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A ABLATION STUDIES

We performed different ablation studies changing a factor while keeping others equal: (i) we com-
pared our approach using both the dataset description and data meta-features with using only one
of these components; (ii) we compared several options of constructing the datasets graph: distances
measured with Euclidean distance or cosine similarity, and threshold and k-nearest neighbors (k-
NN) based edge assignments; (iii) we compared using zero, one, and two fusion networks; (iv) we
compared our approach predicting only the estimator and an entire pipeline. We also compared our
approach using each individual AutoML system separately while keeping all other factors equal.

A.1 DESCRIPTION EMBEDDING VS. DATA META-FEATURES

In order to verify the effectiveness of our framework, we build the datasets graph and train our
framework with both description embedding and data meta-features, with only description embed-
ding, and with only data meta-features respectively. Figure 1 compares performance between train-
ing our framework with both description embedding and data meta-features and with only one of
them. All of these results are obtained within 3 seconds using our zero-shot approach. We found
that embedding the dataset description alone often produces results that are nearly as good as using
both the dataset description and data meta-features.

Table 1 shows that using both data meta-features and description performs best or very close to the
best result on all datasets. However, to recommend an initial pipeline in constant time, independent
of the size of the dataset, we can use just the dataset descriptions, which performs surprisingly well,
as shown in Table 1, opening the door to real-time AutoML with very large datasets.

A.2 GRAPH CONSTRUCTION

We tried using several options to construct a graph: distances measured with Euclidean distance or
cosine similarity, and threshold and k-nearest neighbors (k-NN) based edge assignments. Euclidean
distance outperformed cosine similarity. We found thresholds created isolated nodes in graphs; kNN
assignments performed more robustly. We experimented with various values of k. If k is too large,
most nodes are connected and the neighborhood of a dataset is uninformative: in the extreme case
the entire graph forms a clique, leading to inaccurate predictions. In contrast, if k is too small, we
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Figure 1: Comparison of accuracy of test set with machine learning algorithm generated using both
description embedding and data meta-features, only description embedding, and only data meta-
features respectively. Embedding the dataset description alone often produces results nearly as good
as using both the description and the data. By embedding only the description, our system can select
an AutoML pipeline in constant time, independent of the size of the dataset.
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Datasets Both Data Description
Lymph 0.867 0.800 0.800
Heart-C 0.774 0.839 0.839
Vehicle 0.776 0.776 0.812
Hayes-Roth 0.769 0.750 0.673
Colleges 0.838 0.803 0.838
KC1 0.872 0.839 0.844
Banana 0.745 0.538 0.860
Cardi 1.000 0.216 1.000
Cnae-9 0.935 0.954 0.917
Seeds 0.952 0.857 0.857
Wall-Robot 1.000 1.00 0.980
Cardi-Multi 0.995 0.901 0.995
BachChoral 0.776 0.727 0.684
Cjs 0.982 1.000 1.000
LED-Display 0.760 0.720 0.700
Wine-Quality 0.686 0.692 0.512
SpeedDating 0.851 0.846 0.866
Mofn 1.000 1.000 1.000

Table 1: Comparison of performance between both description embedding and data meta-features
and with only one of them.

lose information from potential surrounding nodes, which results in lower prediction accuracy. We
found k = 20 worked well.

A.3 FUSION NETWORKS

In this work we combine three different types of data that live in different spaces: (i) an embedding
of text describing the data; (ii) meta-features of the data; (iii) and an embedding of text describing
the pipeline. A meaningful representation and similarity measure demands more than simply con-
catenating these feature vectors together: experimentally, we found that fusion networks produces
superior results compared to concatenation.

A.4 ESTIMATOR VS. PIPELINE

We compared our approach predicting only the estimator and an entire pipeline. Table 2 compares
testing performance within 3 seconds between our zero-shot approach for predicting machine learn-
ing pipelines using only a single AutoML system and the 3 second baselines.

Dataset Zero-Shot Linear Random Forest
Lymph 0.733 0.800 0.670
Heart-C 0.774 0.710 0.806
Vehicle 0.765 0.612 0.729
Hayes-Roth 0.654 0.404 0.731
Colleges 0.803 0.726 0.786
KC1 0.853 0.848 0.829
Banana 0.892 0.551 0.881
Cardi 1.000 0.432 1.000
Cnae-9 0.889 0.954 0.954
Seeds 0.905 0.905 0.905
Wall-Robot 0.991 0.907 1.000
Cardi-Multi 0.526 0.869 0.986
BachChoral 0.792 0.580 0.786
Cjs 0.993 0.846 0.971
LED-Display 0.720 0.740 0.680
Wine-Quality 0.688 0.451 0.678
SpeedDating 0.869 0.870 0.847
Mofn 1.000 1.000 1.000

Table 2: Comparison of testing performance within 3 seconds between our zero-shot approach for
predicting machine learning pipelines using only a single AutoML system and the 3 second base-
lines.

B DATASETS

Our dataset consists of 178 tabular OpenML datasets. OpenML datasets were filtered (using the
OpenML API) by the number of instances in the datasets between 100 and 50,000 examples which
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includes 1,807 datasets. These were filtered again by those that include descriptions (1,157 datasets),
by those that are supervised classification (289 datasets), and by those that are tabular with descrip-
tions longer than ten words while removing duplicates (n = 178 datasets). Each dataset D is
associated with a (binary or multi-class) classification task and a dataset description M(D).

C COMPUTATION TIME

Training time is two hours on Google Colab GPUs (NVIDIA Tesla K80). Total testing time is under
3 seconds and includes the time of embedding, meta-feature extraction, neural network prediction,
hyper-parameter tuning, and running the predicted algorithm. Meta-features and runtime dominate.
See the supplemental material for a break-down of the testing time on individual dataset. Embedding
time is around 11 milliseconds independent of data size. Prediction time is around 5 milliseconds,
also independent of dataset size. In contrast, data meta-feature extraction time depends linearly
on dataset size. At run-time, the predicted algorithm performs a single fit to the data to compute
performance, so runtime also depends on dataset size. For datasets of up to 50,000 instances, this
processing time is less than 3 seconds. Table 3 gives the break-down of the running times for our
approach.

Dataset Total Features Predict Run
Lymph 0.570s 0.068s 0.044s 0.348s
Heart-C 0.215s 0.052s 0.036s 0.017s
Vehicle 0.234s 0.055s 0.040s 0.028s
Hayes-Roth 0.410s 0.022s 0.037s 0.241s
Colleges 0.249s 0.083s 0.036s 0.020s
KC1 0.212s 0.042s 0.035s 0.025s
Banana 2.071s 0.022s 0.039s 1.899s
Cardi 2.835s 0.062s 0.040s 2.623s
Cnae-9 2.058s 1.870s 0.035s 0.042s
Seeds 0.495s 0.024s 0.036s 0.325s
Wall-Robot 0.205s 0.024s 0.039s 0.032s
Cardi-Multi 0.296s 0.057s 0.108s 0.021s
BachChoral 0.716s 0.245s 0.036s 0.325s
Cjs 0.534s 0.180s 0.175s 0.209s
LED-Display 0.210s 0.030s 0.038s 0.034s
Wine-Quality 0.284s 0.039s 0.040s 0.095s
SpeedDating 1.054s 0.728s 0.036s 0.179s
Mofn 0.347s 0.042s 0.036s 0.160s

Table 3: Test time breakdown of our zero-shot approach.

While these computation times may seem trivially small, consider the impact for real-time AutoML
on large datasets. To process massive tables with millions of rows and columns in real-time, we can
use sampling to compute meta-features efficiently.

C.1 PERFORMANCE COMPARISONS

Figure 2 compares the accuracy on the test set between our zero-shot approach and a regularized
linear model and random forest baselines, all given 3 seconds.
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Figure 2: Comparison of accuracy on the test set between our zero-shot approach and a regularized
linear model baseline (left) and random forest baseline (right), all given 3 seconds of computation.
Our zero-shot approach systematically outperforms baselines.
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Figures 3 and 4 compare the performance on each dataset and normalized cumulative performance
between our zero-shot approach given 3 seconds and AutoML systems AutoSklearn, OBOE, TPOT,
and AlphaD3M given 1 minute and random forest baseline given 1 minute of computation. Nor-
malized cumulative performance is the sum of the performance of all previous datasets, ranked by
performance, divided by the number of datasets. These other AutoML systems are unable to perform
within the regime of 3 seconds. 7/23/20, 1:18 PMfigure_plot.ipynb - Colaboratory
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import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
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Figure 3: Comparison of performance on each dataset between our zero-shot AutoML given 3
seconds and AutoSklearn, OBOE, TPOT, AlphaD3M, and random forest given 1 minute.
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Figure 4: Comparison of normalized cumulative performance between our zero-shot AutoML given
3 seconds and AutoML systems AutoSklearn, OBOE, TPOT, and AlphaD3M given 1 minute and
random forest baseline given 1 minute of computation.

Figure 5 and 6 compare performance on each dataset and normalized cumulative performance be-
tween our zero-shot approach given 3 seconds and a regularized linear model and random forest
baselines given 3 seconds of computation. 7/23/20, 1:18 PMfigure_plot.ipynb - Colaboratory
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Figure 5: Comparison of performance on each dataset between our zero-shot approach given 3
seconds and a regularized linear model and random forest baselines given seconds of computation.

Figure 7 compares performance on each test dataset between our zero-shot AutoML given 3 sec-
onds and AutoML systemsAutoSklearn, OBOE, TPOT, and AlphaD3M given 1 minute and random
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 Figure 6: Comparison of normalized cumulative performance between our zero-shot approach given
3 seconds and a regularized linear model and random forest baselines given seconds of computation.

forest baseline given 1 minute of computation. Figure 7 shows that AutoSklearn performs better on
the wine quality dataset than other systems. Figure 8 compares performance on each test dataset
between our zero-shot AutoML given 3 seconds and regularized linear model and random forest
baselines, given 3 seconds of computation.7/23/20, 1:18 PMfigure_plot.ipynb - Colaboratory
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Figure 7: Comparison of performance on each test dataset between our zero-shot AutoML given
3 seconds and AutoML systems AutoSklearn, OBOE, TPOT, and AlphaD3M given 1 minute and
random forest baseline given 1 minute of computation.
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Figure 8: Comparison of performance on each test dataset between our zero-shot AutoML given 3
seconds and regularized linear model and random forest baselines, given 3 seconds of computation.

D HYPER-PARAMETER OPTIMIZATION

During training, we use the hyper-parameters of the best pipelines among the AutoML systems. Ini-
tially, we store the value of the hyper-parameters for each pipeline primitive that worked best across
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all training datasets. We then use these hyper-parameters as defaults when we select a particular
primitive on the test set. Our system then recommends the pipeline together with these hyper-
parameters. Notice the system is zero-shot: no models have been trained on the test dataset. After
recommending a pipeline, we further tune its hyper-parameters using random search as implemented
in scikit-learn, while time remains. Notice this step does fit the parameters of the model, which can
be slow on large datasets; regardless, we terminate the search after 3 seconds have elapsed, even if
no parameter fits have yet completed. With this short time budget, we found random search to be as
effective as Bayesian optimization.

E MACHINE LEARNING PIPELINE PREDICTION

We extend our framework from estimators to recommending pipelines. We compute the best
pipelines predicted by any AutoML systems on each training dataset. To embed a pipeline, we con-
catenate the embedding of each type of primitive (eg, pre-processor, features selector, or estimator)
in the pipeline. The remaining processes are the same as described in the pre-processing, training,
and testing Algorithms. In our experiments, we select among 15 different types of pre-processors
and feature selectors in addition to 16 different types of estimators. Perhaps most importantly, we
share the GNN weights for predicting different pipeline primitives.

F IMPLEMENTATION DETAILS

We use stochastic gradient descent with a constant learning rate of 0.0002 and momentum of 0.9
for training all neural networks. The fusion network fφ has 2 layers and 786,432 parameters. The
fusion network gθ has a single layer and 786,432 parameters. The GNN hW,z uses 3 GAT layers
with input and output dimensions of (512, 512), (512, 256), and (256, 256), and a total of 462,848
parameters.

G DESCRIPTIONS

Tables 7, 5, and 6 show examples of estimator, pre-processor, and feature selector descriptions
embedded using our approach.

Dataset Description
Bank Marketing The data is related with direct marketing campaigns of a Portuguese banking institution. The marketing

campaigns were based on phone calls. Often, more than one contact to the same client was required, in
order to access if the product (bank term deposit) would be (or not) subscribed. The classification goal is to
predict if the client will subscribe a term deposit (variable y).

Dresses Sales This dataset contain attributes of dresses and their recommendations according to their sales. Sales are
monitor on the basis of alternate days. The attributes present analyzed are: Recommendation, Style, Price,
Rating, Size, Season, NeckLine, SleeveLength, waiseline, Material, FabricType, Decoration, Pattern, Type.
In this dataset they are named Class(target) and then subsequently.

Amazon Reviews Dataset are derived from the customers reviews in Amazon Commerce Website for authorship identifica-
tion. Most previous studies conducted the identification experiments for two to ten authors. But in the online
context, reviews to be identified usually have more potential authors, and normally classification algorithms
are not adapted to large number of target classes. To examine the robustness of classification algorithms,
we identified 50 of the most active users (represented by a unique ID and username) who frequently posted
reviews in these newsgroups. The number of reviews we collected for each author is 30. Attribute Informa-
tion: attribution includes authors’ linguistic style such as usage of digit, punctuation, words and sentences’
length and usage frequency of words and so on.

Table 4: Examples of dataset descriptions.

Pre-Processor Description
Robust Scaler This Scaler removes the median and scales the data according to the quantile range. The IQR is the range

between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile).
PCA Principal component analysis (PCA). Linear dimensionality reduction using Singular Value Decomposition

of the data to project it to a lower dimensional space. The input data is centered but not scaled for each
feature before applying the SVD.

Normalizer Normalize samples individually to unit norm. Each sample (i.e. each row of the data matrix) with at least
one non zero component is rescaled independently of other samples so that its norm (l1 or l2) equals one.

Table 5: Examples of pre-processor descriptions.

6



Under review as a conference paper at ICLR 2021

Selector Description
Select Percentile Select features according to a percentile of the highest scores.
Select from Model Meta-transformer for selecting features based on importance weights.
RFE Feature ranking with recursive feature elimination. Given an external estimator that assigns weights to

features (e.g., the coefficients of a linear model), the goal of recursive feature elimination (RFE) is to select
features by recursively considering smaller and smaller sets of features.

Table 6: Examples of feature selector descriptions.

Estimator Description
Random Forest A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of

the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample
size is always the same as the original input sample size but the samples are drawn with replacement if
bootstrap=True (default).

Decision Tree Decision Trees (DTs) are a non-parametric supervised learning method used for classification and regres-
sion. The goal is to create a model that predicts the value of a target variable by learning simple decision
rules inferred from the data features.

Linear SVC Linear Support Vector Classification is similar to SVC with parameter kernel=’linear’, but implemented in
terms of liblinear rather than libsvm, so it has more flexibility in the choice of penalties and loss functions
and should scale better to large numbers of samples. This class supports both dense and sparse input and
the multiclass support is handled according to a one-vs-the-rest scheme.

Gradient Boosting Gradient boosting is a machine learning technique for regression and classification problems, which pro-
duces a prediction model in the form of an ensemble of weak prediction models, typically decision trees. It
builds the model in a stage-wise fashion like other boosting methods do, and it generalizes them by allowing
optimization of an arbitrary differentiable loss function.

SVC C-Support Vector Classification. The implementation is based on libsvm. The fit time scales at least
quadratically with the number of samples and may be impractical beyond tens of thousands of samples.

Extra Trees This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees)
on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control
over-fitting.

Adaboost An AdaBoost classifier is a meta-estimator that begins by fitting a classifier on the original dataset and then
fits additional copies of the classifier on the same dataset but where the weights of incorrectly classified
instances are adjusted such that subsequent classifiers focus more on difficult cases.

KNN Classifier implementing the k-nearest neighbors vote. KNN is a non-parametric lazy learning algorithm.
Its purpose is to use a database in which the data points are separated into several classes to predict the
classification of a new sample point.

Gaussian NB GaussianNB implements the Gaussian Naive Bayes algorithm for classification. The likelihood of the
features is assumed to be Gaussian.

SGD This estimator implements regularized linear models with stochastic gradient descent (SGD) learning: the
gradient of the loss is estimated each sample at a time and the model is updated along the way with a
decreasing strength schedule (aka learning rate). SGD allows minibatch learning, see the partial fit method.
For best results using the default learning rate schedule, the data should have zero mean and unit variance.

QDA Quadratic Discriminant Analysis (QDA). A classifier with a quadratic decision boundary, generated by
fitting class conditional densities to the data and using Bayes’ rule.

LDA A classifier with a linear decision boundary, generated by fitting class conditional densities to the data and
using Bayes’ rule. The model fits a Gaussian density to each class, assuming that all classes share the same
covariance matrix. The fitted model can also be used to reduce the dimensionality of the input by projecting
it to the most discriminative directions.

Logit Logistic regression is a statistical model that in its basic form uses a logistic function to model a binary
dependent variable.

Multinomial NB The multinomial Naive Bayes classifier is suitable for classification with discrete features. The multinomial
distribution normally requires integer feature counts.

Bernoulli NB Naive Bayes classifier for multivariate Bernoulli models. This classifier is suitable for discrete data. The
difference is that while MultinomialNB works with occurrence counts, BernoulliNB is designed for bi-
nary/boolean features.

Bagging A Bagging classifier is an ensemble meta-estimator that fits base classifiers each on random subsets of the
original dataset and then aggregate their individual predictions (either by voting or by averaging) to form a
final prediction.

Table 7: Examples of a subset of estimator descriptions.
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