split in
this dataset. Models fine-tuned on Alpaca are often evaluated by other tasks like “EleutherAI LM
Harness”.

ARC: The AI2 Reasoning Challenge (ARC) dataset consists of grade-school level, multiple-choice
science questions (Clark et al., 2018). ARC dataset includes a Challenge Set and an Easy Set. The
easy set contains questions that can be answered with straightforward reasoning, while the challenge
set requires deeper understanding and more reasoning skills. The ARC-Easy includes 2251 training
samples, 570 validation samples, and 2376 test samples and the ARC-Challenge includes 1119
training samples, 299 validation samples, and 1172 test samples.

BoolQ: Boolean Questions (BoolQ) is a dataset of yes/no question answering (Clark et al., 2019)
and includes 9427 training samples and 3270 validation samples. The dataset is designed to assess
models’ comprehension and reasoning abilities. Each example contains question, passage, answer,
and title.

HellaSwag: HellaSwag is a dataset designed to evaluate the models’ abilities in generating reasonable
contexts (Zellers et al., 2019). It consists of prompts with a short context followed by multiple possible
continuations. The goal is to find the correct or most plausible option. The training set, validation set,
and test set have 39905 samples, 10042 samples, 10003 samples, respectively.

OpenBookQA: OpenBookQA is a question-answering dataset (Mihaylov et al., 2018) comprising
4957 training samples, 500 validation samples, and 500 test samples. It requires reasoning ability
and a deeper understanding of common knowledge to answer questions. Each data contains a short
passage with multiple possible answers. The dataset emphasizes the integration of world knowledge
and reasoning skills, making it a challenging benchmark for natural language processing models. It
tests models’ abilities to understand and apply factual information effectively to solve problems.

WinoGrande: WinoGrande is a dataset of 44k problems for choosing the right option for a given
sentence (Sakaguchi et al., 2021). It includes 40,938 samples in the training set, 1,267 in the validation
set, and 1,267 in the test set. The dataset is designed to assess models’ commonsense reasoning
abilities. The examples contain sentences with fill-in-blanks that require the model to select the most
appropriate option to complete the sentence. We implement LoRA and DoRA by the Huggingface
PEFT10 library and apply RoSA11 by its official implementation.

D ABLATION STUDIES AND RELATED ANALYSIS

In this section, we first discuss the computational resource requirements for fine-tuning. Next, we
provide an ablation study on the impact of different rank settings for our approach and LoRA, as
shown in Table 8. Figure 3 illustrates the computation and cache requirements during backpropagation.
Finally, Table 9 demonstrates the advantages of freezing self-attention blocks to reduce memory
usage while maintaining performance, and Table 10 compares the performances with other PEFT
methods.

D.1 MEMORY MEASUREMENT

In this study, we detail the memory measurement methodology employed. The total memory
requirements can be categorized into three main components:

memTTL = memM + memFT + memAux,

where:

1. memTTL is the total memory consumed during training.
2. memM represents the memory consumed by the base model itself.

10https://huggingface.co/docs/peft/index
11https://github.com/IST-DASLab/peft-rosa

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

3. memFT corresponds to the memory required for the fine-tuning parameters and their gradi-
ents.

4. memAux accounts for any additional memory usage, including optimizer states, caching, and
other intermediate computations.

We yield memM by measuring the memory usage during inference on the training data using the pre-
trained model. The combined memory usage of memFT and memAux is calculated as the difference
between memTTL and memModel. For simplicity, we consistently report memFT + memAux as “mem”
in all comparisons presented in this study.

Llama2(7B) Llama3(8B)

FT setting #param memTTL memM mem #param memTTL memM mem

LoRA, r = 64 159.9M(2.37%) 53.33GB 29.87GB 23.46GB 167.8M(2.09%) 64.23GB 33.86GB 30.37GB
RoSA, r = 32, d = 1.2% 157.7M(2.34%) 74.52GB 29.87GB 44.65GB 167.6M(2.09%) >80GB 33.86GB >46.14GB
DoRA, r = 64 161.3M(2.39%) 74.67GB 29.87GB 44.80GB 169.1M(2.11%) >80GB 33.86GB >46.14GB
SPSFT, r = 128 145.8M(2.16%) 47.49GB 29.87GB 17.62GB 159.4M(1.98%) 58.35GB 33.86GB 24.49GB

FA-LoRA, r = 64 92.8M(1.38%) 47.12GB 29.87GB 17.25GB 113.2M(1.41%) 58.41GB 33.86GB 30.37GB
FA-RoSA, r = 32, d = 1.2% 98.3M(1.46%) 68.16GB 29.87GB 38.29GB 124.3M(1.55%) 76.09GB 33.86GB 42.23GB
FA-DoRA, r = 64 93.6M(1.39%) 60.44GB 29.87GB 30.57GB 114.3M(1.42%) >80GB 33.86GB >46.14GB
FA-SPSFT, r = 128 78.6M(1.17%) 45.08GB 29.87GB 15.21GB 92.3M(1.15%) 56.27GB 33.86GB 22.41GB

Table 7: The requirements of computation resources for fine-tuning. ‘mem’ traces memTTL − memM.
All fine-tuning parameters are stored in full precision. We also examined the training time and
observed that DoRA requires 50% to 100% more time than other methods, while LoRA, RoSA,
and our approach need similar training time (differing only by a few seconds). However, due to the
influence of various factors on training time and the difficulty of ensuring a fair comparison, we chose
not to include these results in our report.

D.2 RESOURCE REQUIREMENTS

Table 7 presents the resource requirements of various PEFT methods. We compare our approach
with LoRA and several of its variants that maintain or surpass LoRA’s performance. As shown,
our method is the most resource-efficient among these approaches. The subsequent ablation study
further demonstrates that our approach achieves performance comparable to LoRA. We exclude
comparisons with VeRA (Kopiczko et al., 2024), which proposes freezing a single pair of random
low-rank matrices shared across all layers. While VeRA achieves substantial memory savings, its
performance often deteriorates.

We note that while our approach offers significant memory efficiency, this benefit is less pronounced
in small-scale models, where the primary memory consumption arises from the dataset—especially
with large batch sizes. The main advantage of our method in these cases is the reduced FLOPs due to
fewer trainable parameters. Therefore, we do not highlight memory efficiency in small-scale model
scenarios.

D.3 RANK SETTINGS

We present an ablation study of rank settings here. Table 8 demonstrates that r = 16 is sufficient for
LoRA when fine-tuning Llama-2 and Llama-3. In contrast, increasing r for our approach yields slight
performance improvements. The most remarkable observation in Table 8 is the exceptional memory
efficiency of our approach: even with r = 128, the memory usage of our method is significantly
lower than that of LoRA with r = 16.

D.4 CACHE BENEFIT

Figure 3 illustrates the computation and cache requirements in backpropagation (Rumelhart et al.,
1986). For simplicity, we replace the notation f(·, ·) with different h. With the same number of
trainable parameters, our approach eliminates the need to cache h = Wfx shown in the figure.
While this benefit is negligible under lower rank settings (r) or when the number of fine-tuning layers
is small, it becomes significant as the model size and rank settings increase. Although the caching
requirement for h can be addressed by recomputing h = Ax during backpropagation, this would

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Model, ft setting mem #param ARC-c ARC-e BoolQ HS OBQA rte WG Avg

Llama2(7B), LoRA, r = 16 21.64GB 40.0M(0.59%) 44.71 76.89 77.49 57.94 32.2 60.65 68.75 59.80
Llama2(7B), SPSFT, r = 32 15.57GB 36.4M(0.54%) 43.00 76.43 77.80 57.06 31.4 63.18 69.14 59.72

Llama2(7B), LoRA, r = 32 22.21GB 80.0M(1.19%) 44.28 76.89 77.37 57.61 32.0 64.62 69.14 60.27
Llama2(7B), SPSFT, r = 64 16.20GB 72.9M(1.08%) 43.26 76.30 77.83 57.13 32.2 63.18 69.22 59.87

Llama2(7B), LoRA, r = 64 23.46GB 159.9M(2.37%) 44.97 77.02 77.43 57.75 32.0 62.09 68.75 60.00
Llama2(7B), SPSFT, r = 128 17.62GB 145.8M(2.16%) 43.60 76.26 77.77 57.16 32.6 63.54 69.30 60.03

Llama2(7B), FA-LoRA, r = 16 16.29GB 23.2M(0.34%) 44.54 77.36 77.83 57.39 30.8 67.15 68.82 60.56
Llama2(7B), FA-SPSFT, r = 32 14.16GB 19.7M(0.29%) 73.17 76.30 77.55 57.14 31.2 63.18 69.38 59.70

Llama2(7B), FA-LoRA, r = 32 16.56GB 46.4M(0.69%) 44.03 77.48 77.61 57.40 30.4 65.70 68.98 60.23
Llama2(7B), FA-SPSFT, r = 64 14.48GB 39.3M(0.58%) 43.17 76.26 77.65 57.17 31.4 63.18 69.22 59.72

Llama2(7B), FA-LoRA, r = 64 17.25GB 92.8M(1.38%) 43.77 77.57 77.74 57.45 31.0 66.06 69.06 60.38
Llama2(7B), FA-SPSFT, r = 128 15.21GB 78.6M(1.17%) 43.00 76.22 77.83 57.11 31.2 63.54 69.38 59.75

Llama3(8B), LoRA, r = 16 28.86GB 41.9M(0.52%) 53.50 81.44 82.35 60.61 34.2 69.31 73.56 65.00
Llama3(8B), SPSFT, r = 32 22.62GB 39.8M(0.50%) 50.26 80.09 81.10 60.21 34.4 70.40 72.93 64.20

Llama3(8B), LoRA, r = 32 29.37GB 83.9M(1.04%) 53.33 81.86 82.20 60.65 34.0 68.23 73.72 64.85
Llama3(8B), SPSFT, r = 64 23.23GB 79.7M(0.99%) 51.96 80.01 81.31 60.18 34.6 70.04 72.85 64.42

Llama3(8B), LoRA, r = 64 30.37GB 167.8M(2.09%) 53.07 81.40 82.32 60.67 34.2 69.68 73.56 64.98
Llama3(8B), SPSFT, r = 128 24.49GB 159.4M(1.98%) 52.47 80.05 81.28 60.17 34.6 70.04 72.61 64.46

Llama3(8B), FA-LoRA, r = 16 23.54GB 28.3M(0.35%) 51.45 81.48 82.17 60.17 34.4 68.95 73.48 64.59
Llama3(8B), FA-SPSFT, r = 32 21.24GB 23.1M(0.29%) 50.26 80.09 81.19 60.22 34.2 69.68 73.01 64.09

Llama3(8B), FA-LoRA, r = 32 23.89GB 56.6M(0.71%) 52.22 81.61 82.35 60.26 35.0 69.68 73.80 64.99
Llama3(8B), FA-SPSFT, r = 64 21.62GB 46.1M(0.57%) 50.26 79.97 81.22 60.20 34.2 69.68 73.01 64.07

Llama3(8B), FA-LoRA, r = 64 24.55GB 113.2M(1.41%) 52.47 81.36 82.23 60.17 35.0 70.04 73.56 64.98
Llama3(8B), FA-SPSFT, r = 128 22.41GB 92.3M(1.15%) 52.13 80.05 81.35 60.20 34.2 69.31 72.85 64.30

Table 8: Fine-tuning Llama on Alpaca dataset for 5 epochs and evaluating on 7 tasks from EleutherAI
LM Harness. ‘mem’ is the memory usage, see Appendix D.1. #param is the number of trainable
parameters, where the difference of #param between the two approaches depends on the architecture
of Llama, as some layers have din ̸= dout. Note that 10 million trainable parameters only account
for less than 0.15GB of memory requirement. FA indicates that we only fine-tune the MLP layers
followed by attention blocks. HS, OBQA, and WG represent HellaSwag, OpenBookQA, and
WinoGrande datasets. All reported results are accuracies.

𝐱

W𝐱 A𝐱

B𝐡

𝐡right = BA𝐱

Cache ∇right= Τ𝜕L 𝜕𝐡right

𝐡left + 𝐡right

𝐡left = W𝐱

Next layer

Cache 𝐡out = 𝐡left + 𝐡right

Cache 𝐡 = A𝐱

Τ𝜕𝐿 𝜕B = ∇right𝐡

𝐱

W𝐱 W𝑓𝐱

M𝐡

𝐡right = MW𝑓𝐱

No cache ∇right

𝐡left + 𝐡right

𝐡left = W𝐱

Next layer

Cache 𝐡out = 𝐡left + 𝐡right

No cache 𝐡 = W𝑓𝐱

LoRA Our approach

Cache 𝐱 Cache 𝐱

Fix M 

Figure 3: The illustration of backpropagation highlights the operations involved. Black operations
occur during the forward pass, while orange operations take place during the backward pass. Blue
operations highlight the benefits of our approach. Notably, since M is non-trainable, caching Wfx
during the forward pass is unnecessary, leading to significant memory savings. Additionally, in
practice, PyTorch caches ∂L

∂hright
to efficiently compute ∂L

∂B . This caching is not strictly required for
backpropagation.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

result in increased time complexity during training. As shown in Table 8, the memory savings range
from 1GB to 5GB for various settings of Llama2-7B and Llama3-8B. For much larger models, such
as Llama3-405B, this benefit scales proportionally and can be approximately 50 times greater.

We note that additional caches are present in practice. For instance, LoRA includes a dropout layer
before computing Ax, which requires extra memory to store the dropout mask. Another example
is PyTorch caching ∂L

∂hright
to efficiently compute ∂L

∂B . While this caching is not strictly required,
it is employed to optimize implementation and computation efficiency. Consequently, the actual
memory-saving advantage of freezing M is even greater than the reduction in the necessary cache
storage, further emphasizing the benefits of our approach.

D.5 BENEFIT OF FREEZING ATTENTION BLOCKS

Model, ft setting mem #param ARC-c ARC-e BoolQ HS OBQA rte WG Avg

Llama2(7B), LoRA, r = 16 21.64GB 40.0M(0.59%) 44.71 76.89 77.49 57.94 32.2 60.65 68.75 59.80
Llama2(7B), FA-LoRA, r = 32 16.56GB 46.4M(0.69%) 44.03 77.48 77.61 57.40 30.4 65.70 68.98 60.23

Llama2(7B), LoRA, r = 32 22.21GB 80.0M(1.19%) 44.28 76.89 77.37 57.61 32.0 64.62 69.14 60.27
Llama2(7B), FA-LoRA, r = 64 17.25GB 92.8M(1.38%) 43.77 77.57 77.74 57.45 31.0 66.06 69.06 60.38

Llama2(7B), SPSFT, r = 32 15.57GB 36.4M(0.54%) 43.00 76.43 77.80 57.06 31.4 63.18 69.14 59.72
Llama2(7B), FA-SPSFT, r = 64 14.48GB 39.3M(0.58%) 43.17 76.26 77.65 57.17 31.4 63.18 69.22 59.72

Llama2(7B), SPSFT, r = 64 16.20GB 72.9M(1.08%) 43.26 76.30 77.83 57.13 32.2 63.18 69.22 59.87
Llama2(7B), FA-SPSFT, r = 128 15.21GB 78.6M(1.17%) 43.00 76.22 77.83 57.11 31.2 63.54 69.38 59.75

Llama3(8B), LoRA, r = 16 28.86GB 41.9M(0.52%) 53.50 81.44 82.35 60.61 34.2 69.31 73.56 65.00
Llama3(8B), FA-LoRA, r = 32 23.89GB 56.6M(0.71%) 52.22 81.61 82.35 60.26 35.0 69.68 73.80 64.99

Llama3(8B), LoRA, r = 32 29.37GB 83.9M(1.04%) 53.33 81.86 82.20 60.65 34.0 68.23 73.72 64.85
Llama3(8B), FA-LoRA, r = 64 24.55GB 113.2M(1.41%) 52.47 81.36 82.23 60.17 35.0 70.04 73.56 64.98

Llama3(8B), SPSFT, r = 32 22.62GB 39.8M(0.50%) 50.26 80.09 81.10 60.21 34.4 70.40 72.93 64.20
Llama3(8B), FA-SPSFT, r = 64 21.62GB 46.1M(0.57%) 50.26 79.97 81.22 60.20 34.2 69.68 73.01 64.07

Llama3(8B), SPSFT, r = 64 23.23GB 79.7M(0.99%) 51.96 80.01 81.31 60.18 34.6 70.04 72.85 64.42
Llama3(8B), FA-SPSFT, r = 128 22.41GB 92.3M(1.15%) 52.13 80.05 81.35 60.20 34.2 69.31 72.85 64.30

Table 9: Same results of Table 8. This table is for comparing fine-tuning all linear layers with
fine-tuning only the MLP layers.

We now assess different fine-tuning strategies. Table 9 highlights the importance of selecting fine-
tuning layers strategically to minimize redundant memory usage. Freezing the self-attention blocks
achieves performance comparable to fine-tuning all layers while significantly reducing memory
consumption during training. This efficiency stems from reducing the need to cache intermediate
outputs for gradient computation. For example, as illustrated in Figure 3, using LoRA, ∇out must
be cached to compute ∂L

∂A for the subsequent layer. Freezing the next layer eliminates this caching
requirement, further optimizing memory usage.

Model, ft setting mem #param ARC-c ARC-e BoolQ HS OBQA rte WG Avg

Llama2(7B)

LoRA, r = 64 23.46GB 159.9M(2.37%) 44.97 77.02 77.43 57.75 32.0 62.09 68.75 60.00
RoSA, r = 32, d = 1.2% 39.55GB 157.7M(2.34%) 43.86 77.48 77.86 57.42 32.2 63.90 69.06 60.25
SPSFT, r = 128 17.62GB 145.8M(2.16%) 43.60 76.26 77.77 57.16 32.6 63.54 69.30 60.03

FA-LoRA, r = 64 17.25GB 92.8M(1.38%) 43.77 77.57 77.74 57.45 31.0 66.06 69.06 60.38
FA-RoSA, r = 32, d = 1.2% 35.50GB 98.3M(1.46%) 44.28 77.02 77.68 57.22 31.0 64.26 69.22 60.10
FA-SPSFT, r = 128 15.21GB 78.6M(1.17%) 43.00 76.22 77.83 57.11 31.2 63.54 69.38 59.75

Llama3(8B)

LoRA, r = 64 30.37GB 167.8M(2.09%) 53.07 81.40 82.32 60.67 34.2 69.68 73.56 64.98
RoSA, r = 32, d = 1.2% 42.91GB 167.6M(2.09%) 51.28 81.27 81.80 60.18 34.4 69.31 73.16 64.49
SPSFT, r = 128 24.49GB 159.4M(1.98%) 52.47 80.05 81.28 60.17 34.6 70.04 72.61 64.46

FA-LoRA, r = 64 24.55GB 113.2M(1.41%) 52.47 81.36 82.23 60.17 35.0 70.04 73.56 64.98
FA-RoSA, r = 32, d = 1.2% 39.01GB 124.3M(1.55%) 52.22 81.19 82.05 60.11 34.4 69.31 73.16 64.63
FA-SPSFT, r = 128 22.41GB 92.3M(1.15%) 52.13 80.05 81.35 60.20 34.2 69.31 72.85 64.30

Table 10: Comparison with RoSA. While we use full precision for our approach and LoRA, we apply
mixed precision training with bfloat16 for RoSA’s parameters due to memory limitations. Note that
the performance of RoSA with full precision on Llama2, Llama2-FA, and Llama3-FA is similar to its
performance with mixed precision training.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

D.6 ADDITIONAL COMPARISONS

The results in Table 10 compare our approach with other PEFT methods. While the accuracies of
these approaches are similar, there are significant differences in memory efficiency. Our approach
consistently achieves the best memory savings, demonstrating its advantage in resource-constrained
fine-tuning scenarios.

22


	Introduction
	Our Contributions

	Background and Related Work
	Our Method
	Proposed Method
	Importance Metric

	Experimental Setup
	Datasets
	Models and Baselines
	Training Details

	Results and Discussion
	Hyperparameter Settings
	Importance Score and Parameter Dependency
	Main Results of LLM
	Memory Efficiency

	Conclusions and Future Work
	Importance Metrics
	Parameter Dependency
	Details of Datasets
	Vision Benchmarks
	General Language Understanding Evaluation Benchmark (GLUE)
	Text-Generation Datasets

	Ablation Studies and Related Analysis
	Memory Measurement
	Resource Requirements
	Rank Settings
	Cache Benefit
	Benefit of Freezing Attention Blocks
	Additional Comparisons


