Under review as a conference paper at ICLR 2025

Overview of Appendices

* Appendix [A: Posterior Sampling via Autoregressive Generation (PS-AR) Algorithm

* Appendix B} Extension to the Contextual Setting

Appendix |C} Finite vs Infinite Population Formulations and Thompson Sampling Variants
* Appendix [D: Theoretical Results
* Appendix [E: Experiment Details

* Appendix [F; When is an Autoregressive Sequence Model a Valid Posterior

A POSTERIOR SAMPLING VIA AUTOREGRESSIVE GENERATION (PS-AR)
ALGORITHM

We present pseudo-code for the pre-training phase of our algorithm (Algorithm [2).

Algorithm 2 Pretraining an autoregressive model

Require: Training data D", model class {pg}gco, batch size b
1: while not converged do

2: Sample a minibatch D = {Z(®), R }aeA where A C AM | Al = b
3: For each a € A, sample outcomes W1th replacement:

. iid. 1
BB, B {29, RO Y60

)

Above, £ 377 o) denotes the empirical distribution of Rgan

=1 R(
Define bootstrap-resampled minibatch D « {Z(®) R1 T}ae A
Compute loss ¢(pg; D) as defined in equation
Backpropagate and take a gradient step to update 6

end while

return py

AN A

Practical Considerations for the Pre-Training Step (Algorithm 2)

e In Algorithm 2| line 3, instead of bootstrapping sequences of length 7', for practical purposes
we sometimes bootstrap samples sequences of length Tt,,;, < 7' if training to length 7' is very
computationally expensive (we do this for our news recommendation experiments).

+ While above we assume that D' has sequences all of the same length 7, in practice, this may
not always be the case. Let n(® refer to the number of observations for article a € A", In
this case, we can easily replace n with n(*) in line 3 of Algorithm equation(we do this for our
news recommendation experiments).

Practical Considerations for the Online Step (Algorithm [T)

* As in Section[6] for practical purposes, we may generate m outcomes rather than imputing all
unobserved outcomes in [1 : T'] to save computation. Specifically, replace lines 4-9 in Algorithm
with Algorithm [3]below.

15

Under review as a conference paper at ICLR 2025

Algorithm 3 Truncated Autoregressive Posterior Generation

Require: Autoregressive generative model pg, timestep ¢, generation length m, action information
Z(@), previous rewards (Rga) 2 i ¢ M(@) for that action
: fort' =1,2,...mdo
Sample (impute) missing reward: R\ ~ po(- | 2@, (RZ(.Q) i g M<a>),R§?,2,_1)
end for .
. Form imputed average reward using m generated outcomes: ﬂﬁ“) D Rifl)

bl

A.1 EMPIRICAL COMPARISONS OF PS-AR VARIANTS

Examining Full Imputation vs Truncated Generation (Figure [7) We empirically compare PS-
AR (Algorithm[I), i.e., “full imputation”, with the computationally cheaper version of PS-AR that
truncates generation to a maximum of length of m (Algorithm [1| with lines 4-7 replaced with Algo-
rithm [3). We find that both versions of PS-AR perform well in practice and that the original PS-AR
(Algorithm (1)) and the m-truncated version (with m = 500) have similar performance.

40

N w
o o

Cumulative Regret

[
o

0 200 400 600 800 1000
Decision Times

—f— PS-AR Flexible NN (Text), fixed generation length (m=500)
-]+ PS-AR Flexible NN (Text), full imputation
PS-AR Flexible NN (Category), fixed generation length (m=500)
PS-AR Flexible NN (Category), full imputation

Figure 7: Full imputation vs. truncated generation of future rewards. Error bars are £1 s.e.
averaged over 500 runs.

Specifically in Figure [7| we compare both versions of PS-AR on a news recommendation setting.
In our experimental setup, use two versions of the pretrained autoregressive sequence model py:
FLEXIBLE NN (TEXT) and FLEXIBLE NN (CATEGORY) (see Appendix [E.4]for more details). We
run both versions of PS-AR with each of these two pp models. We use 7' = 1000, |A™Y| = 10, and
the truncated version of PS-AR uses m = 500. We follow the procedure described Appendix in
forming the regret plots: we run 500 repetitions of each bandit algorithm and in each repetition we
draw a new set of 10 actions/articles from the validation set to represent a “new task”.

Examining Truncating Generation Length (Figure[8) We examine the performance of our PS-
AR algorithm for different generation truncation lengths mn (Algorithm|[I|with lines 4-7 replaced with
Algorithm [3). Throughout all our previous experiments we use m = 500. In Figure 8] we examine
the impact of varying m on the regret of the PS-AR with the FLEXIBLE NN (TEXT) sequence model
in the news recommendation setting. We follow the procedure described Appendix in forming
the regret plots: we run 500 repetitions of each bandit algorithm and in each repetition we draw a
new set of 10 actions/articles from the validation set to represent a “new task”. We find that that
increasing m reduces the regret of the algorithm; however, when m is sufficiently large, the benefit
of increasing m further is negligible.

16

Under review as a conference paper at ICLR 2025

200

=
[
o

Cumulative Regret
=
o
o

w
o

0 200 400 600 800 1000
Decision Times

Figure 8: Examining Truncating Generation Length (].4"¥| = 10). Error bars are £1 s.e. aver-
aged over 500 runs.

B EXTENSION TO THE CONTEXTUAL SETTING

In this section we discuss a preliminary approach to extend our algorithm to the setting with context
features. In the news recommendation setting, the context features would represent user features.

Data Generating Process. In this setting, article features Z(*) are drawn independently from P
over a € A"V, Independently of that, user contexts X, are discrete and drawn i.i.d. from an

unknown distribution Py, i.e., X1, Xo,..., X7 i Px . Then,
R | 29, (Xp, ROV, Xomp* (4 | 29, (X, R)iy, Xa). (6)
Moreover, p* is such that for any z and any permutation o over {1,...,T},

(X0, B, (X, BEY) [(29 = 2) 2 (Ko, RS-0 (Xomy, RS (29 = 2),

where above we use 2 to denote equality in distribution.

The historical dataset follows the same data generating process. For shorthand, we use
(X, Y @), = ((Xy, Rga)), ey (X, R%a))) to denote sequences of tuples. We denote the train-
ing set D"t = {Z(@) (X, Y(“))lm} (for some n < T'). Foreach a € A", we assume (X, Y (%),

is a completely at random subset of the tuples (X Y(“))LT where X1, Xo,..., Xp i Px and
Rga% are sampled according to equation

Phase 1: Pretraining an auto-regressive model. We train a sequence model analogously to Al-
gorithm 2] however replace the training loss equation [2 with the following loss:

Upo; D™ =) [_Zlogpe (Rga)|Z(“)7(X7Y(a))1:t—1’Xt(a)>]' "

ac Ahist t=1
In the contextual case, transformers are a natural choice for the sequence model architecture for py.

17

Under review as a conference paper at ICLR 2025

Algorithm 4 Pretraining an autoregressive model with Context

Require: Training data D"*', model class {pp }oco, batch size b
1: while not converged do
2: Sample a minibatch D = {Z(® (X, YV (®);., },c4 where A C AMS, |A| = b
3: For each a € A, sample outcomes with replacement:

@ a id, 1
(X1, Y4), (X VA7), (K Y3) {2, (Y @)1} K 23700 oy
=1

Above, %L S (X0 R denotes the empirical distribution of (X, Y (®).,,.

Define bootstrap-resampled minibatch D < {Z(a)7 (X, Z(a))lzT}aeA
Compute loss £(pg; D) using equation [7]
Backpropagate and take a gradient step to update 6

end while

return py

AN AN

Phase 2: Online decision-making via autoregressive generation Online decision-making with
the pre-trained py sequence model can be made using Algorithm |5 below. Similar to the version
without context, it generates missing outcomes.

Algorithm 5 Posterior Sampling via Autoregressive Generation (PS-AR) with Context

Require: Autoregressive generative model pg, actions A™Y with {Z(®)} ¢ grew

1: Initialize list of missing entries M(®) « [1,...,T] for each a € A"Y

2: fort=1,...,T do

3: Observe user context X; and set z < X;

4: for a € A"V do

5: forr € M@ do)

6: Impute reward: R(Ta) ~ pg(- | Z() (XZ-, RE“))ing, (Xz-, Rga))ieM(a))

7: end for .

8: Form average: ﬂ§“) — m{ > rgn@ RW Lx, =0 + 2 e R lx,—z}

9: end for

10: Select action A; <— argmax,c e {[LEG)} (break ties deterministically)
11: Remove ¢ from the list of missing entries M (A¢)

12: Observe reward R; < REA‘) from action A;.

13: end for

C FINITE VS INFINITE POPULATION FORMULATIONS AND THOMPSON
SAMPLING VARIANTS

This section discusses the intimate connections between (large) finite-population formulations that
were discussed in the main body of the paper and infinite-population formulations that are more
common in the Bayesian bandit literature. We do this in the special case of the Bayesian mixture
model from equation|[I}

We emphasize that from our perspective, the main advantages or disadvantages of the finite
population view are conceptual. In terms of advantages: (1) the definitions do not require any
explicit assumptions around mixture modeling or latent variables. and (2) The finite nature of the
problem lets us visualize the procedure as in Figure [3} without abstract reference to limits across
infinite sequences.

C.1 REVIEW OF THOMPSON SAMPLING IN INFINITE POPULATIONS, WITH MIXTURE MODELS.

Thompson sampling is most often defined for a Bayesian mixture model, e.g., as in equation
Following that example, we consider in the subsection the canonical example of exchangeable se-

18

Under review as a conference paper at ICLR 2025

quences: a mixture model wherein the outcomes are i.i.d conditioned on a latent variable U(*). That
is, p* (Rﬁ‘”, ey R,g“) | 2@y = [T, R(a) | 2@ U@ = 4)P(U® = u)du. The unknown
latent variable represents the decision- maker s uncertalnty about an action’s performance.

The literature typically defines the “true arm means” as

pl) = /r - P(r| 2@ U@)ar.

The subscript highlights that this has the interpretation of a long-run average reward across an infinite
population of users (or infinite set of rounds). By the law of large numbers (applied conditional on
(2@, U@), one has

b :%;H;;Zf*ff-

The true best arm is defined as
A*, € arg max p()
aeAncw

Randomness in the latent parameters (U(*)) means ué‘é) and A% are random variables whose real-
izations are uncertain even given the history H;_;. Thompson sampling selects an action by proba-
bility matching on A’ _, defined by the property

P(A; =a | Hi1) =P(AL =a | Hi—1) foralla € A™Y. (8)

Per-period Bayesian regret over 7" periods is defined as
(A)
TZ@t)

C.2 THOMPSON SAMPLING IN FINITE POPULATIONS

©))

As in the body of our paper, one can define the true mean of a finite population as

L\~ p@
=) R’
t=1
The true best arm for this finite population is defined as
A% € arg max "
a€Arev

As in Lemma [2| Thompson sampling selects an action by probability matching on the (finite-
population) optimal action A%., defined by the property

P(A; =a | Hi—1) =P(Ar =a | Hi—1) foralla € A™Y. (10)

Per-period Bayesian regret over 7" periods is defined as

1 (A7) plad)
T;(Rt - R")

It is not hard to show that equation [T1]is a more stringent notion of regret than in equation 9} since

% Zle RﬁA*T) > T Zt 1 R(A*) by definition of A’%.. Both definitions are widely used, with the
more stringent finite- populatlon version being more common in the adversarial bandit literature; see
Lattimore and Szepesvari|(2019).

(1)

C.3 THE GAP BETWEEN FINITE AND INFINITE POPULATION FORMULATIONS IS SMALL

We analyze the gap between the two formulations in the case of a mixture model. Let U™V =
U@ :q e A%} and recall 2™V = {Z(@) : ¢ € A™"}. By a sub-Gaussian maximal inequalit
y quality

new
} —F {IE [max M,
a€ Arev T

) _ (@)

K (@ — Ng:l)

E pl ps

max
agAre

‘ Znew’unew:|:| g

19

Under review as a conference paper at ICLR 2025

To justify the last inequality, note that since the function R takes values in [0, 1], R§“> — ug’é) is

subgaussian with variance proxy 1, conditional on Z"*¥ U/"*" (by Hoeffing’s Lemma). Since it is
the average of independent sub-Gaussian random variables, ,u(o‘é) — ,ug?)is subgaussian with variance
proxy %, conditional on Z"V {/"°V. The last step follows then from applying the subgaussian

maximal inequality, conditional on Z"% /"YW,

It follows easily that the infinite population optimum A} is near optimal for finite populations:

@ _ 4] oo [2108(A])
R T

Analogously, the finite population optimum is near-optimal in infinite populations:

51 2log(|A™¥])
0<E @ _ 20 <9 :
< | g 10 —l7)] < T
Supported by this theory, we do not focus on the distinction between A%, and A7 in our develop-
ments.

0<E

C.4 SIMILAR INSIGHTS IN EMPIRICAL RESULTS

Some empirical insight can also be gleaned from Figure [7]in Appndix [C| The implementation that
performs full imputation can be interpreted as Thompson sampling for a finite population. The
implementation that performs forward generation of fixed-length m does not include past observed
rewards in the average. For very large m, it is a direct approximation to infinite-horizon Thompson
sampling. We can see in Figure[7]the these implementations have very similar performance.

D THEORETICAL RESULTS

D.1 THE MEAN ") APPROAHCES () FOR LARGE 7.

Proposition 2 (Forming a Posterior Sample via Autoregressive Generation). Under the Bayesian
mixture model example from equation[I}

UD ~PU@ e .| Z@) then, R, .. RW|UW L PR e. | U@, z@)
The following holds for i = £ Z;‘ll Ri“) and i@ = [1. P(Ria) =7 | U@, Z(@)dyr:

P (lim p{ = p@ U@, Z(“)> =1 with probability 1.
T— 00

Proof. By equation [I| conditional on U(®) Z(@) the generated rewards Rga), ceey Ré?) are i.id.

Also note that RE‘” € [0, 1] based on our problem setup. Thus, by the Strong Law of Large numbers
for i.i.d. random variables, conditional on almost any draw of U(a), Z ("), we have that

T
im L (a) _ (@)
P(%;H;OT;*% =

U@, Z(“)> =1 with probability 1.

D.2 To MINIMIZE LOSS py NEEDS TO APPROXIMATE p*

The next lemma is a standard result connecting the excess expected loss of a sequence model py to
its KL divergence from the true sequence model p*. Recall the expected loss of a sequence model
pg is denoted £(py), defined in equation To (nearly) minimize loss, py the learner needs to closely
approximate the true sequence model p*.

Lemma 1. For any sequence model py,

Upo) = ") + Bz, [Dicu (0" (B, BE | 29) | o (R, REY | 26))]

20

Under review as a conference paper at ICLR 2025

Proof. By the definition of the expected loss in equation |3} and the chain rule of KL divergence:
ln(po) — Ln(p”)

S o (R | zw,er_l)] 5

t=1

=K

—> logp* (R | Z(a)»Rg?t)—l)]

t=1
= KL(Pp (R”,..., R | 2@)) | Py (R, ..., RS | Z())
= Egtrep, [KL(Pp (R, R [Z0) || By, (R, RE) | 2))].

The final equality is the definition of the KL divergence between conditional distributions. O

D.3 FORMALLY INTERPRETING PS-AR AS THOMPSON (POSTERIOR) SAMPLING

This subsection reveals that the generated/imputed action means faithfully represent uncertainty
and that PS-AR is akin to Thompson sampling (a.k.a. posterior sampling), which selects actions
proportionally to the probability that they are optimal. Specifically, Lemma 2] formally shows that
the imputed mean ﬂﬁ‘” from PS-AR is a posterior sample of the mean reward (%), and the action
A, selected by PS-AR is a posterior sample of the optimal action A*, where

T
1
(@) . = (a) L (a)
W= R and A" :=argmax {u'“ }, (12)
T ; t aeAnew { }

with ties in the argmax broken by the same rule as in Algorithm [l A* is the benchmark
action against which regret is evaluated in equation For simplicity, Lemma [2| is stated
under the assumption that PS-AR uses the optimal sequence model p*. We use H; :=
({Z @} geamen , A1, Ry, ..., Ay, Ry) to denote the history up to time ¢.

Lemma 2. Under Assumption [} for Algorithm |I| applied with py = p*, for all a € A", with
probability 1,

P(af” =

Hio1) =P(u' = | Hi1) and P(Ay=a|Hio1) =Py, (A" =a| Hio1).

Lemma [2] has a concise proof (below). Both the population mean and the best action are functions

of the table of the potential outcomes {Rg‘f%}ae Anev. Sampling missing rewards from their posterior
distribution ensures that functions of the imputed table also follow the posterior distribution. One
difference with usual presentations is that (%) averages over a very large, but finite population of
users (or rounds). We do not view this as a practically significant detail. The generalization of
Lemmal2to the setting in which pg # p* is in Appendix|D.6.2.

Proof. At decision time ¢, suppose in the history H;_, a particular action ¢ € A" we have not
observed (missing) rewards from users M(*) C {1,2,...,¢ — 1}. For the function f({R;}~,) =
T-'S°7_ | Ry, one has

p@ = fRWY)) and ™ = R ig M@ ie 1t -1} U{RYW 1ie M@}).

where {RZ(.Q) -7 € M@} are drawn according to Algorithmapplied with sequence model pg = p*.
The result that @

P = | Hir) =Py, (0™ = | Hio1)
follows immediately since {Rga) i ¢ M@ i€ [l:t— 1]} are non-random conditioned on H;_,

and IP’({RE&) ti € M@} = | Hyq) =]P’({Rga) 1t € M@} = . | H,_y) with probability 1.
The proof of the analogous result for A* is identical. O

D.4 PROOF OF THEOREM/[I]

Theorem Let O™V = {Z (@), Rga%}a c Arew denote the potential outcomes table. Independent of
O™V, let £ ~ Uniform|0, 1]. Under Assumption for real-valued functions f of O™Y and &,

Ep- [(O™, €)] =Ep, [£ (0™,6)] | < V/(JA™]/2) {£ps) — £(p*)} -

Real Distribution Simulated Distribution Penalty for sub-optimal simulator

sup
Fillflle<1

21

Under review as a conference paper at ICLR 2025

Proof. Note that

sup {Ep* [£ (O™, €)] —Ep, [£ (O™, 8)] }
Fillfllee <1

1
< \/2KL(P;D* (Onew7£) || P;ne (Onewaf))

~~
(¢

=

#
/

i)

| —

=

KL(Pp- (€) | Py, (€)) +;KL((O [€) || Py, (O™ | €))
0

]P)p* (Onew) ||]P)Pe (Onew))

<H

—~

\A“ewl (), R(®) (@), R
— _ KL(]PP* (Z 7R1:T) ||]P)Pe (Z ’R1:T>)
(iv

Anew a p p
, Lol \/KL H Py, (Z(®)) +KL(Py- (R | Z@) || By, (R | Z(@))

5,\/ 21 {oto) — %))
(vi)

* (i) holds by Fact 9 in (Russo and Van Roy, |[2016) (which uses Pinsker’s inequality).
* (ii) holds the chain rule for Kullback Liebler Divergence.

* (iii) holds because £ is and O"" are independent.

* (iv) and (vi) hold again because the (Z(%), Rga%) are i.i.d. across a € A™Y and the chain
rule for Kullback Liebler Divergence.

* (vi) holds by LemmalT]

O
D.5 BOUNDING THE DEPLOYMENT REGRET IN TERMS OF REGRET ON A SIMULATOR
Proposition 3. For any policy ,
A(mp?) < Almpe) +V(A™/2) {€ps) — £(p*)} - (13)

Deployment regret ~ Regret under simulator Penalty for sub-optimal simulator

Formally, any policy 7 can be expressed a function that maps a history #;_; and an exogenous
random seed £ to an action as

A = m(Hi-1,8). (14)
The random seed allows for algorithmic randomness in action selection and is assumed to be inde-

pendent of the draws of article features and potential outcomes (Z (@), Rga%) A Anew .

The essence of the proof is to recognize that one could write a simulator that first randomly drew the
environment “sample path” (Z(®), Rga%)ae anew and the algorithm seed £, and then implemented a
completely deterministic sequence of operations to calculate the regret an algorithm incurs with that
sample path and seed. Mathematically, the simulator is a function, (written as g(-) in the proof). We
can view mis-specification of the sequence model as mis-specifying the distribution of the sample
path draws used in the the simulator. We use information-theoretic tools to bound the impact this
distributional change on the inputs to the simulator can have on the distribution of outputs of the

simulator (e.g. regret).

22

Under review as a conference paper at ICLR 2025

Proof. This proof will show that for any policy 7,

A(m;p*) < A(mipg) + \/
Note for any policy 7, by the triangle inequality,
A(mp*) < [A(m;p") — Almspe)| + |A(m; po)]

The remainder of the proof will focus on bounding the first term above. Let O"% := {Z (@), Rga% :
a € A“"‘W} denote a draw of all article features and potential outcomes.

| new|

{€(pe) — £(p*)}-

The absolute difference in regret can be written as
|A(m;p0) — A(m; p7)]

—E

Po,T

lem) 1w

= [Ep-[g (O™, €) | = Ey, [9 (0™,)],
where g is is a function that determines the algorithm’s regret as a function of the potential
outcomes and the external seed ¢ that used to induce randomness in action actions. That is,

g({Z, R} r©) = 2L R R,

Finally, since g is such that ||g]l < 1, since R; € [0,1] with probability 1 by assumption, by
Theorem [Tl we have that

By [0(0™,6)] <y, [o0°.9)] < |/ 122

|Anw

o) —£(p*)}

D.6 PROOF OF PROPOSITION([I]
D.6.1 A USEFUL DEFINITION

Under our data generating process p* is exchangeable. To prove Proposition 1| we want to view pos-
terior sampling by auto-regressive sampling (Algorithm [I)) as a proper implementation of Thomp-
son sampling, with approximation coming solely from the incorrect use of a sequence model pg.
To make this rigorous, we need to define a slightly different order in which potential outcomes are
reveled to accommodate non-exchangeable py models.

Definition 1 (An alternative outcome revelation order). A (possibly non-exhangeable) sequence
model py introduces an alternative way of revealing potential outcomes. Recall, independently for

each arm a € A™Y, nature samples arm features Z'® ~ Py then it samples Rga% | Z(@) ~ py(- |

Z(“)). If arm A; = a is selected at time t and this is the k™ time that arm is chosen, then R,(CA*) is

revealed. We use R; + R,(CA") and H; = ({Z D} geamen , A, Ri,..., Ay Rt)

We note that this data generating process is simply specifying the order in which outcomes from the
sequence model are revealed to the decision-maker. Namely, we view R§“> as the potential outcome
of the t*® play of arm a whereas the main body of the paper views R as the potential outcome
for the t*" user/period. Under an exchangeable sequence models, order is irrelevant and the two
data generating processes are mathematically equivalent. Note that defining the Rysis a proof
technique (specifically to show Proposition [I), and not part of the model of the problem.

It will also be useful to note an alternative definition of regret under this alternative approach to
revealing potential outcomes:

A(m;p) = Ep ~ Lrenjrﬁ { ZR(Q)} _ = Z Rt} (15)

Note that since p* is an exchangeable sequence model, A(m,p*) = A(w,p*) for any policy .
Defining A is soley to accomodate non-exchangeable sequence models.

23

Under review as a conference paper at ICLR 2025

D.6.2 A HELPFUL LEMMA

Our proof of Proposition [I] relies on a generalization of Lemma 2] that describes precisely how Al-
gorithm I]is exactly Thompson Sampling (i.e., probability matching) when py is not exchangeable.

Lemma 3. Under Algorithm|[I]applied with py,
]p((a) _ y Ht 1) =P, (N(a) = 7:[:&—1) (16)
and for all a € A™Y,
P(Ar =a|Hi1) =Pp (A" =a| Hia). (17)
Proof. We use the notation of Definition |1| Let Nt(a) = Z’;:l 1(A; = a) denote the number of
times arm a was played up to and including period ¢. Then, the observation at time ¢ is
- A,
R« RY 5 /oy
For the function f({R;}7_,) =T~ S."_, R;, one has

a a)\T ~(a a a a a
W= f(R7YL) ad = PR R JU{RG, R

where (R(()a>, LRy ~ po(- | 2@ R(az)v(; 1) represent the generated outcomes drawn ac-
cording to Algorlthml applied with sequence model pg. Property equatlon. 16|follows immediately
since {R1 sy RE\(:<)“L1} are non-random conditioned on the history #,_; and

]P’((R(“()a) e BY) = | Fua) = P((RY,,, .. RSY) = - | Hyo1) with probability 1. The
proof of equation [T7)is identical. ' O

D.6.3 MAIN PROOF OF PROPOSITION[I]

Proposition Under Assumption for PS-AR (Algorithm applied with py (denoted mps_ar (o)),

Anewl Anew Anew
Amsn(poli) < 2B A))

Regret bound for Thompson sampling Penalty for sub-optimal prediction

In light of Theorem [I] the following proof of Proposition [I] is largely review of an information-
theoretic analysis of Thompson sampling due to |[Russo and Van Roy| (2016). It was observed by
Bubeck et al.| (2015)); Bubeck and Eldan| (2016)) that this analysis applied without modification to
analyze regret with respect to the best fixed action (A*) even in nonstationary environments (e.g.
non-exchangeable models py as in Definition)

Proof. This proof will show that for any sequence model py,

N Anew 1 Anew Anew

Aoz <y A T0EIAD L JA) gy,

Note that by Theorem I} we can show that
:) < 200+ 2T () — £
A(WPS-AR(Z’G),P) < A(WPS-AR(pQ)vpb’) + {€(pe) — L(p*)}. (18)

Specifically the argument to show equation|18|above is equivalent to that used to prove Proposition
all that needs to be done is to replace all A’s with A’s and replace all R;’s with R,’s in the proof.

Note that since p* is an exchangeable model by Assumption [1| for any permutation o over T ele-
ments,

.,RW¥

p*(Rga)7...7R£a) | 2) :p*(R((Ta) ey | 2)

Under review as a conference paper at ICLR 2025

The above implies that the average regret achieved by a policy 7 under the two different approaches
of revealing potential outcomes are equivalent, i.e.,

T T
~) 1 @\ _ 1Sz
A(WPS—AR (p9)7 D) = Ep*yﬂ'ps,AR(pB) [aréljsgw {T ; Rt } - f ; Rt:|

T T
1 @) _ 1 p*
—E 2 (T} g] = et

~— P")Trs-ar (po)
(2)

Equality (i) above since by Assumption Rga)7 Rga), e Rg?) are exchangeable conditional on
Z(@); thus changing the order with which rewards are revealed (as described in Definition |1) does
not change the expected value. Thus, combined with equation |18| we have that

A(mps-ar(pe); p*) < A(WPS-AR(p9)§p9) + \/'A;ew| {€(pe) — L(p*)}.

All that remains is to bound A (7ps.ar (Po); pe).

Bounding A (7ps_ar (po); po). We bound A (7ps.ar(po); po) by combining the probability match-
ing result of Lemma 2] with Thompson sampling regret bound techniques from Russo and Van Roy
(2016). By the proof of Proposition 1 of [Russo and Van Roy|(2016) (which is general and applies to
all algorithms),

1 « 1 -
Bt | 235 {7 5 8 |~ 5 20

t=1

] /BT

log(JA"v]) - T
- T
where H,,(A* | 2™¥) < log(].A"™"|) refers to the conditional Shannon entropy of A* given

ZmeW .= (Z(®)),c 4w = z under the data generating process defined by py, and T is a constant
upper bound on the “information ratio” such that

~(A*) - 2
I' > max {(E[Rt {{t]) } w.p. 1,
te[l: T It(A*; (Ath))

w.p. 1

Above we use R,EA*) — RE\?(;)*) where Nt(“) := Y!_, 1(A; = a) denotes the number of times

arm a was played up to and including period ¢. Above we use E;[-] := Epe 1o ooy | ”;f[t_l] to
denote that expectations are conditioned on the history and I; (A*; (A, Rt)) to denote the mutual
information between A* and (A, Rt) conditional evaluated under a base measure (p*, 7ps_ar (Pg))
that conditions on H;_;. (Recall that the history also includes the information in Z"*").

The proof of Proposition 5 of [Russo and Van Roy|(2016) shows that one can choose I" < | A™Y|/2
w.p. 1. As observed in|Bubeck et al. (2015)); Bubeck and Eldan (2016)), this proof relies only on the
probability matching property in LemmaE] and hence applies in our setting.

Combining our results implies

T T
1 @\ _ 157 log(JA"V) - [AmY|
Epr mps ar(po) [afgjffw {T tz::l R; } T ; Rt’Znew:| < \/ - wop. 1,

so the result follows by the law of iterated expectations. O

25

Under review as a conference paper at ICLR 2025

E EXPERIMENT DETAILS

In this appendix we discuss synthetic experiments in Section news article recommendation
experiments in Section [E.4] and bandit algorithms in Section [E.5]

E.1 SYNTHETIC EXPERIMENTS: MIXTURE BETA-BERNOULLI

Data Generating Process In this setting, we use article attributes be Z(@) = (Z{*), Z{V) ¢ R2
where Z\, Z{® "% Uniform(0,0.25). We sample R\%). by first sampling 1'% € [0, 1] from a
mixture:

@) | 2@ Beta(252{") + 1, 25(1 — Z{")) +1) w.p. 1/2
> Beta(25(1 — Z3”) + 1, 2525 +1) wp. 1/2

j.i.d. .
Then, outcomes are sampled as Rga), ce Rgl) \ /L((;), AQRES Bernoulh(ugé)).
Here, ugé) corresponds to the success rate in the data generating process, in contrast to x(*) in
the main text of the paper, which corresponds to the mean (or success rate) in the finite-sample

population of size T'. Note that 1(*) converges to ug‘é) as T' goes to infinity.

Training and Validation Datasets The training and validation datasets contain 2500 and 1000
articles each, respectively. During training (Algorithm [2), we use Tiin = 500. Hyperparameters
and early stopping epochs are chosen using the validation dataset.

Additional Model and Training details

e FLEXIBLE NN. This model implements the autoregressive model as a neural network that takes

as input the action/article attribute Z(*) (a vector in R?) and summary statistics of observations
for this action, and outputs a value (probability) in [0, 1]. The summary statistic we use is simple
because outcomes Rﬁ‘” are binary; specifically it consistes of a tuple with the mean of outcomes
from action a, and the reciprocal of 1 plus the total number of outcome observations for action
a,ie. (gt oy Rela,—ar Try)» where N(@ = 37074 14— (In practice, we found
that repeating the summary tuple input 10 improved performance, so the model took as input
vectors in R?? which consisted of a 2-dimensional Z(*) and 10 copies of the sufficient statistic
tuple). Note that this entire py could alternatively be implemented as a transformer.
The MLP we use has three linear layers, each of width 50. After the first and second linear
layers, we apply a ReLU activation. After the last linear layer, we apply a sigmoid function, so
that the output is in (0,1). The models are trained for 1000 epochs with learning rate 0.001,
batch size 500, and weight decay 0.01 using the AdamW optimizer.

* BETA-BERNOULLI NN. This is a sequential model that is the (closed-form) posterior predictive
for a Beta-Bernoulli. The prior parameters for the Beta distribution, cg(Z(®)) and B (Z(®), are
each parameterized by separate neural network MLP models that take in Z(®).

The MLPs we use has three linear layers, each of width 50. After the first and second linear
layers, we apply ReLU activations. After the last linear layer, we also apply a ReLU activation,
so that the final output is in [0, c0). We initialize weights so that the bias term for both ay(Z(®)
and By(Z (“)) to 1, so that we avoid starting with Beta parameters of value 0, as Beta parameters

need to be positive. The models are trained for 1000 epochs with learning rate 0.001, batch size
500, and weight decay 0.01 using the AdamW optimizer.

Additional Details on Figure|5| In our uncertainty quantification plots Figure 5] (right), we eval-

uate over all 1000 actions in the validation set. We form 250 samples of ﬂﬁ“) for each action in
the validation set using Algorithm [3| with m = 500. To generate posterior samples for BETA-
BERNOULLI NN, we use the closed-form posterior (i.e., m = 00).

In our regret plots Figure [5| (left), we run 500 runs. In each run we randomly choose |A™Y| = 10
actions randomly with replacement from the validation set, and all algorithms are evaluated on these

26

Under review as a conference paper at ICLR 2025

same sampled actions in each run. Regret is calculated relative to u((;é) from the data generating

process.

E.2 ALTERNATIVE SAMPLING METHODS GIVEN A SEQUENCE MODEL

In Figure {f] we displayed regret for the setting in Section but where we use different ways to
sample py that are not from our proposed method. Here is a brief comparison:

* Generate full reward sequence (PS-AR): this is our method. In it, for each arm, we use py
to generate a sequence of missing rewards, take the mean of the rewards for each arm, and
choose the arm with the largest mean reward value.

* Generate one reward: instead of generating a sequence of missing rewards, only generate
one. Choose the arm with the largest reward (breaking ties randomly).

» Generate many rewards, but not sequentially: like the previous, except that for each arm,
we generate one reward, but repeat this process many times. We do this 500 times for this
particular experiment.

* Greedy: our implementation of this generative model for sampling sequences of rewards
can output the probability that the next reward is 1. This is similar to the previous sampling
method.

The alternative sampling methods tend to do worse than our proposed method, especially for longer
horizons, as the other sampling methods are not approximating posterior inference for the mean
reward for each arm.

E.3 RECOVERING THE TRUE PRIOR VIA PRETRAINING (EMPIRICAL BAYES)

We discussed connections between our pretraining procedure and empirical Bayes from Section
Here, we demonstrate in practice an setting where we perform “empirical Bayes” using our
pretraining procedure (Algorithm[2)). We find that we recover the true prior fairly well.

Data Generation We use a synthetic Beta-Binomial data generating process. We consider one-

dimensional action features Z(@) “4" Uniform(0, 1). We then sample ;(*) from a Beta distribution,
where

| 2@ ~Beta(Z - 54+1, (1-2@).541). (19)
Then, R | p(®) Z(®) ~ Bernoulli(1(*)). We use a training dataset of size 25,000 actions and a

validation set of size 10,000 actions; both datasets have observation sequences of length n = 500.

Autoregressive model We use py which matches the posterior predictive of a Beta-Bernoulli
model described above. Specifically, we use the following sequence model:

Z@) Lyt R®
R(a) _ R(a) _ 049(i=1"" .
po(Ri%y | Ri%) ag(Z@) + B(Z(@) + ¢t

(20)

To accomodate Z(®) features, we parameterize the prior hyperparameters: ay(Z(®), By(Z(®) (we
follow the procedure described in Appendix [E.I|for BETA-BERNOULLI NN). The neural network
model architecture used in o (Z(®), Bp(Z(*)) and the training procedure are also the same as de-
scribed for BETA-BERNOULLI NN in Appendix (except that the MLP widths are 100).

Recovering the Prior: Figure |9 We show in Figure |9 that through our pretraining procedure
Algorithm [2| with our particular choice of pyp model class, that we (approximately) recover the true
prior. We show this by comparing means and standard deviations of samples from our learned prior
(using pg) vs. the true prior (according to the data generating process), for different draws of Z(®).
In the scatter plots, each point corresponds to one Z(®).

Specifically, in these plots we use 100 actions sampled uniformly from the validation set. For each

of these 100 actions we form 10, 000 samples of ,15“) using Algorithm [3|using our learned py model.

27

Under review as a conference paper at ICLR 2025

We also form 10, 000 samples from the true data generating prior equation 19| for each of the 100
actions. Then for each action, we compute the mean and standard deviations of the samples on the

“prior” samples u) from pg; we also compute the mean and standard deviations of the samples
from the true prior. We then plot these in a scatter plot; for each action, we have the prior mean ac-
cording to py vs the prior mean according to the data generating process—this forms one point on the
scatter plot. A similar procedure is plotted on the right. There, instead of computing the mean of the

prior samples, we compute a measure of the spread of the prior samples: let ﬂgaf, ﬂgag . ,15‘?0000

be the prior samples. Let ug = 210000) Then we compute the mean absolute deviation

70000
210000 (“) /jg 9| for this set of prior samples.

10000

Prior width

Prior mean (mean absolute deviation)
0.8 Vs ﬂ
P 0.14 O
‘ R
. £
5 ¢ 5 0.13 ¥y
206 / 2 B
a 4 o +¥s
o 4 2012 ol
[o = +. 4
g o4 ‘ g gl
. -~ 5
° / O o011 s
4 Val
: Y
02 ',, 0.10

0.2 0.4 0.6

Learned Prior

0.8 0.10 0.12

Learned Prior

0.14

Figure 9: Comparing oracle prior vs prior learned through our method (empirical bayes) in a
synthetic setting. Error bars represent £1 standard error; the error bars on the left plot are present
but small enough to not be visible.

E.4 NEWS RECOMMENDATION EXPERIMENT DETAILS

Additional data details The training and validation datasets contain 9122 and 2280 distinct ac-
tions/articles each, respectively. During training, we use Tiin = 500 As in Appendix hyperpa-
rameters and early stopping epochs are chosen using the validation dataset.

We now discuss the news data preprocessing process. This dataset is free to download for
research purposes at https://msnews.github.io/. It is under a Microsoft Research License at
https://github.com/msnews/MIND/blob/master/MSR %20License_Data.pdf, which we comply with.
The terms of use are at https://www.microsoft.com/en-us/legal/terms-of-use.

Our preprocessing procedure is as follows:

1. Collect all articles from the MIND “large” dataset (training split only) (Wu et al., 2020).
2. Remove any article with fewer than 100 total impressions.

3. Normalize the success probabilities to be centered around 0.5 in a way that preserves the ranking
of 11{*). We do this transformation to speed up the learning procedure (since it requires more data
to learn small true Bernoulli success probabilities accurately). We leave simulations without this
transformation to future work.

Our transformation procedures as follows: Let ,ugl), ..., g " be the original empirical success
probabilities (average click rate). We use A to denote all articles in the MIND large dataset. The

new success probabilities are defined as follows for each a € A:

(1A

1fu € {0, 1}

(a)
(a) 0
logit™* (logit(,uéa)) - ﬂo) otherwise

Moo

Above, fig £ ﬁ Yoaea logit(péa,)) and logit(z) = log 7%-. See F1gure|2|f0r comparison of
the success probabilities (click rates) before and after the transformatlon.

4. Randomly select 20% of the remaining articles to be in the validation set; the rest are in the
training set.

28

https://msnews.github.io/
https://github.com/msnews/MIND/blob/master/MSR%20License_Data.pdf
https://www.microsoft.com/en-us/legal/terms-of-use

Under review as a conference paper at ICLR 2025

207 B Original click rates
Transformed click rates

15

10 A

T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 10: Original and transformed click rates. Note the spike at O for transformed click rates: only
click rates that were not O or 1 are transformed.

Additional model details

e FLEXIBLE NN (TEXT). This model very similar to the FLEXIBLE NN model in Appendix
with the exception that in place of a two-dimensional Z(®), the MLP head of the neural network
from before is fed as input a DistilBERT (Sanh et al., |2019) embedding of text data Z (a),

Also, the MLP linear layers have width 100 instead of 50, and the sufficient statistics are repated
100 times instead of 10 times. All other architecture details are the same.

The model is trained for 500 epochs with learning rate 1e-5 on MLP heads, le-8 on the Distil-
BERT weights, batch size 500, and weight decay 0.01 using the AdamW optimizer.

* BETA-BERNOULLI NN (TEXT). This is very similar to the Beta-Bernoulli posterior predictive
sequence model in Appendix with the exception that in place of a two-dimensional Z(%),
the MLP head of the neural network from before is fed as input a DistilBERT (Sanh et al., 2019)
embedding of text data Z(*). On top of the one DistilBERT embedding are two separate MLP
heads for a(Z(®)) and 3(Z(®)), which are trained together. Also, the MLP linear layers have
width 100 instead of 50, and the sufficient statistics are repated 100 times instead of 10 times.
All other architecture details are the same.

The model is trained for 500 epochs with learning rate le-5 on MLP heads, le-8 on the Distil-
BERT weights, batch size 500, and weight decay 0.01 using the AdamW optimizer.

e FLEXIBLE NN (CATEGORY). This is very similar to the flexible neural network model in Ap-
pendix but it uses a one-hot new category vector for Z(® instead of a two-dimensional Z(®).
The model architecture and training parameters are also the same.

¢ DistilBERT. Our two text models use DistilBERT (Sanh et al.,
2019) from https://huggingtace.co/distilbert/distilbert-base-uncased. It
has an apache-2.0 license, with license and terms of use at
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md|

Additional Details on Figure|6| In our uncertainty quantification plots Figure [6| (right), we eval-
uate over all 2280 articles/actions in the validation set. For our FLEXIBLE NN py model, we form

250 samples of ﬂga) for each action in the validation set using Algorithm [3|with m = 500. For our
BETA-BERNOULLI NN py model we use samples from the closed-form posterior.

In our regret plots Figure E] (left), we run 500 runs. In each run we randomly choose |A™Y| = 10
actions randomly with replacement from the validation set, and all algorithms are evaluated on these

same sampled actions in each run. Regret is calculated relative to ,fo?) as described above.

Ensemble We describe the ensembling approach used in the uncertainty quantification plots in
Figure [6] (right). To construct ensembles, we first train a DistilBERT model with an MLP head
(MLP width 100, 3 layers, batch size 100, 500 epochs, learning rate le-5 on the head and le-8 on
DistilBERT, weight decay 0.01, AdamW optimizer) to predict Rﬁ‘”, using action/article features
A (a)(headlines). Then, we freeze the DistilBERT weights, and train 50 MLP heads from scratch
with random initialization and bootstrapped training data to create the ensemble (50 epochs, fixed
DistilBERT embedding; other params the same as before). We include a “randomized prior” variant

29

https://huggingface.co/distilbert/distilbert-base-uncased
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md

Under review as a conference paper at ICLR 2025

that initializes each neural network model in the ensemble in a particular way to encourage diversity
Osband et al. (2018)).

E.5 BANDIT ALGORITHMS

We compare our method with several baseline bandit methods.

PS Beta Bernoulli (Uniform Prior) We model success rate MS;? and potential outcomes Rﬁ“)

using a conjgate Beta-Bernoulli model:

1Y) ~ Beta(a, 3) @D
R, R |) M Bemoulli(u(®) 22

In our experiments, we use Beta-Bernoulli with a uniform prior, so « = 8 = 1. Note that unlike the
BETA-BERNOULLI NN, the prior here does not depend on action attributes Z ().

Online decision-making uses Thompson sampling, as described in in Algorithm [6]

Algorithm 6 Beta-Bernoulli Posterior (Thompson) Sampling

1: Inputs: Prior hyperparameters «, 3.
2: Set priors (ol B3 « (o, B), Va € A™Y
3: fort=1,...,Tdo
4: for a € A"V do
Sample 4(*) ~ Beta(o{”), 8{))
end for
Select action A; < arg max,e anv { 2(? }
Observe outcome R; from action A;.

PR

(@™ + Lp,=1, B, + Lg,—0) ifAi=a

9: Update posterior (a!4?), g4}
p P (t By) (agi)l, t(g)1> otherwise

10: end for

PS Neural Linear We implement a very simple variant of “neural linear” as in |[Riquelme et al.
(2018);|Snoek et al.|(2015). Here, we model each arm reward as a Gaussian-Gaussian model. We fit
the prior mean using item features Z(%), but set a shared prior variance across articles. Specifically,

4@~ N (g(zw)’gz)
RO, RO N (40,2)

First we address the choice of ¢, 02, s2, which are chosen during pre-training, and then the bandit
evaluation, which is standard Thompson sampling with a Gaussian-Gaussian model. We address
these one at a time.

Parameters

1. First, g is obtained by training a model to predict ;(*) from just Z(*) (no history of past
rewards), using the training set. For synthetic experiments, for g, we used a neural network
with almost the same architecture as for the autoregressive model we use for this dataset.
However, the model only takes Z(*) (and not previous rewards for a). We use all of the
same hyperparameters as we did to train the autoregressive model for this dataset. For news
datasets, we trained a DistilBERT model with a MLP on top that takes the embedded article
headlines Z(*) as input (and not previous rewards for a). We use the same hyperparameters
as we did to train the autoregressive model for this dataset, except for learning rates, which
were chosen to be the best out of several (for synthetic, 1e-2; for news setting, le-5 for both
the MLP head and the DistilBERT weights).

2. 02,52 were chosen to be reasonable values, which in our experiments were 0.25 for s
(which corresponds to maximum variance of a Bernoulli), and 1 for o2,

30

Under review as a conference paper at ICLR 2025

Bandit evaluation To obtain the posterior of ;(%) | (Rﬁ‘”)ig M where (Rz(a))ig M@ denotes
observed rewards for arm a, we use a standard Gaussian-Gaussian posterior with known variances:

P (M(a) €| (Rga))ieM(a)) ~ N (f1,57)
where

= ¥
o2 52 o2 s

g (Z(a)> sum ((R,Ea))ing) < 1 N #{z’ ¢M(“)}>_l 2
S+ = s

and

o2 s

id M@\ !
&2:<1+#{¢2M }) '

Arms are chosen via Thompson sampling (Russo et al., 2020).

UCB For UCB we use the multi-arm bandit algorithm described in Section 6 of |Abbasi-Yadkori
et al. (2011). We set the failure probability 6 = 0.1 and use sub-Gaussian parameter 0.5 (since we
have binary rewards).

SquareCB In these experiments, we use the flexible neural network py with text attributes, but
instead of using Thompson sampling, we use SquareCB (Foster and Rakhlin, 2020), which is a
bandit algorithm that uses a regression oracle to predict the value of each action. Note that our
setting differs from the setting of SquareCB (Foster and Rakhlin}, 2020), as SquareCB assumes that
the prediction model for action value is being learned online, while our prediction model has been
pretrained on historical data and is not learned online.

200
9]
g‘m 1501 —F— PS-AR Flexible Neural Net, Text
o SquareCB gamma0=10 rho=0.25
E 100 1 --]+- squareCB gamma0=100 rho=0.25
2 --J-- SquareCB gamma0=10 rho=0.5
g 50 --{-- SquareCB gamma0=100 rho=0.5
O

0,

0 500 1000 1500
Decision Times

Figure 11: Regret comparison on news dataset for SquareCB and posterior sampling, both using the
flexible neural network sequence model using text attributes in @

For setting the learning rate v in SquareCB (Foster and Rakhlin, 2020), we follow [Foster et al.
(2020) and consider a time-varying learning rate v; = ~ot®, where 7o € {10,100} (a subset of
those suggested in [Foster et al. (2020)), and p € {0.25,0.5} are hyperparameters. While some hy-
perparameter combinations for SquareCB perform almost as well PS-AR FLEXIBLE NN (TEXT),
we remark that there is no principled approach to choosing the learning rate provided in existing
works (besides grid search by deploying the algorithm many times).

E.6 COMPARISON TO DECISION PRE-TRAINED TRANSFORMERS (DPT)

DPT (Lee et al., 2023b) trains a sequence model to predict the best action (mimicking an ex-
pert/optimal policy), given the current state and recent interactions within an environment (the “in-
context dataset”). This sequence model is trained across states and recent interactions and tasks.

Relationship between DPT and PS-AR Both methods are ways to use generative sequence mod-
els for decision making. Both also have theoretical results showing that they are equivalent to
Thompson (posterior) sampling, under certain sets of assumptions. However, there are a few key
differences between DPT and PS-AR:

31

Under review as a conference paper at ICLR 2025

* PS-AR predicts sequences of future rewards, while DPT predicts next (optimal) action.

* Atdecision-time, PS-AR needs to generate a sequence of rewards, which could be relatively
costly, while DPT only needs to generate one action.

* DPT requires an optimal or expert policy (can be approximate) to mimic in pretraining,
while PS-AR does not explicitly require such an expert policy.

* DPT’s training objective is only to identify the best action, and not to model the distribu-
tion of rewards for each action. DPT sequence models are effectively trained to predict
rank information, while PS-AR sequence models are trained to predict future rewards. It’s
possible that training to predict rank information gives the model less signal to learn from,
which might make training less efficient.

Additionally, one potentially interesting research direction is to investigate whether it may be fruitful
to combine DPT and PS-AR: for example, PS-AR can be used for generating in-context datasets for
DPT to train on. As another example, in our experiment below, we show that in our bandit setting,
DPT and PS-AR can use almost identical model architectures, and it is possible that pre-training on
one task can result in useful features for the other task.

Experiment details for implementing DPT. In order to make the most fair comparisons between
DPT and PS-AR, we design the model architecture and training for our implementation of DPT
to be as similar as possible to those used for PS-AR, while retaining the core aspects of DPT (e.g.
predicting and learning to predict the optimal next action). We also directly import how DPT samples
in-context datasets for pre-training from the paper and associated code.

We use a sequence model architecture that is almost identical to the corresponding sequence models
used in the news recommendation experiment setting. While our proposed model outputs a probabil-
ity for the next reward being a 1, given action features and previous rewards (“in-context dataset™)
for a given action, for DPT we use the same model, minus the sigmoid at the end, to produce a
real number. In the DPT sequence model, each arm has a copy of it’s own sequence model, and a
softmax is applied at the end to form a probability distribution over the set of candidate actions.

For training, we bootstrap data in the following way, that mirrors the procedure used in DPT. At
every iteration, we load a random batch of arms and their corresponding sequences of rewards. This
batch (size 5000 for the synthetic setting) is split into multiple bandit environments, each with 10
arms. Then, we use DPT’s method for generating in-context datasets for their bandit setting, where
actions are sampled according to a mixture of a Dirichlet and a point mass (Section 4 of (Lee et al.;
2023b))). These actions are sampled for a random number of history steps that is drawn uniformly
from [0, 499]. This in-context dataset is then used as input to the sequence model, which will output
probabilities across arms. The desired output is the true best arm, and the loss is cross-entropy loss.
This procedure uses the same data loader as PS-AR, with modifications to match the DPT objective.
Model selection is done using loss on the validation set.

We train these for 2500 epochs. The model hyperparameters are the same as for PS-AR, with the
exception of learning rate, which is 1e-3 for synthetic (the best out of le-1,1e-2,1e-3,1e-4).

32

Under review as a conference paper at ICLR 2025

20

= -
o «

Cumulative Regret

o

/

0 100 200 300 400 500
Decision Times

—}— PS-AR Flexible NN DPT

Figure 12: Regret for DPT vs PS-AR on the synthetic setting (Section

Figure 13: Preliminary bandit regret comparisons between DPT (Lee et al., [2023b)) and PS-AR on
the synthetic setting (Section|6.1)

Experiment results DPT performs fairly similarly to our proposed method PS-AR. Both methods
have been theoretically shown to approximate Thompson sampling with a learned prior under re-
spective assumptions. Note that DPT does not provide regret bound results if their sequence model
is misspecified.

F WHEN IS AN AUTOREGRESSIVE SEQUENCE MODEL A VALID POSTERIOR
PREDICTIVE?

In Algorithm [2] we learn an autoregressive model to use in place of a posterior predictive in Algo-
rithm [We make this connection in Section] and establish a regret bound for Algorithm [I] that
holds whenever pgy has low loss.

In this section, we address the following question: When is pg a valid posterior predictive, for some
underlying Bayesian model?

In order for an autoregressive generative sequence model to be a valid posterior predictive distribu-
tion, the sequence model to be infinitely exchangeable. We say that a sequence model is an infinitely
exchangeable sequence model if it generates infinitely exchangeable random variables (Definition
2).

Definition 2 (Exchangeablity). A sequence of random variables Y1,Yo,...,Y, is exchangeable if
for any permutation m, the following are equal in distribution:

D
(}/17 Yéa B YTL) = (Yw(1)7Y7r(2)a) Yﬂ'(n))
An infinite sequence of random variables is infinitely exchangeable if any finite subset is exchange-
able.

Practically, this means that the models we train need to be invariant to the order in which previous
outcomes are fed into the model. The key insight behind why infinitely exchangeable sequence
models are valid posterior predictives is De Finetti’s Representation Theorem (Theorem [2| below).
We state this Theorem for binary outcomes for simplicity (De Finettil [1929; [Heath and Sudderth|
1976)), but it generalizes to real-valued outcomes (De Finetti, |1937).

Theorem 2 (De Finetti’s Representation Theorem for Binary Outcomes). If a sequence of binary
random variables {Y;};cn is infinitely exchangeable, then there exists a unique distribution P(u)
on [0, 1) such that for some p ~ P(u €),

7

Yl7 1/2a YE))? e | H ZNd BCI‘I‘IOUHI(/},)

The implication of Theorem [2|is that any infinitely exchangeable sequence of binary random vari-
ables {Y;};en can equivalently be described as being generated by a particular Bayesian model
with a Bernoulli likelihood. Above, 1 is a latent success probability that is drawn from some prior
distribution P(p €).

33

	Introduction
	Problem formulation
	Posterior Sampling via Autoregressive Generation
	Key Insights: Connecting Sequence Modelling and Bayesian Inference
	Our Algorithm: Posterior Sampling via Autoregressive Generation
	Interpreting our Pre-Training Procedure as Empirical Bayes

	Regret Bound
	Related Work
	Experiments
	Synthetic Setting: Mixture Beta-Bernoulli
	News Recommendation Setting

	Discussion
	Posterior Sampling via Autoregressive Generation (PS-AR) Algorithm
	Empirical Comparisons of PS-AR Variants

	Extension to the Contextual Setting
	Finite vs Infinite Population Formulations and Thompson Sampling Variants
	Review of Thompson sampling in infinite populations, with mixture models.
	Thompson sampling in finite populations
	The gap between finite and infinite population formulations is small
	Similar Insights in Empirical Results

	Theoretical Results
	The Mean T(a) Approahces (a) for Large T.
	To Minimize Loss p needs to Approximate p*
	Formally Interpreting PS-AR as Thompson (Posterior) Sampling
	Proof of Theorem 1
	Bounding the Deployment Regret in Terms of Regret on a Simulator
	Proof of Proposition 1
	A Useful Definition
	A Helpful Lemma
	Main Proof of Proposition 1

	Experiment Details
	Synthetic Experiments: Mixture Beta-Bernoulli
	Alternative sampling methods given a sequence model
	Recovering the True Prior via Pretraining (Empirical Bayes)
	News Recommendation Experiment Details
	Bandit Algorithms
	Comparison to Decision Pre-Trained Transformers (DPT)

	When is an Autoregressive Sequence Model a Valid Posterior Predictive?

