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A RELATED WORKS

Regularization plays a key role in enhancing the generalization ability of ML and DL models by
constraining the learning process to mitigate overfitting. According to Goodfellow et al. (2016), it
can be defined as “any modification we make to a learning algorithm that is intended to reduce its test
error but not its training error” [Heaton| (2018). As Zhang and Tian (2022) highlighted, regularization
improves model performance by reducing overfitting and increasing robustness against noise, allow-
ing the model to better capture relevant patterns [Tian & Zhang| (2022). Although well established
in general ML contexts, HAR-specific regularization strategies remain scarce, particularly for time-
series data from wearable devices. Most existing approaches focus on architectural modifications or
loss function adjustments, leaving data-centric regularization largely underexplored.

Classical methods include ¢; regularization [Tibshirani| (1996)), {5 regularization [Hoerl & Kennard
(1970), and their variants. For example, Wang et al. (2019) applied ¢5 regularization to deep models’
input layers to improve performance. Other strategies modify input data, such as through feature
extraction Liu et al.| (2022) or dimensionality reduction via Principal Component Analysis (PCA)
Tibshirani| (1996). However, the literature on HAR remains limited. One of the few exceptions
is the work of Bento et al. [Bento et al.[|(2023), which explored the adaptation of general-purpose
methods—such as Distributionally Robust Optimization (DRO) Kuhn et al.| (2024), Cutmix |Yun
et al.[{(2019), and Sharpness-Aware Minimization (SAM) [Foret et al.|(2021))—to accelerometer data.
While relevant, these efforts largely rely on repurposing generic techniques for a domain-specific
challenge.

Thus, despite the progress achieved with adaptations of methods like DRO and SAM for wearable
sensor data |[Kuhn et al.[(2024)), the field still lacks a well-defined, data-driven regularization frame-
work tailored explicitly to HAR.

B METHODOLOGY

B.1 MODELS

This work focused on the Time-LogCosh-GAN (TLCGAN)Souza et al.| (2023)) model to generate
synthetic data. The Time-Series LogCosh Generative Adversarial Network (Time-LogCosh-GAN)
is a model with a classical GAN architecture. Its noise vector uses two different concatenated noises
as input for the generator. Its loss is a logarithmic, hyperbolic cosine loss, and the model is trained
using 10-fold stratified data for 200 epochs, with a learning rate [ = 0.0001 and batch size equal to
o.

In this evaluation, the ML classifier used is an essential aspect of the analysis, so we chose the
DClassifier|[Singh et al.| (2020)), Time-Series Random Forest (TSRF)for, Time-Series Bag of features
(TSBF) [fea, and TS-Classifier hfawaz| (2020) because they are the state-of-the-art models for this
dataset.

Deep ConvLSTM with self-attention for human activity decoding using wearable sensors (DClassi-
fier)Singh et al.[(2020) is the state-of-the-art classifier and the baseline for this task on the datasets
adopted. It is a daily activity classifier based on a Convolutional Long Short-Term Memory (ConvL-
STM) network. It is also a baseline classifier for five datasets of daily activities, and it is a promising
method for accurately recognizing human activities using wearable sensor data. We trained the
model using 3 CNN filters and one layer for 10-fold cross-validation (default); 16 epochs, with a
learning rate [r = 10—4 and batch size equal to 32. We used the SNOW mode with the attention
length equal to 32 and the output length equal to 10.

Time Series Random Forest (RF) for/is a random forest classifier for time series. It fits the classifiers
based on various sub-samples of the dataset and extracts the mean, the standard deviation, and the
slope for each window. Then, a random forest is built using these features as input data. We used the
Gini index Brown & Myles| (2009)) as a criterion, using all possible workers, the number of windows
equal to the respective dataset, and the random state equal to 43.

Time-Series Bag of features (TSBF) [fea is a random forest-based classifier that extracts random
subsequences from each input, splitting it into several intervals. Some statistics are selected from
these extractions: the mean, the standard deviation, and the slope. In this process, one random forest
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is trained using the subsequences, and the other is fitted using the information extracted as features.
We use a random state equal to 43 and the others’ configuration by default.

Time-series Classifier (TS-Classifier) hfawaz| (2020)) is a time-series classifier with a simple archi-
tecture, just composed of Conv1D, batch normalization, Relu, and Average pooling. We used it with
the input size equal to the temporal window for each dataset and the batch size equal to 16, and
trained it for 16 epochs.

B.2 DATASETS AND METRICS

We used the UTD-MHAD dataset |Chen et al.| (2015)), which consists of a publicly available dataset
designed for human action recognition. The UTD-MHAD dataset contains sensor data from wear-
able devices that capture various human actions. The dataset includes 27 actions performed by eight
different individuals. It is composed of accelerometer, gyroscope, and magnetometer data. This
dataset has been widely used for research on HAR using ML techniques; in particular, DClassifier
Singh et al.|(2020) uses it.

Mobile HEALTH (MHEALTH) dataset [Banos et al.| (2014). This dataset features 12 different ac-
tivities, each carried out by ten participants. The objective was to simulate typical daily activities,
focusing on the movements of various body parts and the intensity of these actions. The gathered
data comprises readings from multiple sensors, including an accelerometer and ECG.

The WISDM Smartphone and Smartwatch Activity and Biometrics Dataset |[Weiss comprises data
obtained from 51 participants, each tasked with completing 18 activities for 3-minute intervals.
Participants wore a smartwatch on their dominant hand and carried a smartphone in their pocket.
Data collection was overseen by a custom app running on both devices. Sensor data was collected
from the accelerometer and gyroscope of the smartphone and smartwatch, totaling four sensors.

Wearable Human Activity Recognition Folder (WHARF) Bruno et al.|(2013) is a public repository
of code and data sets for Human Activity Recognition systems based on information provided by
wearable sensors.

As suggested in |Singh et al.| (2020), we divided the dataset into two: UTD-MHADI (referred to as
MHADI1) and UTD-MHAD?2 (referred to as MHAD?2) datasets. The first contains 21 activities, and
the second contains six activities. All previously cited datasets were divided into 10-stratified folds
with a proportion of 90% of data for training and 10% for testing. We only used the data from the
accelerometer sensor.

B.3 HYPERPARAMETERS

Although our primary focus lies in evaluating synthetic datasets, we also extended our investigation
to include the corresponding real datasets to validate the general applicability of our method. All
experiments, synthetic and real, were conducted under consistent evaluation protocols, particularly
with respect to hyperparameter selection.

We explored two key hyperparameters: the constant value used in the augmented windows, denoted
by , and the duplication factor ¢. For -, we evaluated several settings, including fixed values v = 0,
v=1,and v = 5.

The duplication factor i—which determines the number of constant windows appended to each side
of a real window—was varied across ¢ € {1,5,16} in the synthetic data experiments. For real
data, we further tested + = 32 to assess the potential of more extensive augmentation in practical,
non-synthetic scenarios. While synthetic data remains the central focus of this study, the inclusion
of additional hyperparameter values for real datasets ensures a comprehensive evaluation of RIP’s
applicability across domains.

B.4 EVALUATION AND METRICS
The TLCGAN model has been shown to meet the three established criteria for synthetic data quality:

fidelity, diversity, and label consistency [Souza et al.| (2023). Since our objective is to improve the
utility of synthetic samples using RIP—without altering the underlying generative model—we adopt
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the Train on Synthetic, Test on Real (TSTR) evaluation strategy, which is particularly appropriate
for this context.

TSTR evaluates whether synthetic data effectively contributes to model learning by measuring its
ability to generalize to real-world data. This strategy also serves as a diagnostic for mode collapse
Fekri et al.| (2019), a common failure mode in generative models where synthetic samples lack
diversity. Poor TSTR performance indicates that the generated data fails to sufficiently cover the
real data distribution. In our framework, we use TSTR to compare model performance with and
without RIP, thereby isolating the effect of our proposed regularization technique on synthetic data
quality.

For experiments involving real data only, we adopt the conventional Train on Real, Test on Real
(TRTR) setup as a baseline. This allows us to directly assess whether RIP contributes positively to
model generalization in practical deployment scenarios.

Given the inherent class imbalance in HAR datasets, we report multiple metrics: accuracy, precision,
recall, and F1 score. Among these, the F1 score is emphasized due to its balanced consideration of
false positives and false negatives, making it especially suitable for imbalanced classification tasks.

Each experimental configuration is defined as a tuple o = (v, i, Dataset, Model). When referencing
performance metrics, we use the notation F'1gp(,) to denote the F1 score achieved using RIP under
configuration o.

C RESULTS

This section analyzes the outcomes of applying the Regularization via Invariant Patterns (RIP)
method. We report results in terms of percentage points (p.p.) to quantify improvements. For-
mally, the gain is defined as:

= F]'RIP(O') - F]-baselinev 3)

where o = (7, i, Dataset, Model) represents a specific experimental configuration.

It is important to emphasize that percentage points measure absolute differences in F1 score. For
example, if the baseline F1 score is 10% and the improvement is 4 p.p., the new score is 14%, not
10.4%.

DClassifier Results. We analyzed the impact of RIP across four levels of granularity. For that, we
consider the Tables[3land

(i) Real vs. Synthetic: In the TRTR setting, the baseline already achieves high scores in some
datasets (e.g., WISDM with F1 ~ 99.2%), where RIP only brings marginal improvements (+0.5
p.p. for v = 0, i = 5). However, in more challenging datasets such as MHADI1 (baseline F1 ~
67.1%), RIP provides substantial gains (+19 p.p. with v = 0, ¢ = 16). The effect is even stronger in
the TSTR setting, where the baseline fails to generalize (e.g., WHAREF baseline F1 ~ 6.1%), while
RIP recovers performance up to ~ 87%.

(ii) Per Dataset: RIP consistently improves results across all benchmarks. Gains are modest
when the baseline is already strong (e.g., WISDM TRTR), but critical in harder scenarios such
as MHAD1/2 and WHAREF, particularly under TSTR.

(iii) Parameter Sensitivity: The duplication factor ¢ shows that performance generally increases
with higher values ( = 1 — 5 — 16), though extremely large ¢ can sometimes saturate or slightly
decrease results (e.g., MHEALTH TRTR with v = 1). The modulation constant v = 0 emerges as
the most stable and effective choice, frequently yielding the best outcomes.

(iv) Global View: Overall, RIP provides consistent improvements across datasets and settings, with
the most significant impact in synthetic transfer scenarios. The configuration v = 0 with ¢ € {5, 16}
stands out as a robust default, offering strong generalization and closing the domain gap between
real and synthetic data.

TSRF Results. We consider Tables [§]and [TT] for this analysis.
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(i) Real vs. Synthetic: The TRTR-TSREF setting results show that training and testing on real data
lead to nearly perfect performance across all datasets, with F1 scores consistently above 99%. In
contrast, the TSTR-TSRF setting reveals the challenges of transferring from synthetic to real data:
baseline F1 scores drop dramatically, reaching as low as 4% for WHARF and below 20% for
MHADI. RIP provides modest but stable improvements in this setting, highlighting its role as a
data-centric regularizer rather than a mechanism to boost performance in already saturated scenar-
ios.

(ii) Per Dataset: For MHEALTH, RIP preserves ceiling-level performance in TRTR-TSRF while
stabilizing improvements in TSTR-TSRF, where F1 increases from 31.0% to about 33.4%. For
MHAD1, baseline values are near 99.8% in TRTR-TSRE, leaving no room for improvement, but
TSTR-TSREF baselines fall to 18.9%, with RIP recovering scores up to 20.6%. For MHAD2, TRTR—
TSREF results again saturate near 99.9%, while TSTR-TSRF baselines around 29.7% are modestly
improved by RIP, reaching values close to 30.6%. For WISDM, RIP matches the perfect TRTR—
TSREF baseline but yields consistent improvements in TSTR-TSREF, from 24.1% to 24.6%, particu-
larly at higher ¢. Finally, for WHAREF, the gap is most striking: while TRTR-TSRF nearly saturates
at 99.4%, the TSTR-TSREF baseline of 4.05% is only slightly improved by RIP (up to 4.4%), under-
scoring the severe challenge of synthetic-to-real transfer in this dataset.

(iii) Parameter Sensitivity: Across datasets, RIP is robust to changes in y and ¢ under TRTR-TSREF,
as performance is already saturated. In TSTR-TSRF, however, slight variations matter: v = 0 and
~ = 1 tend to yield the best results, especially when combined with higher duplication factors (¢ = 5
or ¢ = 16). Negative -y values occasionally stabilize performance but do not consistently outperform
the neutral or positive settings. This suggests that RIP’s effectiveness depends more on balancing
pattern duplication than on aggressive weighting of invariant features.

(iv) Global View: The analyses show that RIP has a negligible effect when models already achieve
near-perfect scores (TRTR-TSRF) but provides consistent and meaningful gains in more challeng-
ing transfer scenarios (TSTR-TSRF). Although the absolute improvements are often small in per-
centage points, they represent relative robustness against domain shift, ensuring that performance
does not collapse when moving from synthetic to real data. Thus, RIP should be interpreted as a
stabilizing regularizer designed to improve generalization under distribution mismatch, rather than
as a mechanism to boost in-distribution accuracy.

TS-Classifier Results. We considered tables [T0]and 0]

(i) Real vs. Synthetic: The TRTR-TS-Classifier results show clear improvements when RIP is ap-
plied: while baselines are generally low (e.g., F1=24.1% for MHEALTH and 15.7% for MHAD1),
RIP boosts performance substantially, often by more than 20 percentage points. In contrast, the
TSTR-TS-Classifier setting presents a mixed scenario. Some datasets, such as WISDM, exhibit
dramatic gains compared to the weak baseline (F1=47.4%), with RIP reaching over 92%. How-
ever, for datasets like MHAD1 and MHEALTH, TSTR performance remains fragile, and RIP does
not consistently improve over the baseline. This highlights a crucial distinction: while RIP sig-
nificantly enhances generalization in real-to-real transfer (TRTR), its benefits in synthetic-to-real
transfer (TSTR) are dataset-dependent and more variable.

(ii) Per Dataset: For MHEALTH, RIP improves TRTR baselines dramatically (from 24.1% to up
to 55.5% F1), but in TSTR, results are less consistent, with performance dropping compared to the
baseline (57.4%). For MHADI1, RIP boosts TRTR performance by nearly 10 percentage points,
while in TSTR, results fluctuate around the baseline (32.6%), with no stable improvement. For
MHAD?2, TRTR baselines (24.5% F1) rise to 43.2% with RIP, showing the most substantial gains.
TSTR also improves in some settings (up to 41.5%), but performance remains unstable, suggesting
sensitivity to parameter choices. For WHAREF, RIP consistently enhances TRTR (baseline 10.3%
— 28.6%), but in TSTR, the effect is limited: despite gains over the baseline (11.4%), F1 scores
plateau around 26%. Finally, for WISDM, the contrast is striking. TRTR baselines are already
strong (87.2%), and RIP provides only small adjustments. In TSTR, however, the baseline is weak
(47.4%), and RIP achieves massive improvements, consistently pushing performance above 90%.

(iii) Parameter Sensitivity: RIP’s effect depends on both v and ¢. For TRTR, positive and neutral
~ values (0 or 1) combined with low duplication (¢ = 1) deliver the best results. Increasing ¢ tends
to degrade performance, suggesting diminishing returns from excessive duplication. In TSTR, the
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sensitivity is sharper: while ¢ = 1 often yields strong performance (e.g., WISDM), larger ¢ can
drastically reduce results, as seen in MHEALTH and MHAD2. Negative v occasionally stabilizes
results but does not consistently outperform other settings. Overall, RIP favors moderate duplication
and non-negative weighting.

(iv) Global View: Overall, RIP proves highly effective in the TRTR-TS-Classifier scenario, con-
sistently raising weak baselines by 10-30 percentage points. In TSTR-TS-Classifier, however, im-
provements are less predictable: some datasets (notably WISDM) experience dramatic boosts, while
others show stagnation or even regressions. This dual behavior underscores RIP’s strengths and lim-
itations: it excels when applied to real-to-real data. However, its benefits in synthetic-to-real transfer
depend strongly on dataset characteristics and parameter choices. From a global perspective, RIP
emerges as a versatile regularizer that can close significant gaps in challenging TRTR baselines,
while offering selective robustness under TSTR conditions.

TSBF Results. We consider tables[12]and tab: TRTR-TSBF.

(i) Real vs. Synthetic:

When comparing TRTR (real training / real test) and TSTR (synthetic training / real test) results, it
is evident that performance on real data is consistently higher than when trained on synthetic data.
For instance, in MHEALTH, Accuracy and F1 scores in TRTR reach 100%, while in TSTR they
drop to around 61% Accuracy and 57% F1. This trend holds across all datasets, highlighting that,
although synthetic data can augment dataset size, a domain gap still exists that reduces the model’s
ability to generalize to real data.

(ii) Per Dataset:

MHEALTH: Real performance is nearly perfect (99.92-100%), while training with synthetic data
leads to substantial drops, especially for higher values of :.

MHAD1: TRTR shows high results (99.92-100%), but TSTR metrics are much lower, ranging
from 24% to 36% Accuracy, demonstrating sensitivity to synthetic dataset size.

MHAD?2: Similarly, TRTR reaches 100% for v = 1 and ¢ = 16, while TSTR shows high variability,
indicating that this dataset is particularly challenging to replicate with synthetic data.

WHAREF: Despite TRTR achieving high metrics (around 99%), TSTR scores are very low
(20-45%), showing that transferring synthetic data to real data is especially difficult for this dataset.
WISDM: Interestingly, TRTR is near perfect, but TSTR improves with v = —1 and ¢+ = 1-5
(91-93% Accuracy), suggesting that synthetic data can be more effective for larger or more diverse
datasets.

(iii) Parameter Sensitivity:

The parameters v and ¢ notably affect synthetic data performance. Across datasets, moderate values
of ¢ (1-5) generally yield better TSTR metrics, while extreme values (16) often lead to performance
drops. Similarly, v = —1 occasionally improves synthetic data effectiveness, particularly in
WISDM, whereas v = 0 or v = 1 show mixed effects. This indicates that parameter tuning is
crucial when using synthetic data for training.

(iv) Global View:

TRTR results demonstrate that the models can achieve almost perfect classification when trained
and tested on real data. In contrast, TSTR results reveal that synthetic data can partially replicate
the real data distribution but often suffers from domain gaps and parameter sensitivity. Specific
datasets (like WISDM) benefit more from synthetic data augmentation than others (like WHARF or
MHADI1), highlighting the dataset-dependent effectiveness of synthetic data generation.

v = 5 results. Refer to Tables[T3}[T§]

(i) Real vs. Synthetic:

For v = 5, the real training and test scenario (TRTR) consistently achieves near-perfect metrics
across all datasets, with accuracies, recalls, and F1 scores ranging from 99.92% to 100%. In
contrast, synthetic training scenarios (TSTR, TSRF, TSBF) show lower performance, indicating
a clear domain gap. For instance, MHEALTH TSTR accuracy ranges from 59.27% to 62.54%,
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whereas TRTR achieves up to 97.33%. This confirms that synthetic data can partially replicate real
distributions but is insufficient for training high-performing models.

(ii) Per Dataset:

MHEALTH: Synthetic data improves over the baseline (55.79% acc) as ¢ increases, reaching
62.54% for TSTR. However, real training achieves almost perfect results (97.33% acc), emphasizing
the performance gap.

MHAD1: Synthetic TSTR metrics are low (around 21-33% acc) compared to real TRTR (up to
100% acc), suggesting that MHAD1 is more challenging to emulate with synthetic samples.
MHAD2: TSTR shows progressive improvement with higher ¢, reaching 53.25% acc, but remains
lower than TRTR (81.78% acc), indicating both dataset complexity and parameter sensitivity.
WHAREF: Synthetic metrics remain very low (12-17% acc) despite increasing ¢, whereas TRTR
reaches up to 100%, demonstrating that WHAREF is particularly difficult to synthesize effectively.
WISDM: Synthetic data slightly underperforms baseline (30-38% acc), but TRTR achieves nearly
perfect performance (99-100% acc), confirming that synthetic augmentation has a limited effect on
highly structured datasets.

(iii) Parameter Sensitivity:

Increasing ¢ generally improves TSTR performance across most datasets, especially MHEALTH
and MHAD?2. For example, MHEALTH TSTR acc rises from 59.27% (i = 1) to 62.54% (i = 16).
However, in datasets like WHARF and WISDM, the increase in ¢ has minimal effect. The choice
of v = 5 shows slightly better performance than baseline synthetic data for some datasets (e.g.,
MHAD?2 and MHEALTH), but the overall gap with TRTR remains significant.

(iv) Global View:

Overall, v = 5 enhances synthetic training metrics moderately, with larger ¢ often providing incre-
mental gains. Nevertheless, TRTR consistently outperforms all synthetic configurations. Datasets
vary in synthetic data effectiveness: MHEALTH and MHAD? benefit the most, while WHARF and
WISDM show limited improvement. This indicates that dataset characteristics and the choice of
hyperparameters (v and ¢) are critical when using synthetic data to approximate real-world perfor-
mance.

C.1 COMPUTATIONAL COST ANALYSIS

The number of samples primarily influences the computational cost of applying RIP in the dataset
and the duplication factor ¢, which controls the number of constant samples added. Since the RIP
process involves the addition of synthetic samples with fixed distributions, larger datasets inher-
ently lead to higher memory and time consumption. However, the impact of RIP on computational
resources also depends on the model architecture and the hardware used. For the deep learning
models (DClassifier and TS-Classifier), experiments can be efficiently performed on a GPU (e.g.,
NVIDIA RTX 3090) without compromising the entire system. In contrast, traditional models such
as TSBF and TSRF do not utilize GPU acceleration and rely primarily on CPU and memory. As
an illustrative example, the WISDM dataset—our largest dataset with over 10,000 training sam-
ples—requires approximately 4 GB of memory and takes about 2 hours to run using TSBF without
RIP. When RIP is applied with ¢« = 1, memory usage increases slightly, and execution time extends
by around 10 minutes. For ¢ = 16 (implying roughly 10,000 x 2 x 16 synthetic samples), memory
consumption rises to approximately 10 GB, and runtime increases to around 4 hours. In contrast,
using a GPU with ¢ = 16, the memory usage reaches about 9 GB, but training (e.g., 16 epochs) takes
only 30 minutes.

We emphasize that the computational cost associated with generating synthetic data is not considered
in our analysis. This is because RIP assumes that the data have already been generated in advance
and focuses solely on the impact of adding such constant samples during model training.



Table 5: TRTR - DClassifier

dataset gamma i acc recall f1

MHEALTH baseline - 91.21 £1.61 90.524+2.81 90.46 +2.84
MHEALTH -1 1 97.06 £ 044 9731 +£040 9728 +042
MHEALTH -1 5 97.10 £ 0.34 9733 +0.32 97.29 +£0.33
MHEALTH -1 16 97.19+£0.28 97424026 97.4040.26
MHEALTH O 1 97.15+£049 9737+045 97.36+0.46
MHEALTH O 5 97.61 2035 97.81 +£0.32 97.79 +£0.33
MHEALTH 0 16 97.84 +£0.21 98.02+0.19 98.01 +0.20
MHEALTH 1 1 96.75 £0.65 96.99 +£0.63 96.99 + 0.61
MHEALTH 1 5 97.37 £0.29 97.594+0.27 97.57 +0.28
MHEALTH 1 16 96.82 +£0.30 97.08+0.28 97.06 +0.28
MHADI1 baseline - 58.25+206 67.15+1.17 67.13+1.14
MHADI1 -1 1 71.71 £0.93 56.25+221 5591 +£2.02
MHAD1 -1 5 76.38 £0.80 7637077 7631 +£0.77
MHADI1 -1 16 80.91 +£0.78 80.81 +=0.80 80.78 = 0.79
MHADI1 0 1 7538 £0.77 75.494+0.79 7531 +0.77
MHADI1 0 5 81.91 +0.81 82.07 £0.81 82.01 £0.81
MHAD1 0 16 86.12+0.55 86.09 +0.54 86.13 +0.53
MHADI1 1 1 72.334+£0.70 7251 4+0.71 72.20+0.73
MHADI1 1 5 78.82 +£0.89 79.054+0.89 78.84 +0.90
MHADI1 1 16 82.11+1.30 82.134+1.36 82.15+1.29
MHAD?2 baseline - 68.32+1.05 67.55+1.02 67.58 +1.31
MHAD2 -1 1 7267120 7147+146 7197 +£1.29
MHAD2 -1 5 7817129 7732+132 77.75+1.30
MHAD?2 -1 16 8093 +1.14 7948 +1.23 80.13+1.18
MHAD2 0 73.64 £1.22 7289 +1.27 72.89+1.36
MHAD?2 0 5 79.17 £0.75 7842 +£091 78.65+0.87
MHAD?2 0 16 82.12+0.72 81.08+0.82 81.684+0.74
MHAD2 1 1 73.07 £1.13 7201 +£1.11 7211 +£1.35
MHAD?2 1 5 78.324+1.19 77304+ 137 77.58 +1.40
MHAD?2 1 16 80.04 £0.71 78.824+0.63 79.40 +0.68
WHARF baseline - 83.11 £ 1.85 77.63 +£2.34 78.62 +2.08
WHARF -1 1 83.85 +2.20 78.36+2.95 79.57 +£2.78
WHARF -1 5 8694 +£1.86 82.62+223 83.75+2.18
WHARF -1 16 89.81 £1.08 8624 +148 87.25+1.32
WHARF 0 1 83.39 +£2.63 78.17+321 79.294+3.24
WHARF 0 5 86.93 £2.22 82.23+275 83.65+2.60
WHARF 0 16 90.25+1.19 86.18+1.90 87.48+1.70
WHARF 1 1 83.03 +£2.83 76.78 =3.73 78.24 +3.51
WHARF 1 5 86.60 +£2.03 81.92+243 83.28+2.36
WHARF 1 16 9025+121 86.37+1.75 87.424+1.59
WISDM baseline - 99.47 £0.09 99.204+0.15 99.21 +£0.12
WISDM -1 1 99.73 £0.05 99.62 +0.09 99.58 + 0.08
WISDM -1 5 99.73 £0.04 99.56 £0.12 99.55+0.10
WISDM -1 16 99.66 +£0.03 99.454+0.07 99.46 4+ 0.06
WISDM 0 1 99.76 £ 0.06 99.62 +0.10 99.62 + 0.09
WISDM 0 5 99.80 £0.04 99.70 £0.04 99.68 £+ 0.05
WISDM 0 16 99.68 £0.03 99.564+0.04 99.54 +0.03
WISDM 1 1 99.70 £ 0.04 99.47 +0.09 99.47 +0.10
WISDM 1 5 99.77 £0.06 99.60 £0.14 99.59 +0.13




Table 6: TSTR - DClassifier

dataset gamma i acc recall f1
MHEALTH  baseline - 55.79 £2.44 55.07 £2.48 52.56 £2.33
MHEALTH -1 1 96.84 £0.40 97.10 £0.37 97.09 £0.36
MHEALTH -1 5 97.21 £0.36 97.44 £0.33 97.41 £0.33
MHEALTH -1 16 9697 £0.31 97.224+0.29 97.19 £0.30
MHEALTH O 1 97.34 £0.36  97.55 +0.33  97.55 £0.33
MHEALTH 0 5 97.75 £0.37 97.94 £0.33 97.92 +0.34
MHEALTH O 16 97.80 £0.28 97.98 £0.25 97.96 +0.26
MHEALTH 1 1 96.92 £0.55 97.16 £0.51 97.15 £0.51
MHEALTH 1 5 97.19 £0.30 9742 £0.27 97.39 +0.29
MHEALTH 1 16 97.20+0.24 97.4240.22 97.40 £0.22
MHADI1 baseline - 33.86 £1.46 33.35 +1.57 32.85+£1.66
MHADI1 -1 1 71.47 £091 71.45+093 71.42 +0.92
MHADI1 -1 5 76.29 +£0.77 76.32 £0.75 76.20 +0.74
MHADI1 -1 16 81.11 £0.82 80.95 +0.82 80.99 +£0.81
MHADI1 0 1 75.33 £0.73 75.43 £0.75 75.27 £0.74
MHADI1 0 5 82.02 +£0.83 82.25 +0.83 82.07 +0.83
MHADI1 0 16 86.03 £0.59 86.01 £0.60 86.03 +0.58
MHADI1 1 1 72.13 £0.71 7232 £0.72 72.01 £0.71
MHADI1 1 5 78.76 =1.01 78.99 +1.01 78.78 £1.02
MHAD1 1 16 8253 +1.29 82.51+1.35 82.55+1.28
MHAD2 baseline - 46.97 £3.70 45.90 £3.39 43.52 +3.78
MHAD?2 -1 1 72.67 £1.20 7147 £1.46 71.97 £1.29
MHAD?2 -1 5 78.17 £1.29 7732 +1.32 77.75 £1.30
MHAD?2 -1 16 81.02 +0.84 79.80 +0.75 80.39 +0.84
MHAD2 0 1 73.64 £1.22 72.89 +1.27 72.89 £1.36
MHAD?2 0 5 79.17 £0.75 78.42 £0.91 78.65 £0.87
MHAD?2 0 16 81.66 £0.63 80.57 £0.71 81.10 £0.73
MHAD2 1 1 73.12 £1.27 7218 £1.30 72.29 £1.53
MHAD?2 1 5 77.92 £1.33 77.07 £1.45 77.28 £1.36
MHAD?2 1 16 80.04 +£0.71 78.82 +0.63 79.40 +0.68
WHARF baseline - 15.46 £3.04 14.30 +1.67 6.14 +1.78
WHARF -1 1 83.44 £2.43 77.47 £3.46 78.84 £3.34
WHARF -1 5 87.01 +£1.57 81.97 +£1.87 83.57 £1.88
WHARF -1 16 89.99 +£0.87 86.27 £1.46 87.26 £1.26
WHARF 0 1 83.31 £2.80 77.72 £3.56 79.04 £3.61
WHARF 0 5 86.96 +2.09 82.00 £2.62 83.51 £2.47
WHARF 0 16 90.12 4+1.44 86.25 +2.11 87.41 +1.92
WHARF 1 1 82.96 +2.84 77.39 £3.46 78.50 £3.44
WHARF 1 5 86.60 +1.93 81.73 £2.76 82.94 £2.63
WHARF 1 16 8995 +1.56 85914234 86.99 +2.15
WISDM baseline - 53.03 £3.04 50.44 £2.32 4494 £2.51
WISDM 0 1 99.73 £0.05 99.61 £0.06 99.57 +0.07
WISDM 0 5 99.78 £0.04 99.66 +0.05 99.65 £0.05
WISDM 0 16  99.69 £0.05 99.51 £0.08 99.52 +0.07
WISDM 1 1 99.73 £0.06 99.52 £0.14 99.51 £0.13
WISDM 1 5 99.79 £0.05 99.66 +0.09 99.66 +0.08




Table 7: TRTR - TSRF

dataset gamma i acc recall f1
MHEALTH baseline - 99.92 £+0.00 99.93 £+0 99.93 +0
MHEALTH -1 1 100.00 +0 100.00 +0 100.00 +0
MHEALTH -1 5 99.96 +0 99.96 +0 99.96 +0.00
MHEALTH -1 16  99.96 +0 99.96 +0 99.96 +0.00
MHEALTH 0 1 99.92 +0.00 99.93 £+0 99.93 +0
MHEALTH O 5 99.84 +0 99.86 0 99.86 +0.00
MHEALTH O 16 100.00 +0 100.00 40 100.00 0
MHEALTH 1 1 100.00 +0 100.00 +0 100.00 +0
MHEALTH 1 5 100.00 +0 100.00 +0 100.00 40
MHEALTH 1 16  99.96 +0 99.96 0 99.96 +0.00
MHADI1 baseline - 99.92 +0 9991 +0 99.92 +0
MHADI1 -1 1 99.92 +0 99.91 £+0 99.92 +0.00
MHADI1 -1 5 99.95 £0.00 99.94 £+0.00 99.95 +£0.00
MHADI1 -1 16 100.00 +0 100.00 +0 100.00 +0
MHADI1 0 1 99.92 +0 99.91 £+0 99.92 +0.00
MHAD1 0 5 100.00 +0 100.00 40 100.00 0
MHADI1 0 16 99.97 £0.00 99.97 £0.00 99.97 +0.00
MHADI1 1 1 99.95 £0.00 99.94 4+0.00 99.95 £+0.00
MHAD1 1 5 99.97 £0.00 99.97 £0 99.97 £0.00
MHADI1 1 16 99.95 +0.00 99.94 +0 99.95 +0
MHAD?2 baseline - 99.91 £0.00 99.89 +0 99.89 +0
MHAD?2 -1 1 99.91 £0.00 99.89 £+0 99.89 +0
MHAD2 -1 5 99.91 +0.00 99.89 +0 99.89 +0
MHAD2 -1 16 100.00 +0 100.00 +0 100.00 +0
MHAD?2 0 1 99.74 £0 99.67 0 99.66 £0.00
MHAD2 0 5 99.74 +0 99.67 £0 99.66 +0.00
MHAD?2 0 16 100.00 +0 100.00 +0 100.00 +0
MHAD?2 1 1 99.74 £0 99.67 0 99.66 £0.00
MHAD?2 1 5 99.74 +0 99.67 +0 99.66 +0.00
MHAD2 1 16 100.00 +0 100.00 +0 100.00 +0
WHARF baseline - 99.61 £0.00 98.86 =0 99.15 £0.00
WHARF -1 1 99.77 +£0.00 99.31 +0.00 99.44 +0.00
WHARF -1 5 99.82 £+0.00 99.52 4+0.00 99.63 £+0
WHARF -1 16  99.85 £0.00 99.54 £+0 99.64 +0
WHARF 0 1 99.77 £0.00 99.31 £+£0.00 99.44 +0.00
WHARF 0 5 99.82 £+0.00 99.52 4+0.00 99.63 £+0
WHARF 0 16 99.85 £0.00 99.54 £+0 99.64 +0
WHARF 1 1 99.77 +£0.00 99.31 +0.00 99.44 +0.00
WHARF 1 5 99.82 £0.00 99.52 4+0.00 99.63 0
WHARF 1 16  99.85 £0.00 99.54 £+0 99.64 £+0
WISDM baseline - 99.99 +0.00 99.99 +0.00 100.00 +0.00
WISDM -1 1 99.99 £+0.00 99.99 £+0.00 100.00 +0.00
WISDM -1 5 99.99 £0.00 99.99 £+0.00 100.00 +0.00
WISDM -1 16 100.00 +0 100.00 +0 100.00 +0
WISDM 0 1 100.00 +0.00  100.00 +0.00 100.00 +0
WISDM 0 5 100.00 +0 100.00 +0 100.00 40
WISDM 0 16 100.00 £0.00 100.00 £0 100.00 +0
WISDM 1 1 100.00 40 100.00 40 100.00 0
WISDM 1 5 100.00 +0 100.00 +0 100.00 0
WISDM 1 16 100.00 +0 100.00 +0 100.00 +0




Table 8: TSTR - TSRF

dataset gamma i acc recall f1
MHEALTH baseline - 290.72 £1.68 28.14+1.52 2598 +1.07
MHEALTH -1 1 2970 £2.47 28.12+£227 2622 +1.82
MHEALTH -1 5 2091 +£242 28374+220 2652+1.75
MHEALTH -1 16 29.624+234 28.06+2.11 2621 +1.75
MHEALTH 0 1 2822 +£261 2680+244 2507 +224
MHEALTH O 5 28.44 +£280 27.04+262 2531 +246
MHEALTH O 16 28.09+245 26.67+227 25144233
MHEALTH 1 1 27.01 £244 2568 £229 2427 +2.17
MHEALTH 1 5 27.16 £2.57 2584 4+240 24.36 +2.30
MHEALTH 1 16 27.17 £230 25834215 24.53+2.29
MHADI1 baseline - 21.51 £0.84 20.85+090 19.59 £+ 0.97
MHADI1 -1 1 21.754+0.82 21.104+0.87 19.85+0.96
MHADI1 -1 5 21.754+£091 21.084+096 19.80+ 1.04
MHADI1 -1 16 21.70+0.87 21.054+0.93 19.77 +1.00
MHADI1 0 1 21.754+0.83 21.054+0.86 19.79 + 0.88
MHADI1 0 5 21.61 £0.85 20.934+0.89 19.68 +0.94
MHADI1 0 16 21.69+0.84 21.01+£0.88 19.69 4+ 0.90
MHADI1 1 1 21.524+0.85 20.834+090 19.51 +£0.92
MHAD1 1 5 21.334+£097 20.63+1.01 19.28 +£1.01
MHADI1 1 16 2148 +0.89 20.77+0.94 1943 +0.96
MHAD?2 baseline - 3465+295 35424290 31.13 +3.08
MHAD?2 -1 1 36.11 £2.57 36.69 =244 32.68 +2.57
MHAD?2 -1 5 36.15+243 36.76 2236 3277 +£2.65
MHAD2 -1 16 36.05+2.57 36.68+241 32.63+247
MHAD?2 0 1 35.84 £2.82 36.46+2.79 32.00 4+ 3.06
MHAD?2 0 5 36.17 £2.66 36.73+272 3238 +2.81
MHAD?2 0 16 36.02+2.68 36.64+2.69 32.054+3.10
MHAD?2 1 1 3576 £2.89 36.37 £2.84 31.89 4+ 3.06
MHAD?2 1 5 36.01 £2.77 36.57+2.80 32.154+2.86
MHAD2 1 16 3595+2.73 36.594+272 31.94+3.05
WHARF baseline - 12.60 £3.39 1098 +=1.62 4.05+1.09
WHARF -1 1 1294 £321 993+ 1.64 426 +1.15
WHARF -1 5 1293 £3.26 995+ 1.58 426 +1.19
WHARF -1 16 13.35+324 10.18+1.80 4.41+1.17
WHARF 0 1 1272 £3.42 10.05+190 439+1.25
WHARF 0 5 1264 £343 10.04 =181 438 +1.28
WHARF 0 16 12.82+3.37 10.18+1.80 4.41+1.22
WHARF 1 1 12.62 £3.45 10324+1.87 4.21 £1.18
WHARF 1 5 1257 £346 10.26+1.83 4.18+1.23
WHARF 1 16 1257 +345 1031+180 4.15+1.13
WISDM baseline - 2058 £6.75 34.13+£3.25 24.14+421
WISDM -1 1 30.17 £6.99 33.724+3.32 24.02 +4.37
WISDM -1 5 30.16 £ 6.83 33.83 +3.15 24.11 +£4.27
WISDM -1 16 30.20+7.01 34.24 +3.56 24.60 +4.69
WISDM 0 1 30.23 £7.01 33.624+328 24.04 +4.33
WISDM 0 5 30.21 £6.79 33.85+3.07 24.18+4.19
WISDM 0 16 30.27 £6.98 34.14 +3.51 24.59 +4.63
WISDM 1 1 30.32 £ 6.81 33.58 +£3.08 24.09 +4.10
WISDM 1 5 30.22 £6.58 33.73£3.00 24.15+4.04
WISDM 1 16 3041 +6.87 34.19+3.41 24.66+4.49




Table 9: TRTR - TS-Classifier

dataset gamma i acc recall f1

MHEALTH Dbaseline - 3237 £240 31.584+2.69 24.08 +2.59
MHEALTH -1 1 58.45+220 5976 £2.23 5399 +240
MHEALTH -1 5 5572 +£122 5440+140 46.52+1.81
MHEALTH -1 16 44.07 £2.02 43.37+2.14 35.81 £2.40
MHEALTH O 1 58.11 £2.60 59.54 £2.59 53.46 +2.99
MHEALTH O 5 5434 +£272 5430+3.05 47.07+3.13
MHEALTH 0 16 4996 +1.71 51.18+1.48 42.88 +1.56
MHEALTH 1 1 5998 £2.03 61.24 £194 5554 +242
MHEALTH 1 5 5429 +£2.12 5458 +2.16 47.07 +1.99
MHEALTH 1 16 46.68 +2.12 47954+1.82 3998 +2.13
MHADI1 baseline - 2045+ 1.15 19.04 £1.22 15.67+1.41
MHADI1 -1 1 27.75+£1.08 26.61 +1.13 23.30+1.29
MHADI1 -1 5 31.67 £ 0.73 30.90 £ 0.61 26.08 £0.70
MHAD1 -1 16 29.19+1.07 28.62+1.10 2526=+1.17
MHADI1 0 0 2044 +£1.14 19.034+1.20 15.65+1.39
MHADI1 0 1 29.08 £1.08 2794 +1.07 2452 +1.33
MHAD1 0 5 28.85+0.69 27.89+0.69 2284 +0.75
MHADI1 0 16 22.09+1.33 2237+1.12 17.234+0.94
MHADI1 1 1 2682+ 1.15 2575+1.18 2339+1.05
MHADI1 1 5 30.15 +1.62 29.00 +1.71 24.38 +1.93
MHADI1 1 16 2756 £0.72 26.94+0.73 23.734+0.94
MHAD2 baseline - 31.25+1.64 32.19+1.81 24.46+1.72
MHAD2 0 1 2455 +£428 2509+294 1294 +2.70
MHAD?2 0 5 36.10 £ 1.85 34.58 +£2.04 2591 +2.82
MHAD2 0 16 3954 4+622 4140+5.69 33.64+7.04
MHAD2 1 1 2579 £333 27.08 £2.77 16.50 £ 2.09
MHAD?2 1 5 3323 +£1.63 31.204+1.72 2290 +2.47
MHAD2 1 16 5249 +3.16 51.294+3.37 43.224+3091
WHARF baseline - 19.19 £6.71 2227 +298 10.28 +3.63
WHARF -1 1 4731 +£3.15 35.12+1.25 2797 +1.49
WHARF -1 5 46.62 =145 3231+206 24424+1.77
WHARF -1 16 4227 +474 26394+222 2020+ 1.97
WHARF 0 1 44.07 +4.88 36.02 +1.83 28.09 £ 2.03
WHARF 0 5 4593 +1.13 30394215 23254221
WHARF 0 16 4296 +£2.66 25.86+229 19.88 +2.54
WHARF 1 1 46.06 =434 3599 +£2.03 28.63 +2.24
WHARF 1 5 44,18 =350 31.85+1.22 24.11+1.52
WHARF 1 16 4281 +4.12 26274+1.99 20.06 +2.37
WISDM baseline - 90.32 £1.63 86.87 293 87.19 +2.62
WISDM -1 1 92.45 £+ 0.38 92.054+0.73 90.65 £ 0.54
WISDM -1 5 93.124+1.21 9436+125 9230+ 1.46
WISDM -1 16 8994 +£1.25 88.94+1.99 86.21 4+ 1.60
WISDM 0 1 9221 £0.83 91.03+£1.76 9031 +£1.35
WISDM 0 5 91.61 =1.00 91424147 89.70 + 1.39
WISDM 0 16 89.19 +£1.86 84904376 8598 +3.05
WISDM 1 1 91.34 £0.62 89.54 +£1.34 88.87+1.02
WISDM 1 5 90.79 £2.46 92.03 +2.57 89.63 +£2.74
WISDM 1 16 90.36 £1.61 90.56+ 134 88.43 +1.48




Table 10: TSTR - TS-Classifier

dataset gamma acc recall fl

MHEALTH baseline 61.00 £4.09 60.72 £3.78 57.42 £4.38
MHEALTH -1 58.06 £2.23 59.44 £2.23 53.70 £2.26
MHEALTH -1 5497 £1.45 54.60 £1.87 47.06 £1.95
MHEALTH -1 45.74 £1.87 45.06 £2.06 37.57 £2.47
MHEALTH 0 58.83 £2.34  60.07 £2.35 53.99 £2.72
MHEALTH 0 5545 £1.38 5632 £1.54 48.92 +1.69
MHEALTH 0 4717 £2.72 4730 £2.10  38.60 £+2.58
MHEALTH 1 1 59534223 60.74 £2.21 55.06 +2.60
MHEALTH 1 5 5501 £2.01 55.70+£2.37 48.05+2.53
MHEALTH 1 16 47.00 £4.15 47.16 £3.84 39.27 +4.98
MHADI1 baseline - 35.62 £1.98 35.15+2.12 32.58 £2.39
MHADI -1 1 2824 +1.14 27.03+1.26 23.82+1.26
MHADI1 -1 5 31.13+£0.84 30.33 £0.76 25.34 +£0.93
MHADI1 -1 16 2992 +1.02 29.29 +£1.04 2599 +1.12
MHADI 0 1 29.06 £1.11 27.95+1.09 24.48 £1.40
MHADI1 0 5 2893+095 27.98+0.85 23.06+0.96
MHADI1 0 16 2440 +£3.30 24.40 £3.18 19.97 £3.00
MHADI 1 1 26.65+1.19 25524120 23.33+1.14
MHADI1 1 5  293440.82 28.14 +£0.86 23.33 £1.07
MHADI1 1 16 2859 +1.43 27971140 24.70+1.28
MHAD?2 baseline -  48.31 £3.62 47.47 £2.49 4197 £4.12
MHAD?2 -1 1 27774372 28.19 £2.89 16.80 £2.95
MHAD2 -1 5 40.19 £2.01 38.46 £2.01 32.15+1.94
MHAD?2 -1 16 51.44£285 49.74 £2.88 41.50 +3.32
MHAD2 0 1 2448 +£434 2499 £3.00 12.97 £2.83
MHAD?2 0 5 3643 £1.08 3491 £1.24 26.19 £2.12
MHAD?2 0 16 42.61 £7.93 44.52+7.37 36.17 £8.85
MHAD2 1 1 2504 £3.16 26354228 15.87 £2.09
MHAD?2 1 5 3268 +244 31.17+£2.23 22934255
WHARF baseline - 20.94 £3.16  20.12 £2.65 11.41 £2.47
WHARF -1 1 4490 £+4.10 34.09 £2.32 26.61 £2.07
WHARF -1 5 45374£212 31.66+1.34 2396 +1.24
WHARF -1 16 43.69 £1.74 26.64 £2.16 20.59 +2.21
WHARF 0 1 43374433 3412 4£251 26.35£2.30
WHARF 0 5 4527 4£1.72 3132+140 24.13+1.48
WHARF 0 16 4033 £6.41 26.07 £2.63 19.78 +2.82
WHARF 1 1 41474547 3531£247 2593 £2.34
WHARF 1 5 45254£3.03 31.71 £1.25 23.96 +1.28
WHARF 1 16 39.93 £4.07 2527 +£1.60 18.53 +2.07
WISDM baseline - 50.07 £3.78 55.08 £2.21 47.38 £2.49
WISDM -1 1 93.124£098 93.02+1.90 91.80=+1.59
WISDM -1 5  9225£0.86 92.86+1.36 90.80 £1.40
WISDM -1 16 90.79 £1.33 90.68 +1.81 88.37 £1.87
WISDM 0 1 91.38+0.84 89.70£1.84 89.09 +£1.33
WISDM 0 5 9135£1.69 91.60+1.45 89.94+1.63
WISDM 0 16 88.57 £1.40 84.39 £2.87 84.85 £2.58
WISDM 1 1 9146 £1.05 89.48 +£2.05 88.87 £1.60
WISDM 1 5 93.14£150 94.55+£1.60 92.42+1.76
WISDM 1 16 89.66 £1.08 89.60 £1.28 86.51 £+1.13




Table 11: TRTR - TSBF

dataset vy 1 Accuracy Recall F1
MHEALTH baseline - 99.92 £0.00  99.93 +0 99.93 £0
MHEALTH -1 1 100.00 £0 100.00 0 100.00 =0
MHEALTH -1 5 9996 +0 99.96 £0 99.96 £0.00
MHEALTH -1 16 99.96 £0 99.96 £0 99.96 £0.00
MHEALTH 0 I 99924+0.00 99.93+0 99.93 £0
MHEALTH 0 5 99.84 +0 99.86 £0 99.86 £0.00
MHEALTH 0 16  100.00 +£0 100.00 £0 100.00 £0
MHEALTH 1 1 100.00 £0 100.00 £0 100.00 =0
MHEALTH 1 5 100.00 0 100.00 +0 100.00 £0
MHEALTH 1 16 99.96 £0 99.96 £0 99.96 £0.00
MHADI1 baseline - 99.92 +0 99.91 £0 99.92 +0
MHADI1 -1 I 9992 £0 99.91 £0 99.92 £0.00
MHADI1 -1 5 99954000 9994 +£0.00  99.95 £0.00
MHADI1 -1 16 100.00 =0 100.00 +0 100.00 +0
MHADI1 0 I 9992 £0 99.91 £0 99.92 £0.00
MHADI1 0 5 100.00 +£0 100.00 £0 100.00 £0
MHADI1 0 16 99.97 £0.00  99.97 £0.00  99.97 £0.00
MHADI1 1 I 99954000 99.94+0.00 99.95 £0.00
MHADI1 1 5 99974+0.00 99.97 +0 99.97 £0.00
MHADI1 1 16  99.95+0.00 99.94 +0 99.95 +0
MHAD2 baseline - 99.91 £0.00  99.89 +0 99.89 £0
MHAD?2 -1 I 9991 £0.00 99.89 +0 99.89 £0
MHAD?2 -1 5 9991 +£0.00 99.89 £0 99.89 +0
MHAD?2 -1 16 100.00 0 100.00 +0 100.00 +0
MHAD?2 0 I 99.74 £0 99.67 £0 99.66 £0.00
MHAD?2 0 5 99.74 +0 99.67 £0 99.66 +0.00
MHAD?2 0 16  100.00 0 100.00 +0 100.00 +0
MHAD?2 1 1 99.74 +0 99.67 £0 99.66 £0.00
MHAD?2 1 5 99.74 +0 99.67 £0 99.66 +0.00
MHAD?2 1 16 100.00 +£0 100.00 +0 100.00 +£0
WHARF baseline - 99.61 £0.00  98.86 +0 99.15 £0.00
WHARF -1 1 99.77£0.00  99.31 £0.00  99.44 +0.00
WHARF -1 5  99.8240.00 99.52+0.00 99.63 £0
WHARF -1 16 99.85+0.00 99.54 +0 99.64 £0
WHARF 0 1 99.77£0.00  99.31 £0.00  99.44 +0.00
WHARF 0 5  99.8240.00 99.52+0.00 99.63 £0
WHARF 0 16  99.85+0.00 99.54 +0 99.64 £0
WHARF 1 1 99.77£0.00  99.31 £0.00  99.44 +0.00
WHARF 1 5  99.8240.00 99.52+0.00  99.63 £0
WHARF 1 16 99.85+0.00 99.54 +0 99.64 £0
WISDM baseline - 99.99 £0.00  99.99 +£0.00  100.00 £0.00
WISDM -1 1 99.99 £0.00  99.99 +£0.00  100.00 £0.00
WISDM -1 5 9999 +0.00 99.99 £0.00  100.00 £0.00
WISDM -1 16 100.00 +£0 100.00 +0 100.00 +0
WISDM 0 1 100.00 £0.00  100.00 £0.00  100.00 £0
WISDM 0 5 100.00 0 100.00 0 100.00 £0
WISDM 0 16  100.00 £0.00 100.00 £0 100.00 +0
WISDM 1 1 100.00 £0 100.00 £0 100.00 £0
WISDM 1 5 100.00 0 100.00 +0 100.00 £0
WISDM 1 16 100.00 +£0 100.00 +0 100.00 +0




dataset gamma i acc recall f1

MHEALTH baseline - 61.00 £4.09 60.72 £3.78 57.42 +4.738
MHEALTH -1 1 58.06 £223 5944 +£223 53.70+£2.26
MHEALTH -1 5 5497 +£145 5460+ 1.87 47.06+ 1.95
MHEALTH -1 16 4574 +1.87 45.06+2.06 37.57+247
MHEALTH O 1 58.83 £2.34 60.07 £235 5399 +272
MHEALTH 0 5 5545+ 138 5632 +1.54 4892+ 1.69
MHEALTH 0 16 47.17+272 47304+2.10 38.60 4 2.58
MHEALTH 1 1 59.53+£223 60.74 £2.21 55.06 £2.60
MHEALTH 1 5 55.01 £2.01 5570237 48.05+2.53
MHEALTH 1 16 47.00+4.15 47.16+3.84 39.27 +4.98
MHAD1 baseline - 35.62+£1.98 35.15+2.12 32.58 +2.39
MHADI1 -1 1 2824 +1.14 27.03+£1.26 23.82+1.26
MHAD1 -1 5 31.13 £ 0.84 30.33 +0.76 25.34 +0.93
MHAD1 -1 16 2992+1.02 29.29+1.04 2599 +1.12
MHAD1 0 1 29.06 £1.11 2795+1.09 2448 +1.40
MHAD1 0 5 2893 +£095 2798 £0.85 23.06 £0.96
MHAD1 0 16 24404330 244043.18 19.97 +3.00
MHAD1 1 1 26.65+1.19 2552+120 2333+1.14
MHAD1 1 5 2934 £0.82 28.14 £0.86 23.33 £+ 1.07
MHAD1 1 16 28594143 27974140 24.704 1.28
MHAD?2 baseline - 48.31 £3.62 4747 +£249 4197 +£4.12
MHAD?2 -1 1 2777 £3.72 28.19+£289 16.80+£2.95
MHAD?2 -1 5 40.19 £2.01 38464+2.01 32.154+1.94
MHAD2 -1 16 5144 4+2.85 49.74+2.88 41.504+3.32
MHAD?2 0 1 2448 £434 2499 £3.00 1297 £2.83
MHAD2 0 5 3643 +1.08 3491 +1.24 26.19£+2.12
MHAD2 0 16 42.61 =7.93 44.52+7.37 36.17 + 8.85
MHAD?2 1 1 25.04 £3.16 2635+£228 15.87 £2.09
MHAD2 1 5 32.68 =2.44 31.17+£2.23 2293 +£2.55
WHARF baseline - 2094 £3.16 20.12+£2.65 1141 +£247
WHARF -1 1 4490 +4.10 34.09 £2.32 26.61 +2.07
WHARF -1 5 4537 +£2.12 31.66 £1.34 2396+ 1.24
WHARF -1 16 43.69+1.74 26.64 +2.16 20.59 +2.21
WHARF 0 1 4337 +4.33 34.12+£2.51 26.35+2.30
WHARF 0 5 4527 +£1.72 31.32+140 24.13 +1.48
WHARF 0 16 4033 +6.41 26.07+2.63 19.78 +2.82
WHARF 1 1 4147 £547 3531 4+247 2593+2.34
WHARF 1 5 4525 +£3.03 31.71 £1.25 23.96 +1.28
WHARF 1 16 39.93+4.07 2527 +1.60 18.53 +2.07
WISDM baseline - 50.07 £3.78 55.08 £221 47.38 £2.49
WISDM -1 1 93.12+ 098 93.02+190 91.80 4+ 1.59
WISDM -1 5 9225+ 086 92.86+1.36 90.80 =+ 1.40
WISDM -1 16 90.79 +1.33 90.68 & 1.81 88.37 4+ 1.87
WISDM 0 1 91.38+0.84 89.70 +1.84 89.09 4+ 1.33
WISDM 0 5 91.35+£1.69 91.60+1.45 8994 + 1.63
WISDM 0 16 88.57+140 84.394+2.87 84.85+2.58
WISDM 1 1 9146 £1.05 8948 +£2.05 88.87 +1.60
WISDM 1 5 93.14 £1.50 9455+1.60 9242 +1.76
WISDM 1 16 89.66 +1.08 89.604 1.28 86.51 +1.13

Table 12: TSTR - TSBF



dataset gamma acc recall fl
MHEALTH baseline 55.79 £2.44 5507 £248 52.56+2.33
MHEALTH 5 59.27+1.80 58.00£2.19 55.69 +2.32
MHEALTH 5 61.95+2.13 6092+226 59.17+2.32
MHEALTH 5 62.54 £2.21 62.39+1.98 60.00 % 1.77
MHADI1 baseline 33.86 = 1.46 3335+ 1.57 32.85+1.66
MHAD?2 baseline - 46.97 £3.70 4590 +3.39 43524+ 3.78
MHAD2 5 1 4681 +£3.70 46.29 £3.42 43.84+3.75
MHAD?2 5 5 49.194+346 48.71 +£3.14 46.82+3.63
MHAD?2 5 16 53254218 52.88+1.74 50.68 +2.53
WHARF baseline - 1546 £3.04 1430+£1.67 6.14+£1.78
WHARF 5 1 1549 +284 1368+ 141 584+1.16
WHARF 5 5 17.21 £3.60 13.16 £2.20 5.76 +£1.43
WHARF 5 16 16324357 12.86+1.70 6.32+1.27
WISDM baseline - 53.03 +£3.04 5044 £2.32 4494 £2.51
WISDM 5 1 50.65 £4.22 47.15+2.37 41.49 +£2.28
WISDM 5 5 48.09+479 4571+£2.63 39481294
WISDM 5 16 4796 +5.75 4527+£278 39.01 £3.20
Table 13: TSTR-DClassifier- v=5
dataset gamma acc recall fl
MHEALTH baseline 96.08 £0.79 9638 £0.74 96.37 £0.75
MHEALTH 5 96.64 £0.50 9691 +0.46 96.89 +0.47
MHEALTH 5 9720 £0.25 9743+0.23 97.40+0.24
MHEALTH 5 9733+ 037 9755+£034 9753+£0.34
MHADI baseline 67.08 £1.18 67.15+1.17 67.13+1.14
MHAD?2 baseline - 68.32 £1.05 67.55+1.02 6758+ 1.31
MHAD?2 5 1 7166145 7050+£1.60 71.18+£1.52
MHAD?2 5 5 78.02+098 77.03+£1.00 77.46+0.92
MHAD2 5 16 81.78 =141 80.58 £1.35 81.19+1.43
WHARF baseline - 83.11 = 1.85 77.63 +2.34 78.62 +2.08
WHARF 5 1 81.97 £3.34 75.61 448 76.72 +£4.62
WHARF 5 5 85344285 8041+£3.66 81.74+3.50
WHARF 5 16 88.21 +£2.66 84.02+3.84 84.65+3.60
WISDM baseline - 99.47 £0.09 9920+ 0.15 99.21 £0.12
WISDM 5 1 9953+£0.06 99.18£0.12 99.25+0.08
WISDM 5 5 99.594+0.05 99.21 £0.11 99.36 £ 0.08
WISDM 5 16 99.394+0.03 98.73+£0.07 99.01 +0.04

Table 14: DClassifier - TRTR - v =5



dataset

—-

acc

recall

fl

MHEALTH
MHEALTH
MHEALTH
MHEALTH
MHEALTH
MHEALTH
MHADI1
MHADI1
MHADI1
MHADI1
MHADI1
MHADI1
MHAD2
MHAD?2
MHAD?2
MHAD2
MHAD?2
MHAD?2
WHARF
WHARF
WHARF
WHARF
WHARF
WHARF
WISDM
WISDM
WISDM
WISDM
WISDM
WISDM

LN nnnUnUnUnnnnnnnin e
—_ = —_ —_ [ —
(o) e WV, IV, IV, e e WV, IV, iV, B_lle)Ne WV, IV, 1V, B__e) e WV, [V, iV, BN e)We NV, IV, IV, B

—_—

100.00 £+ 0.0
100.00 £+ 0.0
100.00 £ 0.0
99.96 £ 0.0

100.00 £+ 0.0
99.96 £ 0.0

100.00 £+ 0.0
100.00 £+ 0.0
99.95 £ 0.00
99.92 £ 0.0

100.00 £ 0.0
99.95 £ 0.00
100.00 £+ 0.0
100.00 £ 0.0
100.00 £+ 0.0
99.74 £ 0.0

100.00 £ 0.0
99.74 £ 0.0

100.00 £+ 0.0
100.00 £ 0.0
99.85 £ 0.00
99.82 £ 0.00
100.00 £ 0.0
99.77 £ 0.00
100.00 £+ 0.0
100.00 £ 0.0
100.00 £+ 0.0
99.99 £ 0.0

100.00 £ 0.0
100.00 £+ 0.0

100.00 £ 0.0
100.00 £ 0.0
100.00 £ 0.0
99.96 £ 0.0

100.00 £ 0.0
99.96 £ 0.0

100.00 £+ 0.0
100.00 £ 0.0
99.94 £ 0.0

99.91 £ 0.0

100.00 £ 0.0
99.94 £ 0.0

100.00 £ 0.0
100.00 £ 0.0
100.00 £ 0.0
99.67 £ 0.0

100.00 £ 0.0
99.67 £ 0.0

100.00 £ 0.0
100.00 £ 0.0
99.54 £ 0.0

99.52 £ 0.00
100.00 £ 0.0
99.31 £ 0.00
100.00 £ 0.0
100.00 £ 0.0
100.00 £ 0.0
99.99 £ 0.0

100.00 £ 0.0
100.00 £ 0.0

100.00 £ 0.0
100.00 £ 0.0
100.00 = 0.0
99.96 + 0.00
100.00 £ 0.0
99.96 £ 0.00
100.00 £ 0.0
100.00 £ 0.0
99.94 £ 0.00
99.92 +£ 0.00
100.00 £ 0.0
99.94 £ 0.00
100.00 £ 0.0
100.00 £ 0.0
100.00 £ 0.0
99.66 + 0.00
100.00 £ 0.0
99.66 + 0.00
100.00 £ 0.0
100.00 £ 0.0
99.64 £ 0.0

99.63 £ 0.0

100.00 £ 0.0
99.44 £ 0.00
100.00 £ 0.0
100.00 £ 0.0
100.00 £ 0.0
99.99 + 0.00
100.00 £ 0.0
100.00 £ 0.0

Table 15: TRTR - TSRF -y =5



dataset gamma 1 acc recall f1

MHAD2 5 5 38.06+161 3855+1.64 33.79+2.02
MHAD?2 5 5 38.04+165 3836+1.61 33.67+2.05
MHAD2 5 16 3777+175 3827+159 33.49+2.10
MHAD?2 5 5 36.01+277 3657+280 32.15+2.86
MHAD?2 5 16 35954+273 36.59+272 31.94+3.05
MHAD2 5 1 3576 +2.89 36.37+2.84 31.89 +3.06
WISDM 5 5 38.00+7.01 34624246 29.36+3.59
WISDM 5 16 37914+562 3442+2.62 29.31+3.56
WISDM 5 5 3727+547 34.67+2.18 28.57 +3.48
MHEALTH 5 16 31464221 30.10+1.78 26.76 +2.24
MHEALTH 5 5 31224281 29864218 26.57 +2.61
MHEALTH 5 5 30.85+2.57 2946+1.99 26.18 +2.80
WISDM 5 16 30.71 2696 3458 +346 25.30+4.57
WISDM 5 1 30.62+672 3418 +325 25.17+t4.25
WISDM 5 5 3048 +£6.84 34.15+3.18 24.74 +4.39
MHEALTH 5 1 24114298 23.03+273 21.03+2.74
MHEALTH 5 16 23.65+329 2260+3.02 20.37+3.00
MHEALTH 5 5 23504+£3.19 22514293 20.24 +3.00
MHADI1 5 1 21594085 20.89+0.89 19.56+0.93
MHAD1 5 16 21.434+091 2074 +096 19.43+0.97
MHADI1 5 5 21.37+0.95 20.67+0.97 19.30+0.99
MHADI1 5 5 20324077 19.73+0.78 18.78 £0.73
MHAD1 5 5 20.134+086 19.54 +0.87 18.63 £0.82
MHADI1 5 16 20.09+084 1949+0.84 1859 +0.79
WHARF 5 5 15374369 13.84+1.64 5.454+1.69
WHARF 5 5 15034372 13.53+1.59 5.1941.57
WHARF 5 16 15.014+3.55 13.55+1.56 5.044+1.37
WHARF 5 5 1244 4+352 10404+1.81 4.03+1.24
WHARF 5 16 12404352 1037+1.78 3.99+1.15
WHARF 5 1 1245+351 1043+1.83 398 +£1.19

Table 16: TSTR - TSRF -y =5



dataset gamma 1 acc recall f1
MHEALTH 5 1 31464+221 30.10+1.78 26.76 +2.24
MHEALTH 5 1 2350+3.19 22514293 20.24 +3.00
MHEALTH 5 5 31224281 29.86+2.18 26.57+2.61
MHEALTH 5 16 30.85+257 2946+1.99 26.18+2.80
MHEALTH 5 16 24.11+£298 23.03+273 21.03+274
MHEALTH 5 16 23.65+329 2260+3.02 20.37+3.00
MHADI1 5 1 21374095 2067 +0.97 19.30+0.99
MHADI1 5 1 20.09+0.84 19.494+0.84 18.59 +0.79
MHADI1 5 5 20324+0.77 19.73 +£0.78 18.78 =0.73
MHADI1 5 16 21.594+0.85 20.89+0.89 19.56+0.93
MHADI1 5 16 21.434+091 20.74+096 19.43+0.97
MHADI1 5 16 20.13£0.86 19.54+0.87 18.63 +0.82
MHAD?2 5 1 37774+175 3827+1.59 33.49+2.10
MHAD?2 5 1 36.01 £277 36.574+280 32.15+2.86
MHAD?2 5 5 38.06+1.61 3855+1.64 33.794+2.02
MHAD2 5 16 38.044+165 3836+1.61 33.67+2.05
MHAD?2 5 16 35954273 36.59+272 31.94+3.05
MHAD2 5 16 3576+289 3637+284 31.89+3.06
WHARF 5 1 15.014+3.55 13.55+1.56 5.044+1.37
WHARF 5 1 1244 4+352 1040+1.81 4.03+1.24
WHARF 5 5 1537+3.69 13.84+1.64 545+1.69
WHARF 5 16 15.034+3.72 13.53+1.59 5.194+1.57
WHARF 5 16 12404352 1037+1.78 3.99+1.15
WHARF 5 16 1245+351 1043+183 398+1.19
WISDM 5 1 37914+562 3442+2.62 29.31+3.56
WISDM 5 1 3048 £6.84 34.154+3.18 24.74 +4.39
WISDM 5 5 37274547 3467 +2.18 28.57+3.48
WISDM 5 16 38.00+7.01 3462+246 29.36+3.59
WISDM 5 16 30.71 2696 3458 +3.46 25.30+4.57
WISDM 5 16 30.62+672 34.18+325 25.17+4.25

Table 17: TSTR - TSBF -y =5



dataset

gamma

acc

recall

fl

MHEALTH
MHEALTH
MHEALTH
MHEALTH
MHEALTH
MHEALTH
MHADI1
MHADI1
MHADI1
MHADI1
MHADI1
MHADI1
MHAD2
MHAD?2
MHAD?2
MHAD2
MHAD?2
MHAD?2
WHARF
WHARF
WHARF
WHARF
WHARF
WHARF
WISDM
WISDM
WISDM
WISDM
WISDM
WISDM

N NN nnhnnnhnnnhnhnnhnnnnnnonnnnonnonm

p—
AN\ N = =

100.00 £+ 0.0
99.96 £ 0.0

100.00 £ 0.0
100.00 £+ 0.0
100.00 £+ 0.0
99.96 £ 0.0

100.00 £+ 0.0
99.95 £ 0.00
99.95 £ 0.00
100.00 £+ 0.0
100.00 £ 0.0
99.92 £ 0.0

100.00 £+ 0.0
99.74 £ 0.0

99.74 £ 0.0

100.00 £+ 0.0
100.00 £ 0.0
100.00 £+ 0.0
100.00 £+ 0.0
99.77 £ 0.00
99.82 £ 0.00
100.00 £+ 0.0
100.00 £ 0.0
99.85 £ 0.00
100.00 £+ 0.0
100.00 £ 0.0
100.00 £+ 0.0
100.00 £+ 0.0
100.00 £ 0.0
99.99 £ 0.0

100.00 £ 0.0
99.96 £ 0.0

100.00 £ 0.0
100.00 £ 0.0
100.00 £ 0.0
99.96 £ 0.0

100.00 £+ 0.0
99.94 £ 0.0

99.94 £ 0.0

100.00 £ 0.0
100.00 £ 0.0
99.91 £ 0.0

100.00 £ 0.0
99.67 £ 0.0

99.67 £ 0.0

100.00 £ 0.0
100.00 £ 0.0
100.00 £ 0.0
100.00 £ 0.0
99.31 £ 0.00
99.52 £ 0.00
100.00 £ 0.0
100.00 £ 0.0
99.54 £ 0.0

100.00 £ 0.0
100.00 £ 0.0
100.00 £ 0.0
100.00 £ 0.0
100.00 £ 0.0
99.99 £ 0.0

100.00 £ 0.0
99.96 + 0.00
100.00 = 0.0
100.00 £ 0.0
100.00 £ 0.0
99.96 £ 0.00
100.00 £ 0.0
99.94 + 0.00
99.94 £ 0.00
100.00 £ 0.0
100.00 £ 0.0
99.92 £ 0.00
100.00 £ 0.0
99.66 £ 0.00
99.66 + 0.00
100.00 £ 0.0
100.00 £ 0.0
100.00 £ 0.0
100.00 £ 0.0
99.44 £ 0.00
99.63 £ 0.0

100.00 £ 0.0
100.00 £ 0.0
99.64 £ 0.0

100.00 £ 0.0
100.00 £ 0.0
100.00 £ 0.0
100.00 £ 0.0
100.00 £ 0.0
99.99 £ 0.00

Table 18: TRTR - TSBF -y =5



D DISCUSSIONS

We performed a layer-wise analysis of the DClassifier’s weight distributions to investigate the effects
of RIP as a regularization technique. We hypothesize that RIP promotes weight uniformity—a
property often associated with effective regularization|[Zhang et al.|(2019). To test this, we compare
the weight distributions of a model trained with RIP against a baseline model (trained without RIP)
and a uniform distribution. We use the Kolmogorov—Smirnov (KS) test|Cong et al.[(2021)) and the
Wasserstein distance [Panaretos & Zemel| (2019) as our primary metrics. We denote our KS test
setting as:

SRIP(L) = KS(LRIP(a)a LUniform) and Sbaseline(L) = KS(Lbaseline; LUniform)

Analogously, our Wasserstein settings:

WRIP(L) = W(LRIP(0)7 LUniform) and Wbaseline(L) = W(Lbaselinea LUniform)
where:

1. Lrip(s) represents the weight values of layer L trained with RIP under setting ¢ =
(v, 4, MHAD2, DClassifier); v € {0,1,5} and i is the best performer in the dataset,

2. Lpaseline corresponds to the same layer trained without RIP,

3. Luniform 1S a reference uniform distribution with the same shape as the weights in L (i.e.,
Luiform ~ scipy.uniform(shape = L.shape)).

The same Lyniform 1S used when comparing RIP and baseline weights to ensure fairness.

We selected the MHAD?2 dataset, which has the fewest classes and allows faster training while
preserving model validity. The DClassifier was chosen as it serves as a common baseline across
datasets. Since the model was trained using 10-fold cross-validation, we selected the fold with
the best validation score, assuming that its weights represent the model’s generalization capabil-
ity |Grimm et al.| (2017). This evaluation is carried out for both the real and synthetic versions of
MHAD?2, enabling us to assess whether RIP’s regularization effect holds across data modalities. In
the following sections, we discuss some aspects of the outcomes in this investigation. Lower values
for the KS statistic (S) and Wasserstein distance (W) indicate a greater similarity to the uniform dis-
tribution, suggesting more effective regularization. Full details on the experimental setup, including
the selection of the MHAD? dataset and the specific model configuration, are provided in Appendix
Dl

Effects on Synthetic Data. Weight Uniformity, Layer-wise Effects, and the Role of ~y: Figures 2]
show that RIP, particularly with v+ = 1 and 7 = 5, promotes more uniform weight distributions
across layers, as reflected by reduced Sgip(L) values compared to the baseline. This effect is most
significant in contextual layers such as SelfAttention, LSTM, and RNN, indicating that RIP is well-
suited for sequential architectures. The method’s effectiveness stems from introducing invariant
patterns — v; j, T; j,7Vi,; — Which reinforce contextual information and reduce overfitting. How-
ever, the impact is not uniform: v = 1 provides stable regularization across layers, while v = 5
induces stronger but less stable shifts in deeper layers, and v = 0 shows minimal effect. Overall,
~ = 1 emerges as the most reliable setting. Statistical Proximity vs. Distributional Cost: KS statis-
tics capture local deviations from uniformity, while Wasserstein distance reflects global shifts. RIP
reduces KS values—improving local uniformity—but often increases Wasserstein distances, espe-
cially in Conv2D and Dense layers, suggesting broader structural changes. Among variants, v = 1
yields the smoothest trade-off, whereas v = 0 is unstable and v = 5 introduces more dispersion.
This reveals a key trade-off: RIP enforces local regularization but may distort global distributions,
making careful tuning of v essential. Output and Model Confidence: RIP also affects output distri-
butions. KS tests over logits (Figure [3)) show that baseline models are overly uniform—reflecting
uncertainty—while RIP, especially with v = 1, produces less uniform logits, i.e., more confident
predictions. This aligns with higher F1-scores, indicating that RIP improves both decisiveness and
accuracy.

Effects on Real Data. Layer-wise Propagation, Sensitivity, and Contextual Suitability: On real
datasets, RIP propagates nonlinearly and asymmetrically through the network. Early Conv2D lay-
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ers show minor sensitivity to 7, while intermediate layers (LSTM3, SelfAttentionl, Lambda) re-
spond strongly, with divergence metrics decreasing as < increases. Deeper dense layers show lim-
ited change, likely due to accumulated nonlinearities. This highlights that RIP is most effective
in context-aware layers, with diminishing influence in final representations. Predictive Confidence,
Trustworthiness, and Reliability: RIP regularizes output confidence differently on real data. It re-
duces overconfidence, producing more calibrated predictions (Figure[3). Unlike the baseline, which
is often overconfident and inaccurate, RIP with v = 1 yields the best performance and the most
reliable calibration. The trade-off between variance control and accuracy reappears: v = 5 en-
forces strong uniformity but reduces accuracy, while v = 1 balances regularization and predictive
power. In practice, moderate RIP enhances generalization by mitigating overfitting without overly
constraining representational capacity.

Is RIP a Form of Data-centric Regularization? Our analysis shows that RIP has consistent archi-
tectural effects across datasets: contextual layers (e.g., LSTM, SelfAttention) are sensitive, while
Dense layers are not. However, its influence on output confidence differs by domain. In syn-
thetic data, RIP increases decisiveness, while in real data, it reduces overconfidence, leading to
better-calibrated predictions in both cases. The performance—regularization trade-off is also domain-
dependent. Our findings suggest that RIP is a data-centric regularization technique, implemented
through a novel form of structured data augmentation, shaping weight dynamics through input
structure without modifying the architecture or loss function. Unlike traditional £2 regularization,
which imposes global penalties, RIP steers optimization toward more uniform weight distributions
by leveraging properties of the data itself. Its effect is not monotonic with v, varying across layer
types and depths—highlighting the need for careful tuning. By embedding a structural prior directly
into training, RIP emerges as a compelling alternative to classical methods: when properly tuned,
it encourages more uniform weights, yields better-calibrated predictions, and enhances generaliza-
tion without compromising performance. By reducing overconfidence and overfitting, RIP proves
especially useful for models prone to excessive certainty, such as LSTM-based architectures.

E SKETCHED FORMAL ANALYSIS

The model analyzed has six layers, called respectively by Rnn inputs, Conv2d, Lambda, LSTM,
Self-Attention, and Dense. Two are RNN-based. We will focus on RNN inputs and LSTM because
we focused on them in the previous section. The LSTM in this TensorFlow implementation returns
only three weights (called for *whole sequence output,’” ‘final memory state,” and’ final carry state’;
for more details, see TensorFlow API Docs tfl)).

As discussed in the main paper, the discussions showed that RNN-based layers are more affected by
RIP. Considering that, we decided to analyze the impact of the RNN-based layers mathematically.
We consider an RNN with bias parameters b € R” and identity activation function () = = in the
hidden layers. At time step ¢, the input is z; € R?, and the corresponding target is y;. The hidden
state h; € R" and the output o; € RY are computed as follows:

ht = W.%‘t + Uht_1 + b,

Ot = Vht + C,

9+ = softmax (o),
where W € R U € R**h V' ¢ R?*9 and C' € RY. The output vector o; = (01, . . ., 0tq)
represents the logits for a g-class classification task. The softmax function is applied element-wise

as softmax(oy;) = ﬁ, producing a probability vector §; € RY.
For a multi-class classification setting, we define the loss as the average cross-entropy over a mini-
batch:
1 n q
(=== vijlog(dij)- 4
i=1 j=1

Here, hy = hy(W, 24, ht—1, b) and the loss depends on V', h;, and C, i.e., £ = £(V, hy, C). Therefore,
hi :Wl‘l—‘rUho—f—b:W’)/-i-b
ho =Wz +Uhy +b=Wy+UW~y+0b +b
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Then,
hy =Waxs + Uhg + b
=Waxs+U[UW~y+0b+0b+b
=Was +U*Wy+b+Ub+b
It implies in
hy =Wy + Uhs +b
=Wy +U[Was + U?[Wry + b+ Ub+ b+ b
=Wy +UWaxz + U [Wry +b]+U?b+Ub+b
Finally,

hs =Waxs +Uhyg + b
=Wy +U{Wry+UWaxz+U[Wry+b+U?b+Ub+b} +b

=[U'+ U+ U+ Wy + UWas + Y U'D
4
Howeyver, without CAR,

hz :Wx2+Uh1+b
=Wxo+U[Wzq1+b+b
=Waxo +UWx1+Ub+0b

Then,
hs =Wax3+ Uhy +b
=Was +U[Wzy+UWzxy +Ub+b] +b
=Was +UWaxy + U Wy + U+ Ub+b
Consequently.
hy =Waxy+ Uhs +b
=Waxy +U[Was +UWaxy + UWay +U?b+Ub+ b+
=Way +UWaz + U Wag +UWay +Ub+U?b+Ub+b
Finally,

hs =Waxs +Uhs +b

=Was +U[Way +UWaz + U Wag + USWay +U3b+ Ub+Ub+b] + b
=Was + UWaxy + UWag + UWag + Ulzy + U+ Ub +U?b + +Ub + b

4
=Y (U'zs_; +U)
1=0

To investigate the effect of repeated input sequences, we simulate a training scenario with a mini-
batch of 5 steps and initialize hy = 0. We assume that the constant samples ~y is present at steps

t=1,2,4,5.

Under RIP As derived in previous equations, the hidden state at ¢ = 5 can be written as:

4
hy = (U + U+ U+ 1) Wy + UWas + Y _U'D,

i=0
where 1 = x2 = x4 = x5 = 7y are the inputs, following the RIP procedure.
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Without RIP In contrast, when all inputs are distinct (i.e., no constant samples added), the hidden
state at £ = 5 becomes:

4
hs = (U'b+U'Was_), (6)
i=0
where x4, ..., x5 are assumed to be distinct inputs. This leads to a richer combination of temporal

features, diversifying the contribution of W and b over time.

Equationsf]and2]clearly show that the resulting /s is highly constrained by the repeated appearance
of ~y, and the majority of the dynamics come from powers of U acting on a fixed term W+. Thus,
the variability of h; across time is dampened. Using RIP introduces a structural bias toward low-
variance representations, much like traditional regularization techniques such as weight decay or
dropout. Indeed, comparing the variance of the hidden state h5 in the two previously explored
scenarios, and assuming that each input 2; € R” is drawn independently from a distribution with
mean /. and covariance Y, i.e.,
Elz:] = p, Cov(z) =2.

Without RIP  All inputs are distinct: 1, x2, 23, x4, x5 are i.i.d. Then the hidden state at ¢ = 5 as
in Eq. 2Jthe expectation and variance:

4 4
ER{™) =" U'wu+ > U,
=0 =0

4
Var(h{™M") = N vtwsw T (U9 ()

5
=0

With RIP  Assume inputs 1 = x9 = x4 = x5 = < are fixed and only x5 is random. Then, the
expected value and variance become:

4
Eh{™) = (U + U + U+ D)Wy + UWp + Y U,
=0

Var(h&™) = 2wsw T (U?) 7. (8)

Although each input x; has the same covariance ¥, in the Eq. [7|the variance of h; accumulates over
five independent sources x;; Vi = 1, - - - , 4, while in the Eq. [8] it depends solely on one term, z3.

This shows that RIP leads to reduced variance in the hidden representation. Repeatedly using the
fixed input « reduces temporal diversity and constrains the representation to a smaller subspace.
This supports the interpretation of RIP as an implicit regularizer, promoting smoother gradient flow
and reducing overfitting—at the cost of reduced representational capacity when overused. The hid-
den states in RIP become combinations of a limited set of patterns, which reduces the RNN’s ability
to overfit to the training data. It results in more predictable and homogeneous hidden states, leading
to smaller gradient variance and acting as an implicit regularizer. This confirms the empirical obser-
vations that RIP can help generalization — mainly when used with moderation — but also explains
why excessive repetition (e.g., high 7 values) leads to stagnated performance.

Consequently, due to the chain rule, the weight updates are affected by the RIP, carrying this lower
variability and reinforcing the action of vy, as well as the regularization. Then, by the chain rule, for
all weight Q € {W,V,b,U},

ov 805 8Pk

Q = Qcurrent — aailjk P, 679

where 0f2 relies on hs, implies a lower variability in the RIP scenario, as previously discussed.
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F ADDITIONAL EXPERIMENTS

To enable a more in-depth investigation, we performed supplementary experiments designed to ad-
dress specific questions and validate our results.

F.1 /¢; AND /o

Since we are introducing a novel regularization strategy for Human Activity Recognition (HAR)
classifiers, comparing our approach with similar techniques is essential. However, we could not
identify existing regularization methods tailored to HAR scenarios. Therefore, we compared our
method with the most traditional and widely used regularization techniques: ¢; and ¢, regularization.

Given the structure of the models, we applied these regularization techniques to the TS-Classifier
and DClassifier models previously used in this study. The experiments were conducted using the
same real and synthetic datasets employed throughout the paper. We evaluated four values for the
regularization parameter: 0.1, 0.01, 0.001, and 1.

To provide a clear overview, we summarize the results for the real and synthetic datasets separately.
Tables [22] and [20] present the best results obtained for each regularization technique in real and
synthetic datasets, respectively. The complete experimental results are provided in tables[21] and 20]
As in previous sections, the baseline for each dataset refers to the classifier trained on the respective
data type without any approach employed.

The following discussion analyzes the outcomes reported in Table 20| Due to the breadth of results
and potential analyses, our discussion emphasizes the key patterns and takeaways.

Performance in High-Baseline Scenarios. One of its key advantages is its ability to enhance
performance in datasets with high baseline metrics. For instance, in the MHEALTH dataset with
TS-Classifier, where the baseline accuracy is close to 99%, traditional regularization methods led
to performance drops of up to 40 percentage points. In contrast, configurations maintained the
baseline and in some cases reached 100% accuracy and F1. Similarly, in the WISDM dataset, which
also displayed strong baseline results, improved accuracy and F1 by one percentage point, whereas
¢y and /5 regularization resulted in significant degradation. These findings suggest that it does not
compromise performance in already high-performing models, an essential feature for sensitive or
high-stakes applications.

Robustness Across Diverse Data Distributions Consistently outperformed traditional regulariza-
tion methods across all five datasets tested with TS-Classifier and three out of five with DClassifier.
Notably, neither /1 nor ¢5 regularization surpassed the baseline in any of the evaluated scenarios,
yielding improvements in approximately 90% of the cases. For instance, in the WHAREF dataset, tra-
ditional regularization caused performance drops exceeding 50 percentage points, while maintaining
or improving performance across all configurations.

In datasets with moderate or low baseline performance, such as MHADI and MHAD2, RIP deliv-
ered substantial gains: up to 30 percentage points in TS-Classifier and around 4 points in DClassi-
fier. In contrast, #1 and /5 regularization failed to improve results and occasionally degraded them.
These findings highlight the effectiveness as a generalization-enhancing mechanism, particularly in
scenarios where conventional regularization techniques fall short.

Versatility Across Configurations Another key strength is its versatility across various config-
urations. Across all datasets, multiple combinations of hyperparameters (v and ¢ values) led to
substantial performance gains, indicating that it is not overly sensitive to fine-tuning. For instance,
v = —1 and v = 1 produced strong results in different datasets such as MHAD1, WHAREF, and
WISDM. This suggests that it has broad applicability and typically requires only the identification
of a reasonable ~y value to achieve competitive performance.

Practicality Over Complexity In the DClassifier setting, datasets such as WISDM, WHARF,
and USCHAD exhibited only marginal improvements, approximately one percentage point over the
baseline, when using /5 regularization. In one of these cases, it did not outperform the baseline;
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Table 19: Performance analysis of the proposed RIP method versus a baseline approach and the ¢;
and ¢, regularization methods. Experiments were conducted on five public, real-world datasets. For
each metric, the highest-performing result is highlighted in bold. The reported performance for RIP

is based on its best-found hyperparameter configuration.

Model Dataset Method Accuracy (%) Fl-score (%)
Baseline 01214161 90464284
RIP(y—0,i—16) 97.844021  98.01-0.20
MHEALTH "' ¢ 001) AT1346.13  40.94+46.24
05 (¢ = 0.001) 14.65+6.04  37.84+6.03
Baseline 58.2542.06  67.13+1.14
RIP(y—=0,i—16)  86.1240.55  86.13+0.53
MHADL "~ o 1) 20.3642.29  26.63+2.12
05 (¢ = 0.001) 16.09+1.23 9.28+1.39
. Baseline 68.32+1.05 67.58+1.31
DClassifier MiADy ~ RIP(r=0i=16) 82124072  81.68+0.74
01 (e = 0.001) 52.0244.66 46585544
05 (e = 0.001) 41564621  30.05:+8.18
Baseline 83114185  78.62+2.08
RIP(y—=1,i=16) 90254119  87.48+1.70
WHARE "~ 0.001) 19.5142.09  10.92+1.98
05 (¢ = 0.001) 20.0443.16  10.90+2.73
Baseline 99474009  99.21+0.12
RIP(y—=0,i=5 99774003  99.46+0.05
WISDM " = 1.0) 51794429  43.75+2.95
0y (e =0.1) 18.6545.66  42.77+3.40
Baseline 32.374240  24.08+2.59
RIP(y—1,i—1)  59.98+2.03  55.54+2.42
MHEALTH "'~ 1 o) 57.7142.60  51.67+3.56
05 (e = 0.1) 58.254337  51.61+4.45
Baseline 20454115  15.67+141
RIP (v = —1,i = 5) 31.6740.73  26.08:0.70
MHADL "2 0.001) 31494195  27.624+2.00
05 (¢ = 0.001) 33424195  29.70+2.29
. Baseline 31.25+1.64 24.464+1.72
TS-Classifier MHAD2 ~ RIP(/=1i=16) 52494316 43224391
01 (¢ = 0.001) 47134613 40.94+6.24
05 (€ = 0.001) 14.65+6.04  37.84+6.03
Baseline 19.19+6.71 10.28+3.63
RIP(y—=1,i—1)  46.06+434  28.63+2.24
WHARE -, "~ 0.001) 19.5142.09  10.92+1.98
05 (e = 0.001) 20.0443.16  10.90+2.73
Baseline 90.3241.63  87.1942.62
RIP (v = —1,i =5) 93.124121  92.30+1.46
WISDM ¢ = 0.001) 13684546  43.94+4.06
05 (¢ = 0.001) A7.884681  46.12+3.21

however, its best results were achieved with low values of ¢, still surpassing the baseline in sev-
eral configurations. This observation reinforces a concern previously raised by [Jiang et al.| (2024)
regarding the complexity of designing deep learning models. Traditional regularization techniques
often require substantial expertise and careful hyperparameter tuning to be effective. In contrast,
RIP offers a more practical and accessible alternative for practitioners, striking a balance between
ease of use and strong empirical performance.
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Table 20: Regularization in Synthetic Datasets.

Model Dataset Protocol Rate (v,7) Acc F1
4 0.001 - 43.68 £5.46 43.94 £ 4.06
0.01 - 43.68 £5.46 43.94 £ 4.06
0.1 - 38.06 £ 6.39 38.36 + 3.41
1.0 3241 £9.07 29.44 +7.68
WISDM ly 0.001 - 4788 £6.81 46.12 £3.21
0.01 47.88 +£6.81 46.12 £3.21
0.1 40.57 £5.65 37.77 £3.71
1.0 40.34 £ 8.84 38.43 £4.64
A 0.001 - 19.51 £2.09 10.92 +1.98
0.01 - 20.04 £3.16 10.90 +2.73
0.1 16.57 £4.33 10.90 &+ 3.32
1.0 18.03 £3.94  8.19 £2.58
TS-Classifier =~ WHARF [ 0.001 - 20.04 £3.16 10.90 £2.73
0.01 20.04 £3.16 10.90 £ 2.73
0.1 16.57 £4.33 972 £3.32
1.0 18.03 £3.94  8.19 £2.58
A 0.01 - 56.44 £3.35 50.95 £3.05
0.001 - 56.44 +£3.35 50.95 +3.05
0.1 48.93 +£3.26 44.13 £3.67
1.0 31.07 £540 21.14+492
MHEALTH 2 0.001 - 59.80 £4.52  59.05 +3.89
0.01 59.80 £4.52  59.05 + 3.89
0.1 54.87 £4.33 50.14 £3.42
1.0 48.22 +£2.61 43.18 £2.90
[ 0.001 - 47.13+£6.13 4094 £6.24
0.01 4713 £6.13 40.94 £6.24
0.1 3898 £3.72 33.44 +3.59
1.0 39.74 £3.45 3413 +3.84
MHAD?2 A 0.001 - 44.65 £ 6.04 37.84 £6.03
0.01 44.65 +£6.04 37.84 £6.03
0.1 39.83 £4.48 33.64 +£4.03
1.0 2049 £0.74  5.67 £0.17
I 0.001 - 3149 £ 195 27.62 +£2.00
0.01 3149 £1.95 27.62+2.00
0.1 26.13 £1.92 2392+ 1.88
1.0 6.41 £0.23  0.57 £0.02
MHADI1 ly 0.001 - 3342 £1.95 29.70 £2.29
0.01 3342 +£1.95 29.70 £2.29
0.1 28.10 £2.95 24.93 +2.68
1.0 2640 £2.45 22.73+2.72

F.1.1

REAL DATA

Comparative Efficacy Across Models and Datasets
verse activity recognition datasets demonstrate that the RIP method generally outperforms tradi-
tional regularization techniques such as ¢; and /5, particularly when applied to the TS-Classifier. In
all datasets (WISDM, WHARF, MHAD2, USCHAD, and MHEALTH), RIP consistently achieves
superior performance in both F1-score and accuracy. Notably, on the MHEALTH dataset, the con-
figuration (y = 0,7 = 1) resulted in gains of approximately 30 percentage points over the baseline.
For the DClassifier, RIP also surpassed traditional regularization in most cases. In datasets such as
WHAREF, USCHAD, MHEALTH, and MHAD?2, RIP led to consistent improvements, while conven-
tional methods either failed to improve performance or offered only marginal gains. The only excep-
tion was the WISDM dataset (the largest in our study, with over 10,000 training samples), where {5
regularization outperformed RIP. This suggests that conventional techniques may still prove effec-
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Table 21: Regularization in Synthetic Datasets.

Model Dataset Protocol Rate (v,1) Acc F1

Uy 1.0 - 51.79 £4.29 4375 4+2095

0.001 51.69 £5.22 45.40 +4.09

0.01 51.69 £5.22  45.40 +4.09
0.1 46.96 & 6.40 42.36 +4.90
WISDM 0 1.0 - 48.65 £5.66 42777 +3.40
0.001 48.89 + 6.30 43.58 + 3.06

0.01 48.89 + 6.30 43.58 £+ 3.06

0.1 50.74 +£5.55 45.59 +£3.53
1.0 48.65 £5.66 42.77 +3.40

Uy 0.1 - 1836 =451 9.62+3.42

0.001 17.36 £3.85 7.38 +£2.53

0.01 17.36 £3.85 7.38 £2.53

1.0 16.62 =4.60 729 +2.73

DClassifier WHARF 0y 0.001 - 19.45+3.92 9.16 +2.53
0.01 1945 +£392 9.16 +2.53

0.1 17.23 £3.43  9.11 £ 1.15

1.0 10.87 £3.72  7.88 £ 2.31

U 0.1 - 15.06 £ 1.64 3.85+3.27

0.001 1490 £ 1.34  3.65 £2.90

0.01 1490 +1.34  3.65 £2.90

1.0 1585 +£3.09 4.1043.73

Uy 1.0 - 5771 £2.60 51.67 £3.56
0.1 55.83 £2.65 50.24 +£3.54

0.01 54.84 £4.09 4791 43091

0.001 54.84 £4.09 4791 £3091

MHEALTH 14 0.1 - 5825 +3.37 51.61 £4.45
0.001 56.64 £2.79 4945 1+298

0.01 56.64 £ 2.79 49.45 £2.98
1.0 53.84 £2.27 48.40 £+ 3.30
U 0.001 - 52.92 £4.66 46.58 +5.44
0.01 - 5292 £ 4.66 46.58 £5.44
0.1 - 51.67 £5.36 45.96 +£5.94

1.0 50.10 = 4.64 44.60 +3.98

MHAD?2 0y 0.001 - 41.56 = 6.21 30.05 = 8.18
0.01 - 41.56 = 6.21 30.05 £ 8.18

0.1 42.29 £ 4.07 30.05 +=8.18

1.0 38754+ 191 26.05 345
ly 0.1 - 29.36 £2.29 26.63 +£2.12
0.001 28.05 +1.64 25.25+1.66
0.01 28.05 £ 1.64 25.25 £ 1.66

1.0 27.68 +1.84 25.03 +1.78

MHADI1 0y 0.001 - 16.09 =123 9.28 £1.39
0.01 16.09 = 1.23 9.28 = 1.39

0.1 1524 +£1.23 7.66 £1.70

1.0 1551 +1.16 831+ 1.52

tive in specific scenarios, especially those involving large and well-structured datasets. Nonetheless,

such cases were infrequent, reaffirming the general efficacy of RIP across models and datasets.

RIP Outperforms Traditional Regularization In most scenarios, RIP delivered substantial per-
formance gains over traditional regularization techniques. For example, on the MHEALTH dataset
with the TS-Classifier, RIP improved the F1-score by approximately 50 percentage points and accu-
racy by around 30% compared to the best ¢; configuration. In the case of MHAD2, RIP enhanced
performance in 13 out of 16 configurations, while traditional regularization methods showed no im-
provement. Furthermore, on datasets such as USCHAD and MHEALTH, traditional regularization
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Table 22: Regularization in Real Datasets.

Model Dataset Protocol Rate (v,7) Acc F1
12 0.001 - 82.36+6.46 80.62+ 6.21
WISDM 2 0.001 - 80.51+4.93 74.78+ 7.45
2 0.001 - 3411 +£7.97 20.82 +3.44
TS-Classifier WHARF lo 0.01 - 32.17 £8.85 18.33 £4.96
lq 0.001 - 3047 £ 1.66 22.54 +1.15
MHEALTH lo 0.001 - 31.31 £3.40 2246 +3.96
2 0.001 - 3047 £1.66 2264 +1.15
MHAD?2 2 0.001 - 31.31 £3.40 23.26 =3.96
/q 0.001 - 18.98 =1.34  13.79 £1.55
MHADI1 lo 0.001 - 20.10 £2.11 15.10+2.45
12 0.001 - 96.94 + 0.26 95.56 + 0.37
WISDM lo 0.01 - 9391 £046 91.29 £ 0.64
2 1 - 78.38 £2.48  70.44 £ 2.61
DClassifier WHARF lo 0.001 - 6823+ 1.75 5296+ 3.36
2 0.01 - 91.78 £094 91.64 = 1.30
MHEALTH lo 0.1 - 85.55+1.54 80.82 +3.06
2 0.1 - 5275 +£1.59 50.89 £+ 1.34
MHAD?2 2 0.01 - 15.55 £ 1.40 6.96 = 1.22
2 0.01 - 69.27 £2.30 62.04 +3.11
MHADI1 lo 0.001 - 55.00 £5.09 43.87 +6.68

consistently degraded performance, leading to up to 40 percentage points reductions, whereas RIP
improved both accuracy and F1-score across all tested configurations. These consistent gains across
diverse datasets with varying levels of complexity underscore the robustness and broad applicability
of RIP as an effective regularization strategy.

Generalization Across Architectures One of the most promising aspects of RIP is its ability to
generalize across different model architectures. When applied to both TS-Classifier and DClassifier,
RIP proved effective across various configurations (e.g., other values of -y and 7), demonstrating flex-
ibility in both tuning and deployment. Although its impact was more pronounced in TS-Classifier,
the consistent improvements observed with DClassifier indicate that RIP adapts well to different ar-
chitectures while maintaining its effectiveness. This versatility is particularly valuable in scenarios
where traditional regularization techniques fail, offering a robust alternative that does not rely on
architecture-specific or loss-based adjustments.

F.1.2 SYNTHETIC VS. REAL DATA

Across all datasets and scenarios, constant data augmentation consistently outperformed both ¢; and
{5 regularization techniques. Even in cases where performance gains were marginal, constant data
never degraded the model’s baseline performance (unlike regularization), highlighting its effective-
ness and reliability as a strategy to enhance synthetic data quality in Human Activity Recognition
(HAR) tasks. RIP proved a reliable and adaptable technique, delivering consistent performance im-
provements across all tested datasets and configurations. Unlike standard regularization methods,
RIP can boost weak baselines, preserve strong ones, and maintain robustness across data variations,
making it a strong candidate for general-purpose regularization in deep learning pipelines.

The following discussion analyzes the outcomes reported in Table [22] Due to the breadth of results
and potential analyses, our discussion emphasizes the key patterns and takeaways.

F.2 GENERAL TIME-SERIES DATA RESULTS

We extended the previous experiments conducted on wearable sensor data to more general time-
series datasets. The models employed focused on time-series classification, including TSBF, TSREF,
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and TS-Classifier. The only exception was D-Classifier, which is specific to HAR. We retained it for
consistency with prior experiments.

Specifically, we evaluated the following datasets: the Hydraulic dataset Helwig et al.|(2015)), which
comprises non-wearable sensor data used for predictive maintenance in hydraulic systems; the Eye
dataset Roesler| (2013), containing 14 EEG-derived features used to detect eye states; and the Occu-
pancy dataset|Candanedo| (2016), composed of 14 environmental sensor features aimed at determin-
ing room occupancy. Since identifying the best generative models for each dataset lies beyond the
scope of this study, we restricted our experiments to constant data augmentation within the TRTR
protocol.

All datasets were preprocessed following the same methodology as in the main experiments. We
applied a 10-fold stratified cross-validation split with 90% of the data for training and 10% for
testing. Each dataset was segmented using the SNOW method, with fixed-length windows of 50
time steps and 50% overlap. This window size was selected based on preliminary validation: among
a randomly selected dataset, TSBF (our best-performing model overall) achieved its baseline using
this configuration.

We explored the same range of hyperparameters as in the main experiments, testing v € 0,1, —1,5
and i € 1,5, 16, 32. Table[23] presents only the best-performing configuration for each experiment.

Dataset Model Setup F1
Baseline 4583 £3.74
TSBF (y=1,1=05) 47.77 £+ 6.65
Baseline 55.49 £ 5.68
TSRF (y=L1=1) 57.22 £4.84
Eye Baseline 34773 +2.84
DClassifier (y=—1,7=16) 35.17£2.74
Baseline 37.60 £5.45
TS-Classifier (y=0,7=05) 37.18 £6.11
Baseline 72.00 £1.97
TSBF (y=1t=16) 72.04 +£1.68
Baseline 75.69 £+ 1.68
TSRF (y=1,1=5) 75.60 £ 1.92
Haydraulic Baseline 14.31 £ 0.15
DClassifier y=1:=1) 13.43 +0.03
Baseline 36.42 +2.70
TS-Classifier (y=-1,7=25) 14.13 +2.36
Baseline 87.53 £ 1.73
TSBF (y=1,v1=05) 87.49 +1.74
Baseline 1274 £ 1.21
Occupancy  DClassifier (y=-1,i=1) 1046 £2.11
Baseline 15.61 £ 2.54

TS-Classifier y=1:=1) 20.74 + 3.87

Table 23: Experiments with general time-series data

Table 23| presents the results of extending RIP to non-wearable time-series datasets. Overall, the
impact of RIP in these settings was less pronounced compared to the wearable-focused datasets,
with mixed outcomes depending on the dataset and model architecture.

For the Eye dataset, marginal improvements were observed with the TSBF and TSRF models.
Specifically, TSBF slightly increased the F1 score from 45.83% to 47.77%, and TSRF from 55.49%
to 57.22%. While these gains suggest a potential benefit from CAR, the overlapping standard devi-
ations indicate that the improvements may not be statistically significant. Conversely, D-Classifier
and TS-Classifier exhibited minimal to no improvements, suggesting limited effectiveness of RIP
for these models in this dataset.

In the Hydraulic dataset, RIP yielded performance nearly identical to the baseline for TSBF and
TSREF, with negligible changes. Notably, TS-Classifier experienced a substantial decrease in perfor-
mance, from 36.42% to 14.13%, indicating that RIP may negatively impact models when the signal
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characteristics deviate substantially from those typically found in wearable sensor data. D-Classifier
also slightly underperformed in this setting when RIP was applied.

The Occupancy dataset produced mixed results. TSBF and D-Classifier matched or slightly un-
derperformed relative to the baseline. Interestingly, TS-Classifier showed a notable improvement
in F1 score, rising from 15.61% to 20.74%, suggesting that RIP can still offer benefits in specific
scenarios, even outside wearable contexts. However, this improvement appears both dataset- and
model-specific, limiting its generalizability.

These findings indicate that while RIP may retain some utility in general time-series scenarios, its
effectiveness is considerably more evident in datasets derived from wearable sensors. Its applicabil-
ity to non-wearable domains appears to be limited and highly dependent on the nature of the data
and the model used. This supports the view that RIP is most suitable as a regularization method
tailored to wearable sensor applications.

F.3 TABULAR DATA RESULTS

To perform experiments using tabular data, we considered nine datasets: Absenteeism Martiniano &

(2018), Bank (2012), Diabetes Glass (1987), Iris [Fisher| (1988),

Wine Quality |Cortez et al.|(2009) (comprising both white and red wine), and Sonar|Rossi & Ahmed
(2015). Further details on the datasets are provided in the Appendix.

We employed six classifiers: Decision Tree (DTree), Dummy, K-Nearest Neighbors (KNN), Multi-
Layer Perceptron (MLP), Support Vector Machine (SVM), and Stochastic Gradient Descent (SGD).
The goal was to experimentally evaluate whether the proposed RIP technique positively affects
classifier performance when applied to tabular data.

We assessed the technique using only real datasets, as generating synthetic data would require ad-
ditional effort to determine the best-performing generative model, an objective beyond the scope of
this work.

Initially, we tested the same ~y values used in previous experiments; however, they did not produce
any variation from the baseline. Therefore, we conducted an Exploratory Data Analysis (EDA) on
each dataset and adjusted the constant distributions accordingly. As a result, different values were
tested for each dataset. Since RIP did not affect all datasets, we only report those where it had some
measurable impact.

Bank dataset Student dataset Whitewine dataset
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Figure 4: F1-scores per model for the Student, Wine Quality, White Wine, and Bank datasets. The
x-axis displays the models, while the y-axis shows the corresponding F1-scores. Each bar represents
a different data distribution, distinguished by color and identified in the legend located to the left of
the figure. The label ”Avg” corresponds to the average of the features for the respective dataset.

Figure [ reveals that although effective in some sensor-based and time-series contexts, this tech-
nique does not generalize as easily to structured tabular data. Our experiments with datasets such
as Bank, White Wine Quality, and Student show that most classifiers either maintained or experi-
enced a decline in performance when trained with constant-value data augmentations. Particularly,
Dummy classifiers consistently underperformed with RIP across all datasets and distributions, rein-
forcing that naive models are not robust to even minor changes in data structure. More importantly,
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Table 24: DClassifier -synthetic

acc recall f1 epsilon method
4538 +2.83 44.03+320 41.80+4.05 0.1 cutmix
44,04 £=3.85 4241 +£4.03 4025+462 0.3 cutmix
4493 +3.21 43.07+£3.62 40.86+4.68 0.2 cutmix
31.58 +3.28 31.09 £2.86 24.90+3.61 0.2 dro
3270 £ 4.71 32.65+4.38 26.88+499 03 dro
2994 +£2.77 2928 £2.60 22.85+285 0.1 dro
39.67 £ 6.03 36.69 £7.16 32.02+£951 02 mixup
390.78 £ 6.23 36.78 £7.33 31.79+£9.28 03 mixup
39.88 +6.14 37.01 =+7.26 32.33+9.63 0.1 mixup

SVM and MLP, typically more sensitive to data distribution changes, showed degraded F1 scores
in several cases. While SGD exhibited more stable behavior, its performance was still unable to
exceed the baseline in most settings. These findings suggest that RIP does not serve as a universal
regularization strategy for tabular data, likely due to the structured and often low-dimensional nature
of such datasets.

Although RIP can be applied to tabular datasets, its benefits are limited and highly context-
dependent. Nonetheless, its application should be critically evaluated case-by-case, especially when
dealing with classifiers sensitive to distributional changes.

F.4 CuTtMIX, MIXUP AND DRO

Our literature review found a notable lack of research focusing on regularization or domain general-
ization for Human Activity Recognition (HAR). The closest related work is ?, which applied Mixup
and Distributionally Robust Optimization (DRO) to accelerometer-based HAR. This direction aligns
with our goal of enhancing model robustness.

While our proposed method (RIP) and DRO are not direct competitors, they aim to solve the same
problem: robustness to shifts in data distribution. However, they operate in fundamentally different
ways. DRO is an optimization-based approach that modifies the loss function to minimize perfor-
mance on a worst-case distribution from a defined uncertainty set. Given that DRO is one of the
few approaches specifically explored for robustness in the HAR literature, we deemed it an essential
benchmark for our experiments.

The work by ? also leverages techniques like Mixup and Cutmix, data augmentation, and regular-
ization methods proven highly effective in computer vision. Their main objective is to create new,
synthetic training examples from existing data, forcing the model to learn more robust representa-
tions and generalize better, thereby preventing overfitting. Their adaptation to time series follows
the same logic as in computer vision:

e Mixup creates a new training sample by combining two existing samples through a
weighted linear interpolation.

* Cutmix creates a new training sample by cutting a temporal segment from one example
and pasting it onto another.

Instead of operating on pixels and regions of a 2D image, these methods are applied to timesteps
and segments of a 1D signal.

The source code for our implementation and experiments is publicly available on our GitHub repos-
itory. These comparison experiments were conducted exclusively on the DClassifier based on previ-
ous results. We used the MHAD?2 dataset to ensure consistency with our supplementary experiments.
Tables [24]and ?? show the full results. The comments are available in the main paper.
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Table 25: D-Classifier - real

acc recall f1 epsilon  method
63.10 £ 1.18 62.26 + 1.37 62.03 + 1.47 0.1 cutmix
58.29 +1.79 57.19 + 1.88 57.33 £2.26 0.3 cutmix
60.78 £+ 0.75 59.50 £+ 0.76 59.85 £+ 0.89 0.2 cutmix
40.36 4 3.81 39.13 +£4.28 3473 +£4.32 0.2 dro 29
45.75 £ 2.08 43.44 £+ 2.34 38.91 +£2.76 0.3 dro

33.88 £+ 3.00 31.80 £ 3.09 25.93 +4.09 0.1 dro

4431 +£10.62 4171 £11.80 36.68 £13.98 0.2 mixup
46.49 £+ 9.79 4438 +£10.82 39.71 £12.76 0.3 mixup
3098 +£12.17 3695+13.48 30.89+16.12 0.1 mixup

G ABLATIONS

In this section, we conduct ablation studies to evaluate the most sensitive components of our pro-
posed method. These analyses aim to clarify our methodological choices and justify the effective-
ness of the approach when the protocol is followed rigorously. We do not focus here on evaluating
specific values of ~, 4, or dataset-specific behaviors, as these aspects have already been thoroughly
discussed in the Results and Discussion sections, where their individual effects on performance were
highlighted.

Our method is grounded in the principle of effectively training models using synthetic data by nar-
rowing the domain gap through domain randomization, as proposed by Tremblay et al. (2018)
Tremblay et al.|(2018)). That study demonstrated that injecting random backgrounds into synthetic
images helped models focus on the relevant features (e.g., cars) by reducing their sensitivity to irrel-
evant details (e.g., backgrounds). Drawing inspiration from this, our RIP technique aims to construct
a modular textual representation that directs the model’s attention to semantically relevant informa-
tion for classification. This is achieved by embedding the target signal within constant distributions
defined by preselected vy values, effectively “framing” the informative region of the input, much
like a picture frame draws focus to the subject within an image. From this central idea, the key
components of our approach were developed.

To further clarify the impact of these components, we conducted the following additional experi-
ments:

1. We assessed RIP in 0 = (1,4, MHAD2, DClassifier) with v € {0,1} and i = i such
i€ {1,5,16,32}.

2. Instead of keeping ~ invariant across the entire shape (w, 3), we replaced it with a random
distribution D of the same shape (w, 3), under different value constraints. These values
were randomly assigned while preserving the shape of the default temporal window. We
evaluated the following configurations:

* D = rand(): random values without any range restriction.

* D =rand(0,4): random values in the range [0,4].

* D =rand(0, 1): random values in the range [0,1].

* D = Dup(z;), where Dup corresponds to make 7 duplicates of the sample x;, for all
i € len(D).
For these experiments, we have a setting 6 = (D, 7, MHAD2, DClassifier).

To assist interpretation of the results, the column labeled v is filled only when constant values are
used, while the column D is filled only when random distributions are applied. The rows labeled
Baseline and TSTR correspond to training using the standard synthetic dataset without RIP and
serve as reference points for improvement. Since these experiments use only the synthetic MHAD?2
dataset, these baselines are specific to that dataset. A table with baseline results from synthetic and
real datasets for each benchmark is available in the ??. The column Experiment ID refers to the
experiment numbers listed above.
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Experiment ID. | ~ D i F1

Baseline - - - 50.80£5.36
- 1 45.64+5.80 |
0 - 5 | 49.4243.36 |
- 16 | 49.42+3.36 |
1. - 32 | 48.63+3.27 |
- 1 48.54+4.09 |
1 - 5 | 52.77+3.97

- 16 | 49.4243.36 |
- 32 | 48.63+3.27 |
- rand() 1 45.76+5.92]
- 5 | 48.83+6.03)
- 16 | 50.67+5.59]
- 32 | 49.084+3.54 |
- | rand(0,4) | 1 | 48.54+4.09 |
- 5 | 52.74+3.97
- 16 | 49.4545.50 |
- 32 | 49.794+3.68 |
2. - | rand(0,1) | 1 | 45.64+£5.80 ]
- 5 | 49424336
- 16 | 51.67+4.30
- 32 | 48.63+3.27 |
- I | 50.69+6.00 |
- Dup(x) 5 52.43+4.50
- 16 | 50.06+4.61 |
- 32 | 50.0745.26 |

Table 26: Ablation experiments.

Are simple data copies sufficient? Not quite. Table[26|highlights the limitations of this approach.
While the best result using direct duplication was achieved with ¢ = 5 (replicating each original
window five times), the observed improvement over the synthetic baseline (TSTR) remains marginal
and falls within the range of standard deviation. This suggests that the gain is not statistically
significant. Moreover, increasing the duplication factor beyond this point (e.g., ¢ = 16 or ¢ = 32)
does not enhance performance and, in some cases, slightly degrades it.

This outcome is likely attributed to overfitting. Repeating identical samples increases the likelihood
that the model memorizes specific training patterns instead of learning generalizable representations.
This issue is particularly critical in time-series data, where minor variations in temporal dynamics
often encode important information for classification. Duplication fails to introduce such variations,
potentially biasing the model toward narrow and overconfident hypotheses.

~ 1
Is ¢ as a duplication factor necessary? Yes. Setting ¢ = §i, which implies using only a single

copy when ¢ = 1, results in a RIP structure of the form +; ;, x; ;,7;,;, as opposed to the full con-
figuration ~y; ;,7i j, Ts . Vi j,Vi,j- Lhis minimal configuration performs worse than the synthetic
baseline, as shown in Table [26] In contrast, incorporating duplication yields improvements of up
to 4 percentage points in F1 score (see Figure ??). For example, with the DClassifier model on the
MHAD? dataset using the full RIP setup, the F1 score reaches 55%, significantly narrowing the gap
with the model trained on real data. Without duplication, such improvement does not occur; on the
contrary, the performance gap increases.

An additional observation is that even without duplication, increasing the value of i still leads to per-
formance gains. We hypothesize that this is due to a “widening” of the contextual frame, which fur-
ther emphasizes the central input window and helps the model focus on relevant features. However,
this effect alone does not match the benefits achieved through duplication. This may be because the
surrounding synthetic context, without sufficient repetition, remains too weak to steer the model’s
attention and enhance generalization reliably.
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Is using a random distribution instead of a constant one sufficient? No. While the configura-
tion with v = rnd(0,4) and ¢ = 5 yielded the best performance among the randomized setups, this
improvement is not statistically significant. The maximum value obtained (mean plus one standard
deviation) only matches the best result from the baseline, rather than surpassing it. All other con-
figurations failed to reach baseline performance, leading to degradation in results in most cases. We
attribute this behavior to the model’s difficulty in distinguishing non-stationary, randomly generated
distributions from meaningful temporal patterns. This confusion hinders the model’s ability to learn
accurate representations and, therefore, to generalize effectively. Synthetic data often omits parts of
the true data distribution, focusing disproportionately on specific aspects |Shumailov et al|(2024).
When random, non-stationary distributions are added, they may inadvertently resemble patterns be-
longing to other classes, leading the model to form misleading associations. As a result, rather than
enhancing robustness, this strategy tends to compromise the model’s generalization ability.

We also conducted additional experiments using RIP without adhering to the required or-
dering of -y; ;,7i.j,Tij,7Vi,j,V,; for . Specifically, we tested configurations where o =
(7,4, MHAD2, DClassifier) with v = Avg(features) and ¢ € 1,5, 16, 32. Furthermore, we explored
using non-integer values for v under the same setting.

Given that the results from these experiments were substantially lower than expected, we opted not
to include them in the main paper. When the required sequence was not followed, performance
deteriorated significantly, indicating that simply appending constant distributions in an unstructured
manner can mislead the model. This is particularly problematic when the class labels remain un-
changed, potentially causing the model to associate unrelated patterns with a specific class.

Similarly, non-integer values for 7, such as the average feature values, did not yield meaning-
ful improvements. The performance was indistinguishable from or worse than the baseline in
several cases. A comparable trend was also observed in experiments involving real data, where
~v = Avg(features) failed to produce any noticeable performance gain. These results reinforce the
importance of both the structure and the design of the contextual frame in RIP for achieving effective
model training.
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