
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Overview of Appendices

• Appendix A: Posterior Sampling via Autoregressive Generation (PS-AR) Algorithm

• Appendix B: Extension to the Contextual Setting

• Appendix C: Finite vs Infinite Population Formulations and Thompson Sampling Variants

• Appendix D: Theoretical Results

• Appendix E: Experiment Details

• Appendix F: When is an Autoregressive Sequence Model a Valid Posterior

A POSTERIOR SAMPLING VIA AUTOREGRESSIVE GENERATION (PS-AR)
ALGORITHM

We present pseudo-code for the pre-training phase of our algorithm (Algorithm 2).

Algorithm 2 Pretraining an autoregressive model

Require: Training data D
hist, model class {p✓}✓2⇥, batch size b

1: while not converged do
2: Sample a minibatch D = {Z(a), R(a)

1:n}a2A where A ⇢ A
hist, |A| = b

3: For each a 2 A, sample outcomes with replacement:

R(a)
1 , R(a)

2 , . . . R(a)
T | {Z(a), R(a)

1:n}
i.i.d.
⇠

1

n

nX

i=1

�
R

(a)
i

Above, 1
n

Pn
i=1 �R(a)

i

denotes the empirical distribution of R(a)
1:n

4: Define bootstrap-resampled minibatch D {Z(a), R(a)
1:T }a2A

5: Compute loss `(p✓;D) as defined in equation 2
6: Backpropagate and take a gradient step to update ✓
7: end while
8: return p✓

Practical Considerations for the Pre-Training Step (Algorithm 2)

• In Algorithm 2 line 3, instead of bootstrapping sequences of length T , for practical purposes
we sometimes bootstrap samples sequences of length Ttrain < T if training to length T is very
computationally expensive (we do this for our news recommendation experiments).

• While above we assume that Dhist has sequences all of the same length n, in practice, this may
not always be the case. Let n(a) refer to the number of observations for article a 2 A

hist. In
this case, we can easily replace n with n(a) in line 3 of Algorithm equation 2 (we do this for our
news recommendation experiments).

Practical Considerations for the Online Step (Algorithm 1)

• As in Section 6, for practical purposes, we may generate m outcomes rather than imputing all
unobserved outcomes in [1 : T] to save computation. Specifically, replace lines 4-9 in Algorithm
1 with Algorithm 3 below.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 3 Truncated Autoregressive Posterior Generation
Require: Autoregressive generative model p✓, timestep t, generation length m, action information

Z(a), previous rewards (R(a)
i : i 62M (a)) for that action

1: for t0 = 1, 2, . . .m do
2: Sample (impute) missing reward: R̂(a)

t0 ⇠ p✓
�
· | Z(a) ,

�
R(a)

i : i 62M (a)
�
, R̂(a)

1:t0�1

�

3: end for
4: Form imputed average reward using m generated outcomes: µ̂(a)

t
Pm

t0=1 R̂
(a)
t0

A.1 EMPIRICAL COMPARISONS OF PS-AR VARIANTS

Examining Full Imputation vs Truncated Generation (Figure 7) We empirically compare PS-
AR (Algorithm 1), i.e., “full imputation”, with the computationally cheaper version of PS-AR that
truncates generation to a maximum of length of m (Algorithm 1 with lines 4-7 replaced with Algo-
rithm 3). We find that both versions of PS-AR perform well in practice and that the original PS-AR
(Algorithm 1) and the m-truncated version (with m = 500) have similar performance.

Figure 7: Full imputation vs. truncated generation of future rewards. Error bars are ±1 s.e.
averaged over 500 runs.

Specifically in Figure 7 we compare both versions of PS-AR on a news recommendation setting.
In our experimental setup, use two versions of the pretrained autoregressive sequence model p✓:
FLEXIBLE NN (TEXT) and FLEXIBLE NN (CATEGORY) (see Appendix E.4 for more details). We
run both versions of PS-AR with each of these two p✓ models. We use T = 1000, |Anew

| = 10, and
the truncated version of PS-AR uses m = 500. We follow the procedure described Appendix E.4 in
forming the regret plots: we run 500 repetitions of each bandit algorithm and in each repetition we
draw a new set of 10 actions/articles from the validation set to represent a “new task”.

Examining Truncating Generation Length (Figure 8) We examine the performance of our PS-
AR algorithm for different generation truncation lengths m (Algorithm 1 with lines 4-7 replaced with
Algorithm 3). Throughout all our previous experiments we use m = 500. In Figure 8, we examine
the impact of varying m on the regret of the PS-AR with the FLEXIBLE NN (TEXT) sequence model
in the news recommendation setting. We follow the procedure described Appendix E.4 in forming
the regret plots: we run 500 repetitions of each bandit algorithm and in each repetition we draw a
new set of 10 actions/articles from the validation set to represent a “new task”. We find that that
increasing m reduces the regret of the algorithm; however, when m is sufficiently large, the benefit
of increasing m further is negligible.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 8: Examining Truncating Generation Length (|Anew
| = 10). Error bars are ±1 s.e. aver-

aged over 500 runs.

B EXTENSION TO THE CONTEXTUAL SETTING

In this section we discuss a preliminary approach to extend our algorithm to the setting with context
features. In the news recommendation setting, the context features would represent user features.

Data Generating Process. In this setting, article features Z(a) are drawn independently from PZ

over a 2 A
new. Independently of that, user contexts Xt are discrete and drawn i.i.d. from an

unknown distribution PX , i.e., X1, X2, . . . , XT
i.i.d.
⇠ PX . Then,

R(a)
t | Z(a), (Xt0 , R

(a)
t0)t�1

t0=t, Xt ⇠ p⇤
�
· | Z(a), (Xt0 , Rt0)

t�1
t0=t, Xt

�
. (6)

Moreover, p⇤ is such that for any z and any permutation � over {1, . . . , T},

�
X1, R

(a)
1

�
, . . . ,

�
XT , R

(a)
t

�
| (Z(a) = z)

D
=
�
X�(1), R

(a)
�(1)

�
, . . . ,

�
X�(T), R

(a)
�(T)

�
| (Z(a) = z),

where above we use D
= to denote equality in distribution.

The historical dataset follows the same data generating process. For shorthand, we use
(X,Y (a))1:n :=

�
(X1, R

(a)
1), . . . , (Xn, R

(a)
n)
�

to denote sequences of tuples. We denote the train-
ing set Dhist =

�
Z(a),

�
X,Y (a)

�
1:n

(for some n  T). For each a 2 A

hist, we assume (X,Y (a))1:n

is a completely at random subset of the tuples (X,Y (a))1:T where X1, X2, . . . , XT
i.i.d.
⇠ PX and

R(a)
1:T are sampled according to equation 6.

Phase 1: Pretraining an auto-regressive model. We train a sequence model analogously to Al-
gorithm 2, however replace the training loss equation 2 with the following loss:

`(p✓;D
hist) =

X

a2Ahist


�

nX

t=1

log p✓
⇣
R(a)

t | Z(a),
�
X,Y (a)

�
1:t�1

, X(a)
t

⌘�
. (7)

In the contextual case, transformers are a natural choice for the sequence model architecture for p✓.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 4 Pretraining an autoregressive model with Context

Require: Training data D
hist, model class {p✓}✓2⇥, batch size b

1: while not converged do
2: Sample a minibatch D = {Z(a), (X,Y (a))1:n}a2A where A ⇢ A

hist, |A| = b
3: For each a 2 A, sample outcomes with replacement:

(X1, Y
(a)
1), (X2, Y

(a)
2), . . . (XT , Y

(a)
T) | {Z(a), (X,Y (a))1:n}

i.i.d.
⇠

1

n

nX

i=1

�
(Xi,R

(a)
i)

Above, 1
n

Pn
i=1 �(Xi,R

(a)
i)

denotes the empirical distribution of (X,Y (a))1:n.

4: Define bootstrap-resampled minibatch D {Z(a), (X,Y (a))1:T }a2A
5: Compute loss `(p✓;D) using equation 7
6: Backpropagate and take a gradient step to update ✓
7: end while
8: return p✓

Phase 2: Online decision-making via autoregressive generation Online decision-making with
the pre-trained p✓ sequence model can be made using Algorithm 5 below. Similar to the version
without context, it generates missing outcomes.

Algorithm 5 Posterior Sampling via Autoregressive Generation (PS-AR) with Context

Require: Autoregressive generative model p✓, actions Anew with {Z(a)
}a2Anew

1: Initialize list of missing entries M (a)
 [1, . . . , T] for each a 2 A

new

2: for t = 1, . . . , T do
3: Observe user context Xt and set x Xt

4: for a 2 A
new do

5: for ⌧ 2M (a) do
6: Impute reward: R̂(a)

⌧ ⇠ p✓
�
· | Z(a) ,

�
Xi, R

(a)
i

�
i 62M(a) ,

�
Xi, R̂

(a)
i

�
i2M(a)

�

7: end for
8: Form average: µ̂(a)

t
1PT

t=1 X⌧=x

�P
⌧ 62M(a) R

(a)
⌧ X⌧=x +

P
⌧2M(a) R̂

(a)
⌧ X⌧=x

9: end for
10: Select action At argmaxa2Anew

�
µ̂(a)
t

(break ties deterministically)

11: Remove t from the list of missing entries M (At)

12: Observe reward Rt R(At)
t from action At.

13: end for

C FINITE VS INFINITE POPULATION FORMULATIONS AND THOMPSON
SAMPLING VARIANTS

This section discusses the intimate connections between (large) finite-population formulations that
were discussed in the main body of the paper and infinite-population formulations that are more
common in the Bayesian bandit literature. We do this in the special case of the Bayesian mixture
model from equation 1.

We emphasize that from our perspective, the main advantages or disadvantages of the finite
population view are conceptual. In terms of advantages: (1) the definitions do not require any
explicit assumptions around mixture modeling or latent variables. and (2) The finite nature of the
problem lets us visualize the procedure as in Figure 3, without abstract reference to limits across
infinite sequences.

C.1 REVIEW OF THOMPSON SAMPLING IN INFINITE POPULATIONS, WITH MIXTURE MODELS.

Thompson sampling is most often defined for a Bayesian mixture model, e.g., as in equation 1.
Following that example, we consider in the subsection the canonical example of exchangeable se-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

quences: a mixture model wherein the outcomes are i.i.d conditioned on a latent variable U (a). That
is, p⇤(R(a)

1 , . . . , R(a)
t | Z(a)) =

R QT
t=1 P (R(a)

t | Z(a), U (a) = u)P (U (a) = u)du. The unknown
latent variable represents the decision-maker’s uncertainty about an action’s performance.

The literature typically defines the “true arm means” as

µ(a)
1 =

Z
r · P (r | Z(a), U (a))dr.

The subscript highlights that this has the interpretation of a long-run average reward across an infinite
population of users (or infinite set of rounds). By the law of large numbers (applied conditional on
(Z(a), U (a)), one has

µ(a)
1 = lim

T!1

1

T

TX

t=1

R(a)
t .

The true best arm is defined as
A⇤

1 2 argmax
a2Anew

µ(a)
1

Randomness in the latent parameters (U (a)) means µ(a)
1 and A⇤

1 are random variables whose real-
izations are uncertain even given the history Ht�1. Thompson sampling selects an action by proba-
bility matching on A⇤

1, defined by the property

P(At = a | Ht�1) = P(A⇤
1 = a | Ht�1) for all a 2 A

new. (8)

Per-period Bayesian regret over T periods is defined as

E
"
1

T

TX

t=1

⇣
R(A⇤)

t �R(At)
t

⌘#
(9)

C.2 THOMPSON SAMPLING IN FINITE POPULATIONS

As in the body of our paper, one can define the true mean of a finite population as

µ(a)
T =

1

T

TX

t=1

R(a)
t .

The true best arm for this finite population is defined as

A⇤
T 2 argmax

a2Anew
µ(a)
T

As in Lemma 2, Thompson sampling selects an action by probability matching on the (finite-
population) optimal action A⇤

T , defined by the property

P(At = a | Ht�1) = P(A⇤
T = a | Ht�1) for all a 2 A

new. (10)

Per-period Bayesian regret over T periods is defined as

E
"
1

T

TX

t=1

⇣
R

(A⇤
T)

t �R(At)
t

⌘#
(11)

It is not hard to show that equation 11 is a more stringent notion of regret than in equation 9, since
1
T

PT
t=1 R

(A⇤
T)

t �
1
T

PT
t=1 R

(A⇤
1)

t by definition of A⇤
T . Both definitions are widely used, with the

more stringent finite-population version being more common in the adversarial bandit literature; see
Lattimore and Szepesvári (2019).

C.3 THE GAP BETWEEN FINITE AND INFINITE POPULATION FORMULATIONS IS SMALL

We analyze the gap between the two formulations in the case of a mixture model. Let Unew =
{U (a) : a 2 A

new
} and recall Znew = {Z(a) : a 2 A

new
}. By a sub-Gaussian maximal inequality

E

max
a2Anew

���µ(a)
1 � µ(a)

T

���
�
= E


E

max
a2Anew

���µ(a)
1 � µ(a)

T

��� | Znew,Unew

��


r
2 log(|Anew|)

T
.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

To justify the last inequality, note that since the function R takes values in [0, 1], R(a)
t � µ(a)

1 is
subgaussian with variance proxy 1, conditional on Z

new,Unew (by Hoeffing’s Lemma). Since it is
the average of independent sub-Gaussian random variables, µ(a)

1 �µ(a)
T is subgaussian with variance

proxy 1
T , conditional on Z

new,Unew. The last step follows then from applying the subgaussian
maximal inequality, conditional on Z

new,Unew.

It follows easily that the infinite population optimum A⇤
1 is near optimal for finite populations:

0  E

max
a2Anew

µ(a)
T � µ

(A⇤
1)

T

�
 2

r
2 log(|Anew|)

T
.

Analogously, the finite population optimum is near-optimal in infinite populations:

0  E

max
a2Anew

µ(a)
1 � µ

(A⇤
T)

1

�
 2

r
2 log(|Anew|)

T
.

Supported by this theory, we do not focus on the distinction between A⇤
T and A⇤

1 in our develop-
ments.

C.4 SIMILAR INSIGHTS IN EMPIRICAL RESULTS

Some empirical insight can also be gleaned from Figure 7 in Appndix C. The implementation that
performs full imputation can be interpreted as Thompson sampling for a finite population. The
implementation that performs forward generation of fixed-length m does not include past observed
rewards in the average. For very large m, it is a direct approximation to infinite-horizon Thompson
sampling. We can see in Figure 7 the these implementations have very similar performance.

D THEORETICAL RESULTS

D.1 THE MEAN µ(a)
T APPROAHCES µ(a) FOR LARGE T .

Proposition 2 (Forming a Posterior Sample via Autoregressive Generation). Under the Bayesian
mixture model example from equation 1:

U (a)
⇠ P (U (a)

2 · | Z(a)) then, R(a)
1 , . . . , R(a)

T | U (a) i.i.d.
⇠ P (R(a)

t 2 · | U (a), Z(a)).

The following holds for µ(a) = 1
T

PT
t=1 R

(a)
t and µ(a) =

R
r r · P (R(a)

t = r | U (a), Z(a))dr:

P
✓

lim
T!1

µ(a)
T = µ(a)

����U
(a), Z(a)

◆
= 1 with probability 1.

Proof. By equation 1, conditional on U (a), Z(a), the generated rewards R(a)
1 , . . . , R(a)

T are i.i.d.
Also note that R(a)

t 2 [0, 1] based on our problem setup. Thus, by the Strong Law of Large numbers
for i.i.d. random variables, conditional on almost any draw of U (a), Z(a), we have that

P

lim
T!1

1

T

TX

t=1

R(a)
t = µ(a)

����U
(a), Z(a)

!
= 1 with probability 1.

D.2 TO MINIMIZE LOSS p✓ NEEDS TO APPROXIMATE p⇤

The next lemma is a standard result connecting the excess expected loss of a sequence model p✓ to
its KL divergence from the true sequence model p⇤. Recall the expected loss of a sequence model
p✓ is denoted `(p✓), defined in equation 3. To (nearly) minimize loss, p✓ the learner needs to closely
approximate the true sequence model p⇤.
Lemma 1. For any sequence model p✓,

`(p✓) = `(p⇤) + EZ(a)⇠PZ

h
DKL

⇣
p⇤
�
R(a)

1 , . . . , R(a)
T | Z(a)

� ��� p✓
�
R(a)

1 , . . . , R(a)
T | Z(a)

�⌘i
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Proof. By the definition of the expected loss in equation 3, and the chain rule of KL divergence:
`n(p✓)� `n(p

⇤)

= E
"
�

nX

t=1

log p✓
�
R(a)

t | Z(a), R(a)
1:t�1

�
#
� E

"
�

nX

t=1

log p⇤
�
R(a)

t | Z(a), R(a)
1:t�1

�
#

= KL
�
Pp⇤(R(a)

1 , . . . , R(a)
n | Z(a)) k Pp✓ (R

(a)
1 , . . . , R(a)

n | Z(a))
�

= EZ(a)⇠PZ

h
KL
�
Pp⇤(R(a)

1 , . . . , R(a)
n | Z(a)) k Pp✓ (R

(a)
1 , . . . , R(a)

n | Z(a))
�i

.

The final equality is the definition of the KL divergence between conditional distributions.

D.3 FORMALLY INTERPRETING PS-AR AS THOMPSON (POSTERIOR) SAMPLING

This subsection reveals that the generated/imputed action means faithfully represent uncertainty
and that PS-AR is akin to Thompson sampling (a.k.a. posterior sampling), which selects actions
proportionally to the probability that they are optimal. Specifically, Lemma 2 formally shows that
the imputed mean µ̂(a)

t from PS-AR is a posterior sample of the mean reward µ(a), and the action
At selected by PS-AR is a posterior sample of the optimal action A⇤, where

µ(a) :=
1

T

TX

t=1

R(a)
t and A⇤ := argmax

a2Anew

�
µ(a)

, (12)

with ties in the argmax broken by the same rule as in Algorithm 1. A⇤ is the benchmark
action against which regret is evaluated in equation 4. For simplicity, Lemma 2 is stated
under the assumption that PS-AR uses the optimal sequence model p⇤. We use Ht :=
({Z(a)

}a2Anew , A1, R1, . . . , At, Rt) to denote the history up to time t.
Lemma 2. Under Assumption 1, for Algorithm 1 applied with p✓ = p⇤, for all a 2 A

new, with
probability 1,

P
�
µ̂(a)
t = · | Ht�1

�
= P

�
µ(a) = · | Ht�1

�
and P (At = a | Ht�1) = Pp✓ (A

⇤ = a | Ht�1) .

Lemma 2 has a concise proof (below). Both the population mean and the best action are functions
of the table of the potential outcomes {R(a)

1:T }a2Anew . Sampling missing rewards from their posterior
distribution ensures that functions of the imputed table also follow the posterior distribution. One
difference with usual presentations is that µ(a) averages over a very large, but finite population of
users (or rounds). We do not view this as a practically significant detail. The generalization of
Lemma 2 to the setting in which p✓ 6= p⇤ is in Appendix D.6.2.

Proof. At decision time t, suppose in the history Ht�1 a particular action a 2 A
new we have not

observed (missing) rewards from users M (a)
✓ {1, 2, . . . , t � 1}. For the function f({Ri}

T
i=1) =

T�1
PT

i=1 Ri, one has

µ(a) = f
��

R(a)
i

 T
i=1

�
and µ̂(a)

t = f
��

R(a)
i : i 62M (a), i 2 [1 : t� 1]

[
�
R̂(a)

i : i 2M (a)
 �

.

where {R̂(a)
i : i 2M (a)

} are drawn according to Algorithm 1 applied with sequence model p✓ = p⇤.
The result that

P
�
µ̂(a)
t = · | Ht�1

�
= Pp✓

�
µ(a) = · | Ht�1

�

follows immediately since {R(a)
i : i 62 M (a), i 2 [1 : t � 1]} are non-random conditioned on Hi�1

and P
�
{R̂(a)

t : i 2 M (a)
} = · | Ht�1

�
= P

�
{R(a)

t : t 2 M (a)
} = · | Ht�1

�
with probability 1.

The proof of the analogous result for A⇤ is identical.

D.4 PROOF OF THEOREM 1

Theorem 1. Let Onew :=
�
Z(a), R(a)

1:T

a2Anew denote the potential outcomes table. Independent of

Onew, let ⇠ ⇠ Uniform[0, 1]. Under Assumption 1, for real-valued functions f of Onew and ⇠,

sup
f :kfk11

����Ep⇤
⇥
f (Onew, ⇠)

⇤
| {z }

Real Distribution

�Ep✓

⇥
f (Onew, ⇠)

⇤
| {z }
Simulated Distribution

�� 
p

(|Anew|/2) {`(p✓)� `(p⇤)}| {z }
Penalty for sub-optimal simulator

.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Proof. Note that

sup
f :kfk11

⇢
Ep⇤
⇥
f (Onew, ⇠)

⇤
� Ep✓

⇥
f (Onew, ⇠)

⇤�

|{z}
(i)

r
1

2
KL
�
Pp⇤(Onew, ⇠) k Pp✓ (O

new, ⇠)
�

=|{z}
(ii)

vuut
1

2
KL
�
Pp⇤(⇠) k Pp✓ (⇠)

�

| {z }
=0

+
1

2
KL
�
Pp⇤(Onew | ⇠) k Pp✓ (O

new | ⇠)
�

=|{z}
(iii)

r
1

2
· KL

�
Pp⇤(Onew) k Pp✓ (O

new)
�

=|{z}
(iv)

r
|Anew|

2
· KL

�
Pp⇤(Z(a), R(a)

1:T) k Pp✓ (Z
(a), R(a)

1:T)
�

=|{z}
(v)

r
|Anew|

2
·

s
KL
�
Pp⇤(Z(a)) k Pp✓ (Z

(a))
�

| {z }
=0

+KL
�
Pp⇤(R(a)

1:T | Z(a)) k Pp✓ (R
(a)
1:T | Z(a))

�

=|{z}
(vi)

r
|Anew|

2
{`(p✓)� `(p⇤)}

• (i) holds by Fact 9 in (Russo and Van Roy, 2016) (which uses Pinsker’s inequality).

• (ii) holds the chain rule for Kullback Liebler Divergence.

• (iii) holds because ⇠ is and Onew are independent.

• (iv) and (vi) hold again because the (Z(a), R(a)
1:T) are i.i.d. across a 2 A

new and the chain
rule for Kullback Liebler Divergence.

• (vi) holds by Lemma 1.

D.5 BOUNDING THE DEPLOYMENT REGRET IN TERMS OF REGRET ON A SIMULATOR

Proposition 3. For any policy ⇡,

�
�
⇡; p⇤

�
| {z }

Deployment regret

 �
�
⇡; p✓

�
| {z }

Regret under simulator

+
p

(|Anew|/2) {`(p✓)� `(p⇤)}| {z }
Penalty for sub-optimal simulator

. (13)

Formally, any policy ⇡ can be expressed a function that maps a history Ht�1 and an exogenous
random seed ⇠ to an action as

At = ⇡(Ht�1, ⇠). (14)
The random seed allows for algorithmic randomness in action selection and is assumed to be inde-
pendent of the draws of article features and potential outcomes (Z(a), R(a)

1:T)a2Anew .

The essence of the proof is to recognize that one could write a simulator that first randomly drew the
environment “sample path” (Z(a), R(a)

1:T)a2Anew and the algorithm seed ⇠, and then implemented a
completely deterministic sequence of operations to calculate the regret an algorithm incurs with that
sample path and seed. Mathematically, the simulator is a function, (written as g(·) in the proof). We
can view mis-specification of the sequence model as mis-specifying the distribution of the sample
path draws used in the the simulator. We use information-theoretic tools to bound the impact this
distributional change on the inputs to the simulator can have on the distribution of outputs of the
simulator (e.g. regret).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Proof. This proof will show that for any policy ⇡,

�
�
⇡; p⇤

�
 �

�
⇡; p✓

�
+

r
|Anew|

2
{`(p✓)� `(p⇤)}.

Note for any policy ⇡, by the triangle inequality,
�
�
⇡; p⇤

�
 |�(⇡; p⇤)��(⇡; p✓)|+ |�(⇡; p✓)|

The remainder of the proof will focus on bounding the first term above. Let Onew :=
�
Z(a), R(a)

1:T :
a 2 A

new

denote a draw of all article features and potential outcomes.

The absolute difference in regret can be written as
|�(⇡; p✓)��(⇡; p⇤)|

=

����Ep⇤,⇡

"
max
a2Anew

⇢
1

T

TX

t=1

R(a)
t

�
�

1

T

TX

t=1

Rt

#
� Ep✓,⇡

"
max
a2Anew

⇢
1

T

TX

t=1

R(a)
t

�
�

1

T

TX

t=1

Rt

����

=
��Ep⇤

⇥
g (Onew, ⇠)

⇤
� Ep✓

⇥
g (Onew, ⇠)

⇤�� ,
where g is is a function that determines the algorithm’s regret as a function of the potential
outcomes and the external seed ⇠ that used to induce randomness in action actions. That is,
g
��

Z(a), R(a)
1:T

a2Anew , ⇠

�
:= 1

T

PT
t=1

�
R(A⇤)

t �Rt

.

Finally, since g is such that kgk1  1, since Rt 2 [0, 1] with probability 1 by assumption, by
Theorem 1 we have that

��Ep⇤
⇥
g (Onew, ⇠)

⇤
� Ep✓

⇥
g (Onew, ⇠)

⇤�� 
r

|Anew|

2
{`(p✓)� `(p⇤)}.

D.6 PROOF OF PROPOSITION 1

D.6.1 A USEFUL DEFINITION

Under our data generating process p⇤ is exchangeable. To prove Proposition 1, we want to view pos-
terior sampling by auto-regressive sampling (Algorithm 1) as a proper implementation of Thomp-
son sampling, with approximation coming solely from the incorrect use of a sequence model p✓.
To make this rigorous, we need to define a slightly different order in which potential outcomes are
reveled to accommodate non-exchangeable p✓ models.
Definition 1 (An alternative outcome revelation order). A (possibly non-exhangeable) sequence
model p✓ introduces an alternative way of revealing potential outcomes. Recall, independently for
each arm a 2 A

new, nature samples arm features Z(a)
⇠ PZ; then it samples R(a)

1:T | Z(a)
⇠ p✓(· |

Z(a)). If arm At = a is selected at time t and this is the kth time that arm is chosen, then R(At)
k is

revealed. We use R̃t R(At)
k and H̃t := ({Z(a)

}a2Anew , A1, R̃1, . . . , At, R̃t).

We note that this data generating process is simply specifying the order in which outcomes from the
sequence model are revealed to the decision-maker. Namely, we view R̃(a)

t as the potential outcome
of the tth play of arm a whereas the main body of the paper views R(a)

t as the potential outcome
for the tth user/period. Under an exchangeable sequence models, order is irrelevant and the two
data generating processes are mathematically equivalent. Note that defining the R̃t’s is a proof
technique (specifically to show Proposition 1), and not part of the model of the problem.
It will also be useful to note an alternative definition of regret under this alternative approach to
revealing potential outcomes:

�̃(⇡; p) := Ep,⇡


max
a2Anew

⇢
1

T

TX

t=1

R(a)
t

�
�

1

T

TX

t=1

R̃t

�
. (15)

Note that since p⇤ is an exchangeable sequence model, �̃(⇡, p⇤) = �(⇡, p⇤) for any policy ⇡.
Defining �̃ is soley to accomodate non-exchangeable sequence models.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D.6.2 A HELPFUL LEMMA

Our proof of Proposition 1 relies on a generalization of Lemma 2 that describes precisely how Al-
gorithm 1 is exactly Thompson Sampling (i.e., probability matching) when p✓ is not exchangeable.
Lemma 3. Under Algorithm 1 applied with p✓,

P
�
µ̂(a)
t = · | H̃t�1

�
= Pp✓

�
µ(a) = · | H̃t�1

�
(16)

and for all a 2 A
new,

P
�
At = a | H̃t�1

�
= Pp✓

�
A⇤ = a | H̃t�1

�
. (17)

Proof. We use the notation of Definition 1. Let N (a)
t :=

Pt
i=1 (At = a) denote the number of

times arm a was played up to and including period t. Then, the observation at time t is

R̃t R(At)

N
(At)
t

.

For the function f({Ri}
T
i=1) = T�1

PT
i=1 Ri, one has

µ(a) = f
��

R(a)
i

 T
i=1

�
and µ̂(a)

t = f
��

R(a)
1 , . . . , R(a)

N(a)
t �1

[
�
R(a)

N(a)
t

, . . . , R(a)
T

 �

where (R(a)

N(a)
t

, . . . , R(a)
T) ⇠ p✓

�
· | Z(a), R(a)

1:N(a)
t �1

�
represent the generated outcomes drawn ac-

cording to Algorithm 1 applied with sequence model p✓. Property equation 16 follows immediately
since {R(a)

1 , . . . , R(a)

N(a)
t �1

} are non-random conditioned on the history H̃t�1 and

P
�
(R(a)

N(a)
t

, . . . , R(a)
T) = · | H̃t�1

�
= P

�
(R(a)

N(a)
t

, . . . , R(a)
T) = · | H̃t�1

�
with probability 1. The

proof of equation 17 is identical.

D.6.3 MAIN PROOF OF PROPOSITION 1

Proposition 1. Under Assumption 1, for PS-AR (Algorithm 1) applied with p✓ (denoted ⇡PS-AR(p✓)),

�
�
⇡PS-AR(p✓); p

⇤�


r
|Anew| log(|Anew|)

2T| {z }
Regret bound for Thompson sampling

+

r
|Anew|

2

�
`(p✓)� `(p⇤)

| {z }
Penalty for sub-optimal prediction

.

In light of Theorem 1, the following proof of Proposition 1 is largely review of an information-
theoretic analysis of Thompson sampling due to Russo and Van Roy (2016). It was observed by
Bubeck et al. (2015); Bubeck and Eldan (2016) that this analysis applied without modification to
analyze regret with respect to the best fixed action (A⇤) even in nonstationary environments (e.g.
non-exchangeable models p✓ as in Definition 1.)

Proof. This proof will show that for any sequence model p✓,

�
�
⇡PS-AR(p✓); p

⇤�


r
|Anew| log(|Anew|)

2T
+

r
|Anew|

2

�
`(p✓)� `(p⇤)

.

Note that by Theorem 1, we can show that

�̃
�
⇡PS-AR(p✓); p

⇤�
 �̃

�
⇡PS-AR(p✓); p✓

�
+

r
|Anew|

2
{`(p✓)� `(p⇤)}. (18)

Specifically the argument to show equation 18 above is equivalent to that used to prove Proposition
3—all that needs to be done is to replace all �’s with �̃’s and replace all Rt’s with R̃t’s in the proof.

Note that since p⇤ is an exchangeable model by Assumption 1, for any permutation � over T ele-
ments,

p⇤(R(a)
1 , . . . , R(a)

t | z) = p⇤(R(a)
�(1), . . . , R

(a)
�(T) | z).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

The above implies that the average regret achieved by a policy ⇡ under the two different approaches
of revealing potential outcomes are equivalent, i.e.,

�̃
�
⇡PS-AR(p✓); p

⇤� = Ep⇤,⇡PS-AR(p✓)


max
a2Anew

⇢
1

T

TX

t=1

R(a)
t

�
�

1

T

TX

t=1

R̃t

�

=|{z}
(i)

Ep⇤,⇡PS-AR(p✓)


max
a2Anew

⇢
1

T

TX

t=1

R(a)
t

�
�

1

T

TX

t=1

Rt

�
= �

�
⇡PS-AR(p✓); p

⇤�

Equality (i) above since by Assumption 1, R(a)
1 , R(a)

2 , . . . R(a)
T are exchangeable conditional on

Z(a); thus changing the order with which rewards are revealed (as described in Definition 1) does
not change the expected value. Thus, combined with equation 18, we have that

�
�
⇡PS-AR(p✓); p

⇤�
 �̃

�
⇡PS-AR(p✓); p✓

�
+

r
|Anew|

2
{`(p✓)� `(p⇤)}.

All that remains is to bound �̃
�
⇡PS-AR(p✓); p✓

�
.

Bounding �̃
�
⇡PS-AR(p✓); p✓

�
. We bound �̃

�
⇡PS-AR(p✓); p✓

�
by combining the probability match-

ing result of Lemma 2 with Thompson sampling regret bound techniques from Russo and Van Roy
(2016). By the proof of Proposition 1 of Russo and Van Roy (2016) (which is general and applies to
all algorithms ⇡),

Ep✓,⇡PS-AR(p✓)


max
a2Anew

⇢
1

T

TX

t=1

R(a)
t

�
�

1

T

TX

t=1

R̃t

����Z
new
�


s
Hp✓

�
A⇤ | Znew

�
· �

T
w.p. 1



r
log(|Anew|) · �

T
w.p. 1

where Hp✓ (A
⇤

| Z
new)  log(|Anew

|) refers to the conditional Shannon entropy of A⇤ given
Z

new := (Z(a))a2Anew = z under the data generating process defined by p✓, and � is a constant
upper bound on the “information ratio” such that

� � max
t2[1 : T]

⇢�E
⇥
R̃(A⇤)

t � R̃t

⇤�2

It
�
A⇤; (At, R̃t)

�
�

w.p. 1,

Above we use R̃(A⇤)
t R(A⇤)

N(A⇤)
t

where N (a)
t :=

Pt
i=1 (At = a) denotes the number of times

arm a was played up to and including period t. Above we use Et[·] := Ep⇤,⇡PS-AR(p✓)[· | H̃t�1] to
denote that expectations are conditioned on the history and It

�
A⇤; (At, R̃t)

�
to denote the mutual

information between A⇤ and (At, R̃t) conditional evaluated under a base measure (p⇤,⇡PS-AR(p✓))
that conditions on H̃t�1. (Recall that the history also includes the information in Z

new).

The proof of Proposition 5 of Russo and Van Roy (2016) shows that one can choose �  |A
new

|/2
w.p. 1. As observed in Bubeck et al. (2015); Bubeck and Eldan (2016), this proof relies only on the
probability matching property in Lemma 3 and hence applies in our setting.

Combining our results implies

Ep⇤,⇡PS-AR(p✓)


max
a2Anew

⇢
1

T

TX

t=1

R(a)
t

�
�

1

T

TX

t=1

R̃t

����Z
new
�


r
log(|Anew|) · |Anew|

2T
w.p. 1,

so the result follows by the law of iterated expectations.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

E EXPERIMENT DETAILS

In this appendix we discuss synthetic experiments in Section E.1, news article recommendation
experiments in Section E.4, and bandit algorithms in Section E.5.

E.1 SYNTHETIC EXPERIMENTS: MIXTURE BETA-BERNOULLI

Data Generating Process In this setting, we use article attributes be Z(a) =
�
Z(a)
1 , Z(a)

2

�
2 R2

where Z(a)
1 , Z(a)

2
i.i.d.
⇠ Uniform(0, 0.25). We sample R(a)

1:T by first sampling µ(a)
1 2 [0, 1] from a

mixture:

µ(a)
1 | Z(a)

⇠

(
Beta

�
25Z(a)

1 + 1, 25(1� Z(a)
1) + 1

�
w.p. 1/2

Beta
�
25(1� Z(a)

2) + 1, 25Z(a)
2 + 1

�
w.p. 1/2

Then, outcomes are sampled as R(a)
1 , . . . , R(a)

T | µ(a)
1 , Z(a) i.i.d.

⇠ Bernoulli(µ(a)
1).

Here, µ(a)
1 corresponds to the success rate in the data generating process, in contrast to µ(a) in

the main text of the paper, which corresponds to the mean (or success rate) in the finite-sample
population of size T . Note that µ(a) converges to µ(a)

1 as T goes to infinity.

Training and Validation Datasets The training and validation datasets contain 2500 and 1000
articles each, respectively. During training (Algorithm 2), we use Ttrain = 500. Hyperparameters
and early stopping epochs are chosen using the validation dataset.

Additional Model and Training details

• FLEXIBLE NN. This model implements the autoregressive model as a neural network that takes
as input the action/article attribute Z(a) (a vector in R2) and summary statistics of observations
for this action, and outputs a value (probability) in [0, 1]. The summary statistic we use is simple
because outcomes R(a)

t are binary; specifically it consistes of a tuple with the mean of outcomes
from action a, and the reciprocal of 1 plus the total number of outcome observations for action
a, i.e.

�
1

N(a)

Pt�1
t0=1 Rt0 At0=a,

1
1+N(a)

�
, where N (a) :=

Pt�1
t0=1 At0=a. (In practice, we found

that repeating the summary tuple input 10 improved performance, so the model took as input
vectors in R22 which consisted of a 2-dimensional Z(a) and 10 copies of the sufficient statistic
tuple). Note that this entire p✓ could alternatively be implemented as a transformer.
The MLP we use has three linear layers, each of width 50. After the first and second linear
layers, we apply a ReLU activation. After the last linear layer, we apply a sigmoid function, so
that the output is in (0, 1). The models are trained for 1000 epochs with learning rate 0.001,
batch size 500, and weight decay 0.01 using the AdamW optimizer.

• BETA-BERNOULLI NN. This is a sequential model that is the (closed-form) posterior predictive
for a Beta-Bernoulli. The prior parameters for the Beta distribution, ↵✓(Z(a)) and �✓(Z(a)), are
each parameterized by separate neural network MLP models that take in Z(a).
The MLPs we use has three linear layers, each of width 50. After the first and second linear
layers, we apply ReLU activations. After the last linear layer, we also apply a ReLU activation,
so that the final output is in [0,1). We initialize weights so that the bias term for both ↵✓(Z(a))
and �✓(Z(a)) to 1, so that we avoid starting with Beta parameters of value 0, as Beta parameters
need to be positive. The models are trained for 1000 epochs with learning rate 0.001, batch size
500, and weight decay 0.01 using the AdamW optimizer.

Additional Details on Figure 5 In our uncertainty quantification plots Figure 5 (right), we eval-
uate over all 1000 actions in the validation set. We form 250 samples of µ̂(a)

1 for each action in
the validation set using Algorithm 3 with m = 500. To generate posterior samples for BETA-
BERNOULLI NN, we use the closed-form posterior (i.e., m =1).

In our regret plots Figure 5 (left), we run 500 runs. In each run we randomly choose |A
new

| = 10
actions randomly with replacement from the validation set, and all algorithms are evaluated on these

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

same sampled actions in each run. Regret is calculated relative to µ(a)
1 from the data generating

process.

E.2 ALTERNATIVE SAMPLING METHODS GIVEN A SEQUENCE MODEL

In Figure 4 we displayed regret for the setting in Section 6.1, but where we use different ways to
sample p✓ that are not from our proposed method. Here is a brief comparison:

• Generate full reward sequence (PS-AR): this is our method. In it, for each arm, we use p✓
to generate a sequence of missing rewards, take the mean of the rewards for each arm, and
choose the arm with the largest mean reward value.

• Generate one reward: instead of generating a sequence of missing rewards, only generate
one. Choose the arm with the largest reward (breaking ties randomly).

• Generate many rewards, but not sequentially: like the previous, except that for each arm,
we generate one reward, but repeat this process many times. We do this 500 times for this
particular experiment.

• Greedy: our implementation of this generative model for sampling sequences of rewards
can output the probability that the next reward is 1. This is similar to the previous sampling
method.

The alternative sampling methods tend to do worse than our proposed method, especially for longer
horizons, as the other sampling methods are not approximating posterior inference for the mean
reward for each arm.

E.3 RECOVERING THE TRUE PRIOR VIA PRETRAINING (EMPIRICAL BAYES)

We discussed connections between our pretraining procedure and empirical Bayes from Section
3.3. Here, we demonstrate in practice an setting where we perform “empirical Bayes” using our
pretraining procedure (Algorithm 2). We find that we recover the true prior fairly well.

Data Generation We use a synthetic Beta-Binomial data generating process. We consider one-
dimensional action features Z(a) i.i.d.

⇠ Uniform(0, 1). We then sample µ(a) from a Beta distribution,
where

µ(a)
| Z(a)

⇠ Beta
�
Z(a)

· 5 + 1, (1� Z(a)) · 5 + 1
�
. (19)

Then, R(a)
| µ(a), Z(a)

⇠ Bernoulli(µ(a)). We use a training dataset of size 25,000 actions and a
validation set of size 10,000 actions; both datasets have observation sequences of length n = 500.

Autoregressive model We use p✓ which matches the posterior predictive of a Beta-Bernoulli
model described above. Specifically, we use the following sequence model:

p✓
�
R(a)

t+1 = 1 | R(a)
1:t

�
=

↵✓(Z(a)) +
Pt

i=1 R
(a)
i

↵✓(Z(a)) + �✓(Z(a)) + t
. (20)

To accomodate Z(a) features, we parameterize the prior hyperparameters: ↵✓(Z(a)),�✓(Z(a)) (we
follow the procedure described in Appendix E.1 for BETA-BERNOULLI NN). The neural network
model architecture used in ↵✓(Z(a)),�✓(Z(a)) and the training procedure are also the same as de-
scribed for BETA-BERNOULLI NN in Appendix E.1 (except that the MLP widths are 100).

Recovering the Prior: Figure 9 We show in Figure 9 that through our pretraining procedure
Algorithm 2 with our particular choice of p✓ model class, that we (approximately) recover the true
prior. We show this by comparing means and standard deviations of samples from our learned prior
(using p✓) vs. the true prior (according to the data generating process), for different draws of Z(a).
In the scatter plots, each point corresponds to one Z(a).

Specifically, in these plots we use 100 actions sampled uniformly from the validation set. For each
of these 100 actions we form 10, 000 samples of µ̂(a)

1 using Algorithm 3 using our learned p✓ model.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

We also form 10, 000 samples from the true data generating prior equation 19 for each of the 100
actions. Then for each action, we compute the mean and standard deviations of the samples on the
“prior” samples µ̂(a)

1 from p✓; we also compute the mean and standard deviations of the samples
from the true prior. We then plot these in a scatter plot; for each action, we have the prior mean ac-
cording to p✓ vs the prior mean according to the data generating process—this forms one point on the
scatter plot. A similar procedure is plotted on the right. There, instead of computing the mean of the
prior samples, we compute a measure of the spread of the prior samples: let µ̂(a)

1,1, µ̂
(a)
1,2 . . . , µ̂

(a)
1,10000

be the prior samples. Let µ̄(a)
1 = 1

10000

P10000
i=1 µ̂(a)

1,i . Then we compute the mean absolute deviation
1

10000

P10000
i=1

��µ̂(a)
1,i � µ̄(a)

1

�� for this set of prior samples.

Figure 9: Comparing oracle prior vs prior learned through our method (empirical bayes) in a
synthetic setting. Error bars represent ±1 standard error; the error bars on the left plot are present
but small enough to not be visible.

E.4 NEWS RECOMMENDATION EXPERIMENT DETAILS

Additional data details The training and validation datasets contain 9122 and 2280 distinct ac-
tions/articles each, respectively. During training, we use Ttrain = 500 As in Appendix E.1, hyperpa-
rameters and early stopping epochs are chosen using the validation dataset.

We now discuss the news data preprocessing process. This dataset is free to download for
research purposes at https://msnews.github.io/. It is under a Microsoft Research License at
https://github.com/msnews/MIND/blob/master/MSR%20License Data.pdf, which we comply with.
The terms of use are at https://www.microsoft.com/en-us/legal/terms-of-use.

Our preprocessing procedure is as follows:

1. Collect all articles from the MIND “large” dataset (training split only) (Wu et al., 2020).

2. Remove any article with fewer than 100 total impressions.

3. Normalize the success probabilities to be centered around 0.5 in a way that preserves the ranking
of µ(a). We do this transformation to speed up the learning procedure (since it requires more data
to learn small true Bernoulli success probabilities accurately). We leave simulations without this
transformation to future work.
Our transformation procedures as follows: Let µ(1)

0 , . . . , µ(|A|)
0 be the original empirical success

probabilities (average click rate). We use A to denote all articles in the MIND large dataset. The
new success probabilities are defined as follows for each a 2 A:

µ(a)
1

(
µ(a)
0 if µ(a)

0 2 {0, 1}

logit�1
⇣

logit(µ(a)
0)� µ̄0

⌘
otherwise

.

Above, µ̄0 , 1
|A|
P

a02A logit(µ(a0)
0) and logit(x) , log x

1�x . See Figure 10 for comparison of
the success probabilities (click rates) before and after the transformation.

4. Randomly select 20% of the remaining articles to be in the validation set; the rest are in the
training set.

28

https://msnews.github.io/
https://github.com/msnews/MIND/blob/master/MSR%20License_Data.pdf
https://www.microsoft.com/en-us/legal/terms-of-use

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 10: Original and transformed click rates. Note the spike at 0 for transformed click rates: only
click rates that were not 0 or 1 are transformed.

Additional model details

• FLEXIBLE NN (TEXT). This model very similar to the FLEXIBLE NN model in Appendix E.1,
with the exception that in place of a two-dimensional Z(a), the MLP head of the neural network
from before is fed as input a DistilBERT (Sanh et al., 2019) embedding of text data Z(a).
Also, the MLP linear layers have width 100 instead of 50, and the sufficient statistics are repated
100 times instead of 10 times. All other architecture details are the same.
The model is trained for 500 epochs with learning rate 1e-5 on MLP heads, 1e-8 on the Distil-
BERT weights, batch size 500, and weight decay 0.01 using the AdamW optimizer.

• BETA-BERNOULLI NN (TEXT). This is very similar to the Beta-Bernoulli posterior predictive
sequence model in Appendix E.1, with the exception that in place of a two-dimensional Z(a),
the MLP head of the neural network from before is fed as input a DistilBERT (Sanh et al., 2019)
embedding of text data Z(a). On top of the one DistilBERT embedding are two separate MLP
heads for ↵(Z(a)) and �(Z(a)), which are trained together. Also, the MLP linear layers have
width 100 instead of 50, and the sufficient statistics are repated 100 times instead of 10 times.
All other architecture details are the same.
The model is trained for 500 epochs with learning rate 1e-5 on MLP heads, 1e-8 on the Distil-
BERT weights, batch size 500, and weight decay 0.01 using the AdamW optimizer.

• FLEXIBLE NN (CATEGORY). This is very similar to the flexible neural network model in Ap-
pendix E.1, but it uses a one-hot new category vector for Z(a) instead of a two-dimensional Z(a).
The model architecture and training parameters are also the same.

• DistilBERT. Our two text models use DistilBERT (Sanh et al.,
2019) from https://huggingface.co/distilbert/distilbert-base-uncased. It
has an apache-2.0 license, with license and terms of use at
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md.

Additional Details on Figure 6 In our uncertainty quantification plots Figure 6 (right), we eval-
uate over all 2280 articles/actions in the validation set. For our FLEXIBLE NN p✓ model, we form
250 samples of µ̂(a)

1 for each action in the validation set using Algorithm 3 with m = 500. For our
BETA-BERNOULLI NN p✓ model we use samples from the closed-form posterior.

In our regret plots Figure 6 (left), we run 500 runs. In each run we randomly choose |A
new

| = 10
actions randomly with replacement from the validation set, and all algorithms are evaluated on these
same sampled actions in each run. Regret is calculated relative to µ(a)

1 as described above.

Ensemble We describe the ensembling approach used in the uncertainty quantification plots in
Figure 6 (right). To construct ensembles, we first train a DistilBERT model with an MLP head
(MLP width 100, 3 layers, batch size 100, 500 epochs, learning rate 1e-5 on the head and 1e-8 on
DistilBERT, weight decay 0.01, AdamW optimizer) to predict R(a)

t , using action/article features
Z(a)(headlines). Then, we freeze the DistilBERT weights, and train 50 MLP heads from scratch
with random initialization and bootstrapped training data to create the ensemble (50 epochs, fixed
DistilBERT embedding; other params the same as before). We include a “randomized prior” variant

29

https://huggingface.co/distilbert/distilbert-base-uncased
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

that initializes each neural network model in the ensemble in a particular way to encourage diversity
Osband et al. (2018).

E.5 BANDIT ALGORITHMS

We compare our method with several baseline bandit methods.

PS Beta Bernoulli (Uniform Prior) We model success rate µ(a)
1 and potential outcomes R(a)

t
using a conjgate Beta-Bernoulli model:

µ(a)
1 ⇠ Beta(↵,�) (21)

R(a)
1 , . . . , R(a)

T | µ(a)
1

i.i.d.
⇠ Bernoulli(µ(a)) (22)

In our experiments, we use Beta-Bernoulli with a uniform prior, so ↵ = � = 1. Note that unlike the
BETA-BERNOULLI NN, the prior here does not depend on action attributes Z(a).

Online decision-making uses Thompson sampling, as described in in Algorithm 6.

Algorithm 6 Beta-Bernoulli Posterior (Thompson) Sampling
1: Inputs: Prior hyperparameters ↵,�.
2: Set priors (↵(a)

0 ,�(a)
0) (↵,�), 8a 2 A

new

3: for t = 1, . . . , T do
4: for a 2 A

new do
5: Sample µ̂(a)

⇠ Beta
�
↵(a)
t�1,�

(a)
t�1

�

6: end for
7: Select action At argmaxa2Anew

�
µ̂(a)

8: Observe outcome Rt from action At.

9: Update posterior
�
↵(At)
t ,�(At)

t

�

(�
↵(a)
t�1 + Rt=1,�

(a)
t�1 + Rt=0

�
if At = a�

↵(a)
t�1,�

(a)
t�1

�
otherwise

10: end for

PS Neural Linear We implement a very simple variant of “neural linear” as in Riquelme et al.
(2018); Snoek et al. (2015). Here, we model each arm reward as a Gaussian-Gaussian model. We fit
the prior mean using item features Z(a), but set a shared prior variance across articles. Specifically,

µ(a)
⇠ N

⇣
g(Z(a)),�2

⌘

R(a)
1 , . . . , R(a)

T
i.i.d.
⇠ N

⇣
µ(a), s2

⌘ .

First we address the choice of g,�2, s2, which are chosen during pre-training, and then the bandit
evaluation, which is standard Thompson sampling with a Gaussian-Gaussian model. We address
these one at a time.

Parameters

1. First, g is obtained by training a model to predict µ(a) from just Z(a) (no history of past
rewards), using the training set. For synthetic experiments, for g, we used a neural network
with almost the same architecture as for the autoregressive model we use for this dataset.
However, the model only takes Z(a) (and not previous rewards for a). We use all of the
same hyperparameters as we did to train the autoregressive model for this dataset. For news
datasets, we trained a DistilBERT model with a MLP on top that takes the embedded article
headlines Z(a) as input (and not previous rewards for a). We use the same hyperparameters
as we did to train the autoregressive model for this dataset, except for learning rates, which
were chosen to be the best out of several (for synthetic, 1e-2; for news setting, 1e-5 for both
the MLP head and the DistilBERT weights).

2. �2, s2 were chosen to be reasonable values, which in our experiments were 0.25 for s2

(which corresponds to maximum variance of a Bernoulli), and 1 for �2.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Bandit evaluation To obtain the posterior of µ(a)
| (R(a)

i)i 62M(a) where (R(a)
i)i 62M(a) denotes

observed rewards for arm a, we use a standard Gaussian-Gaussian posterior with known variances:

P
⇣
µ(a)
2 · | (R(a)

i)i 62M(a)

⌘
⇠ N

�
µ̃, �̃2

�

where

µ̃ =

0

@g
�
Z(a)

�

�2
+

sum
⇣
(R(a)

i)i 62M(a)

⌘

s2

1

A

1

�2
+

#
�
i 62M (a)

s2

!�1

s2

and

�̃2 =

1

�2
+

#
�
i 62M (a)

s2

!�1

.

Arms are chosen via Thompson sampling (Russo et al., 2020).

UCB For UCB we use the multi-arm bandit algorithm described in Section 6 of Abbasi-Yadkori
et al. (2011). We set the failure probability � = 0.1 and use sub-Gaussian parameter 0.5 (since we
have binary rewards).

SquareCB In these experiments, we use the flexible neural network p✓ with text attributes, but
instead of using Thompson sampling, we use SquareCB (Foster and Rakhlin, 2020), which is a
bandit algorithm that uses a regression oracle to predict the value of each action. Note that our
setting differs from the setting of SquareCB (Foster and Rakhlin, 2020), as SquareCB assumes that
the prediction model for action value is being learned online, while our prediction model has been
pretrained on historical data and is not learned online.

Figure 11: Regret comparison on news dataset for SquareCB and posterior sampling, both using the
flexible neural network sequence model using text attributes in 6.2.

For setting the learning rate � in SquareCB (Foster and Rakhlin, 2020), we follow Foster et al.
(2020) and consider a time-varying learning rate �t = �0t⇢, where �0 2 {10, 100} (a subset of
those suggested in Foster et al. (2020)), and ⇢ 2 {0.25, 0.5} are hyperparameters. While some hy-
perparameter combinations for SquareCB perform almost as well PS-AR FLEXIBLE NN (TEXT),
we remark that there is no principled approach to choosing the learning rate provided in existing
works (besides grid search by deploying the algorithm many times).

E.6 COMPARISON TO DECISION PRE-TRAINED TRANSFORMERS (DPT)

DPT (Lee et al., 2023b) trains a sequence model to predict the best action (mimicking an ex-
pert/optimal policy), given the current state and recent interactions within an environment (the “in-
context dataset”). This sequence model is trained across states and recent interactions and tasks.

Relationship between DPT and PS-AR Both methods are ways to use generative sequence mod-
els for decision making. Both also have theoretical results showing that they are equivalent to
Thompson (posterior) sampling, under certain sets of assumptions. However, there are a few key
differences between DPT and PS-AR:

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

• PS-AR predicts sequences of future rewards, while DPT predicts next (optimal) action.

• At decision-time, PS-AR needs to generate a sequence of rewards, which could be relatively
costly, while DPT only needs to generate one action.

• DPT requires an optimal or expert policy (can be approximate) to mimic in pretraining,
while PS-AR does not explicitly require such an expert policy.

• DPT’s training objective is only to identify the best action, and not to model the distribu-
tion of rewards for each action. DPT sequence models are effectively trained to predict
rank information, while PS-AR sequence models are trained to predict future rewards. It’s
possible that training to predict rank information gives the model less signal to learn from,
which might make training less efficient.

Additionally, one potentially interesting research direction is to investigate whether it may be fruitful
to combine DPT and PS-AR: for example, PS-AR can be used for generating in-context datasets for
DPT to train on. As another example, in our experiment below, we show that in our bandit setting,
DPT and PS-AR can use almost identical model architectures, and it is possible that pre-training on
one task can result in useful features for the other task.

Experiment details for implementing DPT. In order to make the most fair comparisons between
DPT and PS-AR, we design the model architecture and training for our implementation of DPT
to be as similar as possible to those used for PS-AR, while retaining the core aspects of DPT (e.g.
predicting and learning to predict the optimal next action). We also directly import how DPT samples
in-context datasets for pre-training from the paper and associated code.

We use a sequence model architecture that is almost identical to the corresponding sequence models
used in the news recommendation experiment setting. While our proposed model outputs a probabil-
ity for the next reward being a 1, given action features and previous rewards (“in-context dataset”)
for a given action, for DPT we use the same model, minus the sigmoid at the end, to produce a
real number. In the DPT sequence model, each arm has a copy of it’s own sequence model, and a
softmax is applied at the end to form a probability distribution over the set of candidate actions.

For training, we bootstrap data in the following way, that mirrors the procedure used in DPT. At
every iteration, we load a random batch of arms and their corresponding sequences of rewards. This
batch (size 5000 for the synthetic setting) is split into multiple bandit environments, each with 10
arms. Then, we use DPT’s method for generating in-context datasets for their bandit setting, where
actions are sampled according to a mixture of a Dirichlet and a point mass (Section 4 of (Lee et al.,
2023b)). These actions are sampled for a random number of history steps that is drawn uniformly
from [0, 499]. This in-context dataset is then used as input to the sequence model, which will output
probabilities across arms. The desired output is the true best arm, and the loss is cross-entropy loss.
This procedure uses the same data loader as PS-AR, with modifications to match the DPT objective.
Model selection is done using loss on the validation set.

We train these for 2500 epochs. The model hyperparameters are the same as for PS-AR, with the
exception of learning rate, which is 1e-3 for synthetic (the best out of 1e-1,1e-2,1e-3,1e-4).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Figure 12: Regret for DPT vs PS-AR on the synthetic setting (Section 6.1)

Figure 13: Preliminary bandit regret comparisons between DPT (Lee et al., 2023b) and PS-AR on
the synthetic setting (Section 6.1)

Experiment results DPT performs fairly similarly to our proposed method PS-AR. Both methods
have been theoretically shown to approximate Thompson sampling with a learned prior under re-
spective assumptions. Note that DPT does not provide regret bound results if their sequence model
is misspecified.

F WHEN IS AN AUTOREGRESSIVE SEQUENCE MODEL A VALID POSTERIOR
PREDICTIVE?

In Algorithm 2, we learn an autoregressive model to use in place of a posterior predictive in Algo-
rithm 1. We make this connection in Section 4 and establish a regret bound for Algorithm 1 that
holds whenever p✓ has low loss.

In this section, we address the following question: When is p✓ a valid posterior predictive, for some
underlying Bayesian model?

In order for an autoregressive generative sequence model to be a valid posterior predictive distribu-
tion, the sequence model to be infinitely exchangeable. We say that a sequence model is an infinitely
exchangeable sequence model if it generates infinitely exchangeable random variables (Definition
2).
Definition 2 (Exchangeablity). A sequence of random variables Y1, Y2, . . . , Yn is exchangeable if
for any permutation ⇡, the following are equal in distribution:

�
Y1, Y2, . . . , Yn

� D
=
�
Y⇡(1), Y⇡(2), . . . , Y⇡(n)

�
.

An infinite sequence of random variables is infinitely exchangeable if any finite subset is exchange-
able.

Practically, this means that the models we train need to be invariant to the order in which previous
outcomes are fed into the model. The key insight behind why infinitely exchangeable sequence
models are valid posterior predictives is De Finetti’s Representation Theorem (Theorem 2 below).
We state this Theorem for binary outcomes for simplicity (De Finetti, 1929; Heath and Sudderth,
1976), but it generalizes to real-valued outcomes (De Finetti, 1937).
Theorem 2 (De Finetti’s Representation Theorem for Binary Outcomes). If a sequence of binary
random variables {Yi}i2N is infinitely exchangeable, then there exists a unique distribution P (µ)
on [0, 1] such that for some µ ⇠ P (µ 2 ·),

Y1, Y2, Y3, · · · | µ
i.i.d.
⇠ Bernoulli(µ).

The implication of Theorem 2 is that any infinitely exchangeable sequence of binary random vari-
ables {Yi}i2N can equivalently be described as being generated by a particular Bayesian model
with a Bernoulli likelihood. Above, µ is a latent success probability that is drawn from some prior
distribution P (µ 2 ·).

33

	Introduction
	Problem formulation
	Posterior Sampling via Autoregressive Generation
	Key Insights: Connecting Sequence Modelling and Bayesian Inference
	Our Algorithm: Posterior Sampling via Autoregressive Generation
	Interpreting our Pre-Training Procedure as Empirical Bayes

	Regret Bound
	Related Work
	Experiments
	Synthetic Setting: Mixture Beta-Bernoulli
	News Recommendation Setting

	Discussion
	Posterior Sampling via Autoregressive Generation (PS-AR) Algorithm
	Empirical Comparisons of PS-AR Variants

	Extension to the Contextual Setting
	Finite vs Infinite Population Formulations and Thompson Sampling Variants
	Review of Thompson sampling in infinite populations, with mixture models.
	Thompson sampling in finite populations
	The gap between finite and infinite population formulations is small
	Similar Insights in Empirical Results

	Theoretical Results
	The Mean T(a) Approahces (a) for Large T.
	To Minimize Loss p needs to Approximate p*
	Formally Interpreting PS-AR as Thompson (Posterior) Sampling
	Proof of Theorem 1
	Bounding the Deployment Regret in Terms of Regret on a Simulator
	Proof of Proposition 1
	A Useful Definition
	A Helpful Lemma
	Main Proof of Proposition 1

	Experiment Details
	Synthetic Experiments: Mixture Beta-Bernoulli
	Alternative sampling methods given a sequence model
	Recovering the True Prior via Pretraining (Empirical Bayes)
	News Recommendation Experiment Details
	Bandit Algorithms
	Comparison to Decision Pre-Trained Transformers (DPT)

	When is an Autoregressive Sequence Model a Valid Posterior Predictive?

