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1 Calculating Reflectance Intensity IR[u, v]1

IR[u, v] = F I [u, v] · FD[u, v] ·M [u, v] (1)

For calculating the reflectance intensity in Eq. 1, we expanded the work in Hossny et al. [2020]2

to simulate the reflection intensity of different surfaces by incorporating the incidence vector from3

the simulated sensor and the surface. We obtained the reflectance parameters of the different4

surface materials M [u, v] from Kashani et al. [2015] and used a standard 2D Gaussian distribution5

M [u, v] ∼ N(µ, σ|s) to simulate the fine grains of the material. The µ, σ are the statistical parameters6

of different materials (e.g. asphalt, grass, etc as obtained from Kashani et al. [2015]) and s is the7

seed for the random number generator. The seed s was assigned based on the unique identification8

number of each 3D mesh instance in order to allow variability in the surface grain and the reflectance9

intensity accordingly.10

Additionally, we considered two sources of intensity fall-off in our calculation of the reflectance11

intensity, namely inverse square law or light attenuation FD[u, v] and incidence angle F I [u, v] of12

LiDAR beams on surfaces.13

Inverse Square Law: Light source intensity is inversely proportional to squared the distance14

between the source and the object, i.e. intensity decreasing at a quadratic rate as it travels from the15

light source according to Eq. 2. The attenuation coefficient C for the visible light source is 0.25.16

However, due to its narrow band of wavelengths, the laser beam has a Gaussian profile which diverges17

with small divergence angle θ ≈ 0.3mrad as it travels beyond its Rayleigh range Damask [2004].18

Thus, the attenuation coefficient C is as low as tan−2 θ|λ≈532nm.19

Laser light intensity is inversely proportional to the squared distance between the laser source and20

the object, i.e. intensity decreasing at a quadratic rate as it travels from the light source according to21

Eq. 2.22

I =
C ∗ P
πd2

(2)
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where P and d are the power of the light source and the distance from the light source. which renders23

Eq. 2 to be;24

I =
P

tan2 θπd2
(3)

When comparing tan−2 θ|θ≈532nm in Eq. 3 of a laser beam to the 0.25 of a point light source in Eq. 2,25

the attenuation to the laser light source is infinitesimal. Thus, we considered it safe to assume that the26

intensity fall-off is linear and thus the fall-out image at pixel u, v is defined as;27

FD[u, v] =
1

|| p[u, v]− c[u, v] ||
(4)

where p and c are the coordinates of the intersection point on the surface and the sensor location (e.g.28

camera), respectively.29

Incidence Angle The incidence angle of LiDAR laser beams on the surface of the object affects the30

intensity of the reflected beams. It is modelled with an inner product between the vector representing31

the laser beam and the surface normal of the object. The reflectance intensity map at each pixel u, v32

is calculated as;33

F I [u, v] =
〈
n[u, v],vT [u, v]

〉
(5)

where n,v are the surface normal and the incidence vector, respectively.34

To that end and by expanding Eq. 1, the reflectance intensity map at each pixel u, v can be calculated35

as;36

IR[u, v] =

〈
n[u, v],vT [u, v]

〉
·M [u, v]

|| p[u, v]− c[u, v] ||
(6)

where n[u, v],v[u, v],p[u, v], c are the normal, incidence, intersection maps (equirectangular as37

suggested in Hossny et al. [2020]); M [u, v] is randomly generated with µ, σ obtained from Kashani38

et al. [2015]; and < ·, · > is the inner product between two vectors (dot product).39

2 Dataset Realism Comparison40

In this section, we demonstrate and compare the realism of our VoxelScape dataset in comparison to41

both other synthetic point cloud datasets and real point cloud datasets. Unlike other synthetic point42

cloud datasets, our VoxelScape dataset was generated using an accurate simulated physical 3D LiDAR43

sensor (i.e. Velodyne HDL-64E) which make the generated point cloud scans exhibit some of the key44

attributes of real point cloud scans from real physical LiDAR sensors. For example, in Figure 1, we45

can qualitatively assess the realism of the sample point cloud scan from our VoxelScape dataset and46

how it mimics the real point cloud scan from SemanticKITTI in terms of vertical/horizontal resolution47

of the capturing LiDAR sensor and the missing points due to occlusion of background/foreground48

objects. On the other hand, the sample point cloud scan from the synthetic SynthCity point cloud49

dataset Hackel et al. [2017], it lacks the accurate emulation of a physical LiDAR sensor, which in50

return make the points in their generated point cloud scan seems to be uniformly distributed without51

taking into consideration any of the physical attributes of a real LiDAR sensor. Another synthetic52

LiDAR point cloud dataset shown in Figure 1, is the GTA-LiDAR dataset Yue et al. [2018]. Despite53

the more accurate emulation of a physical LiDAR sensor of this dataset, it still suffers from lack54

of realism due to its simplification of the 3D meshes of asset objects while they are rendering their55

traffic scenes. This can be demonstrated by their oversimplified spherical meshes of trees and shrubs56

in the top-left corner of the sample point cloud scan of GTA-LiDAR in Figure 1. Another limitation57

of the GTA-LiDAR dataset, is the low number of ground-truth semantic labels they provide, where58

they only provide 3 class labels (cars, persons and poles).59
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(a) SemanticKITTI Behley et al. [2019] (b) VoxelScape (ours)

(c) SynthCity Hackel et al. [2017] (d) GTA-LiDAR Yue et al. [2018]

Figure 1: Qualitative realism comparison between real point cloud dataset and simulated LiDAR
point cloud datasets.

Table 1: Statistical measure of the range and the intensity values of all point cloud scans in our
VoxelScape dataset and the SemanticKITTI dataset Behley et al. [2019].

Range Intensity

SemanticKITTI Behley et al. [2019] Mean 12.12 0.21
± Std 12.32 0.16

VoxelScape (ours) Mean 10.30 0.15
± Std 10.95 0.01

Furthermore, in Table 1, we report the statistical measure in terms of mean and standard deviation60

(Std) of the range and intensity values across all the point cloud scans of our VoxelScape dataset61

and the real point cloud dataset, SemanticKITTI Behley et al. [2019]. As it can be shown from the62

table, the mean and Std measures of our VoxelScape dataset is quite close to the measures from the63

SemanticKITTI dataset, which further proves the realism of our VoxelScape dataset.64

3 Class Labels Definition65

In this section, we provide a full description of the total 32 class labels of our VoxelScape dataset.66

The full description can be found in next in Table 2.67

Table 2: Class definitions.

class definition
building Our city generator includes three different types of buildings (residential, com-

mercial and industrial ). This class label includes all three different building types
including their doors, windows and walls.
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road This class refers to any area that a motorised vehicle (car, bus, truck and motor-
bike) can drive on (typically asphalt areas, excluding lane-lines and crosswalks).

sidewalk This class refers to areas made for vulnerable road users (pedestrians and bicy-
clists) to walk/move on excluding the curb.

car Any motorised vehicle other than trucks, buses and motorbikes. We have a variety
of car models including SUV, sedan and hatch-back cars .

vegetation This class includes all greenery foliage or plants and trees’ bushes and shrubs .

adult This class refers to adult pedestrian.

crosswalk Zebra marking on the road for pedestrian crossing.

truck This class includes all vehicles with a body that is separate from the driver cabin
such as ute (in Australia) or pickup trucks.

trunk This refers to the tree trunk excluding all its greenery parts (i.e. vegetation) .

pole This class refers to street light poles as well as traffic-light/sign poles .

curb This class refers to the concrete edge of a sidewalk.

terrain This class refers to all planar surfaces that typically not an asphalt nor a sidewalk
such as: grass and gravel.

bus-stop This class refers to the bus-stop structure including all its metal, plastic/glass
parts and seats.

bus This class refers to all different types of buses including school buses.

bicyclist This class refers to the person riding the bicycle.

lane-
marking

This class refers to all line markings on the road including dashed and solid ones.

kid This class refers to child pedestrians.

parking This class refers to areas in the road that are dedicated for parking vehicles.

trash-can This class refers to all different shapes of trash cans that typically exist on the
sides of the road.

bicycle This class refers to the bicycle itself excluding the bicyclist person.

motorcyclist This class refers to the person riding the motorcycle.

motorcycle This class refers to the motorcycle itself excluding the motorcyclist person.

seat This class refers to street prop’s seat excluding the bus stop seat .

mailbox This class refers to the mailbox container that commonly exist on the sides of the
road.

fire-
hydrant

This class refers to the fire-hydrant or firecock that commonly exist on the sides
of the road. .

traffic
sign

This class refers to all road signs excluding its mounting pole .

construction-
barrier

This class refers to all temporary barriers that are used during roadworks.

phone-
booth

This class refers to the full structure of street phone-booth.

construction-
cone

This class refers to all temporary red/orange cones that are used during roadworks
.

fence This class refers to any permanent separators or barriers inside or on the sides of
the road.
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traffic-
light

This class refers to the box that contains the traffic lights excluding its mounting
pole.

plant-pot This class refers to street pots that contains plants excluding the plants themselves
that typically exist on the sides of the road.

4 Baseline Setup68

4.1 Point-wise Semantic Segmentation Task69

In our two baseline deep neural network (DNN) models, SqueezeSegV2 model Wu et al. [2019]70

and DarkNet53 model Milioto et al. [2019], the input point cloud data to them were mapped to71

a 2D representations using sphere projection following the procedure introduced in Milioto et al.72

[2019] and no data augmentation were utilised. The resolution of the 2D projected point cloud scan73

for both models were 1024(W) X 64(H). For all the SqueezeSegV2 models, we trained them using74

PyTorch and a stochastic gradient descent (SGD) as an optimiser with a learning rate of 0.002 and75

momentum of 0.9 for a maximum 200 epochs and we used a batch size of 20. For the DarkNet5376

models, we trained them using PyTorch and SGD with a learning rate of 0.01 and momentum of77

0.9 for a maximum 150 epochs and we used a batch size of 16. These parameters were empirically78

chosen based on the experimental results reported in Behley et al. [2019]. All the experiments were79

run on a desktop with Intel i7 CPU and a NVIDIA Quadro RTX 5000 GPU.80

4.2 3D Object Detection Task81

The input to our baseline DNN model, PointPillars Lang et al. [2019] is the 4-channel (x, y, z,82

intensity) raw point cloud scans and no data augmentation were utilised for the three models outlined83

in Table 5 of the main paper. The architecture parameters such as: xy resolution, max number84

of pillars and max number of points per pillar, ..etc were adopted from the settings for the KITTI85

experiment defined in the PointPillars paper in Lang et al. [2019]. To comply with the point cloud86

range for the KITTI dataset, the detection range for the three models was clipped to [0..70] in x,87

[-40..40] in y and [-3..1] in z for all three object classes. We trained the three PointPillar models88

using PyTorch and Adam optimiser with initial learning rate of 0.001 and weight decay of 0.01 for a89

maximum 150 epochs and we used a batch size of 4. Regarding the evaluation metric, the average90

precision (AP), we used the 3D IoU as the matching criteria, where we used 3D IoU threshold of 0.591

for pedestrians and cyclists and 0.7 for cars. All the experiments were run on a desktop with Intel i792

CPU and a NVIDIA Quadro RTX 5000 GPU.93

5 Results of Baseline DNN Intensity (+/-INT) Models94

In our first experiment, we were interested in assessing the effect of our simulated intensity values95

and whether it could influence the performance of the trained DNN models. Having intensity values96

as part of the input to DNN models were shown to help boosting their performance in 3D perception97

tasks such as 3D object detection Yan et al. [2020], Qi et al. [2018] and semantic segmentation Wu98

et al. [2018], Zhao et al. [2020]. To that end, we trained two versions (w/wo using the intensity (INT)99

values) of the baseline DNN models using our VoxelScape dataset and tested them directly without100

any fine-tunning on real datasets i.e. SemanticKITTI Behley et al. [2019]. In Table 3, we expand the101

reported results from the main paper in Table 3, to include a more detailed intersection-over-union102

(IoU) scores over each class from the validation split of the SemanticKITTI dataset. As it can be103

noticed fro the scores in the table, the DNN models tend to be benefiting from the added intensity104

values in general. More specifically, extremely higher and lower reflective distinctive objects such as105

cars and roads, both the trained baseline DNN models with our VoxelScape intensity values (+INT),106

achieved higher IoU scores on them.107

6 Qualitative Results108

In Figure 2, we present some qualitative results of the fine-tuned baseline DNN model, SqueezeSeqV2109

(VS-FT), on the SemanticKITTI dataset which was initially trained on our VoxelScape dataset. We110
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Table 3: Evaluation of the baseline DNN models trained on our VoxelScape dataset (w/wo using the
intensity (INT) values) when tested on the validation split of the SemanticKITTI Behley et al. [2019].
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SqueezeSeqV2(-INT) Wu et al. [2019] 7.4 20.3 17.5 3.5 0.0 20.4 14.4 0.6 0.2 0.6 1.4 16.5 3.3 27.8 0.7 0.9 0.1 3.3 7.6 1.3
SqueezeSeqV2(+INT) Wu et al. [2019] 9.5 30.2 19.5 1.5 0.0 25.4 43.7 0.3 0.1 0.2 2.2 14.1 2.0 31.4 0.6 1.4 0.0 5.6 0.7 1.4

Darknet53(-INT) Milioto et al. [2019] 7.9 24.7 17.7 3.5 0.0 29.5 14.1 0.4 0.2 0.6 0.1 20.3 5.4 21.2 1.4 1.5 0.0 1.8 7.2 1.4
Darknet53(+INT) Milioto et al. [2019] 10.2 26.3 17.6 0.1 0.0 29.0 46.3 0.6 0.0 0.7 3.8 26.8 4.6 31.8 0.4 1.7 0.0 0.9 2.4 1.3

SqueezeSeqV2 Wu et al. [2019]

SqueezeSeqV2 (VS-FT) Wu et al. [2019]

Ground Truth
road sidewalk car

buildingterrainvegetation other-objecttrunk

parking pole

unlabeled

motorcycle

Figure 2: Sample prediction of our fine-tuned SqueezeSeqV2 (VS-FT) in comparison to the Squeeze-
SeqV2 model that was trained only on the SemanticKITTI without any fine-tuning.

compare it also against the same SqueezeSeqV2 but without utilising the initial weights from the111

trained model on our VoxelScape dataset. As it can be shown, the predictions of the fine-tuned112

model SqueezeSeqV2 (VS-FT), tends to provide more consistent predictions with lower false positive113

predictions.114

7 Dataset Usage115

The two main tasks that the VoxelScape dataset can be utilised for are: semantic segmentation116

and 3D object detection on point cloud data. Other use case for the dataset is the unsupervised117

domain-adaptation between real and synthetic point cloud datasets to bridge the gap between the two118

domains.119

8 Dataset Access and Maintenance120

should include download linke and assurance for the availability as well as the folder structure after121

the download122

The dataset is publicly available through https://voxel-scape.github.io/dataset/.123

The dataset is hosted on a business Office 365 OneDrive account which is maintained by the University124

of Technology Sydney (UTS)/Australia. The hosted OneDrive repository can be publicly accessed125

with long-term availability (5 years that can be extended).126

9 Dataset License127

The dataset is published under the Creative Commons Attribution-Non Commercial 4.0 International128

License https://creativecommons.org/licenses/by-nc/4.0/. This means that it129

can be used for research and educational purposes but appropriate credit must be given, a link to130

the license must be provided, and an indication if changes were made. This may be done in any131

reasonable manner, but not in any way that suggests the licensor endorses you or your use. We make132

no representations or warranties.133
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Figure 3: Folder structure of our VoxelScape dataset.

10 Dataset Structure134

After downloading and un-zipping each sequence folder from the above access link into ‘/Vox-135

elScape/dataset/’ directory. The data should be organized as in Figure 3. As it can be shown,136

internally each sequence folder contains four sub-folders, namely:137

• velodyne: contains the point clouds for each scan in each sequence. Each .bin scan is a list138

of float32 points in [x,y,z,intensity] format.139

• bboxs: contains the 3D bounding boxes annotation of the 9 object classes in the dataset.140

Each ‘.pkl’ file contains the 8-vertices of the 3D bounding box and class labels for each141

object exist in the corresponding .bin scan.142

• kitti_labels: contains only 19 merged/subset semantic class labels, which correspond to the143

labels exist in the SemanticKITTI dataset, for each scan in each sequence. Each .label file144

contains a uint32 label for each point in the corresponding ‘.bin’ scan.145

• orig_labels: contains the total 32 semantic class labels introduced in the VoxelScape dataset.146

Each ‘_subl.label’ file contains a fine-grained uint32 label for different attributes of each147

object in the corresponding ‘.bin’ scan.148

11 Dataset Visualization149

In order to facilitate the process to work with the VoxelScape dataset, we have created a devkit150

repository for it on github. The devkit repo contains helper scripts to open, visualize and process151

point clouds and annotations from the VoxelScape dataset. The github repo can be accessed through:152

https://github.com/voxel-scape/voxelscape-devkit153
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