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A RELATED WORKS

Regularization plays a key role in enhancing the generalization ability of ML and DL models by
constraining the learning process to mitigate overfitting. According to Goodfellow et al. (2016), it
can be defined as “any modification we make to a learning algorithm that is intended to reduce its test
error but not its training error” Heaton (2018). As Zhang and Tian (2022) highlighted, regularization
improves model performance by reducing overfitting and increasing robustness against noise, allow-
ing the model to better capture relevant patterns Tian & Zhang (2022). Although well established
in general ML contexts, HAR-specific regularization strategies remain scarce, particularly for time-
series data from wearable devices. Most existing approaches focus on architectural modifications or
loss function adjustments, leaving data-centric regularization largely underexplored.

Classical methods include ℓ1 regularization Tibshirani (1996), ℓ2 regularization Hoerl & Kennard
(1970), and their variants. For example, Wang et al. (2019) applied ℓ2 regularization to deep models’
input layers to improve performance. Other strategies modify input data, such as through feature
extraction Liu et al. (2022) or dimensionality reduction via Principal Component Analysis (PCA)
Tibshirani (1996). However, the literature on HAR remains limited. One of the few exceptions
is the work of Bento et al. Bento et al. (2023), which explored the adaptation of general-purpose
methods—such as Distributionally Robust Optimization (DRO) Kuhn et al. (2024), Cutmix Yun
et al. (2019), and Sharpness-Aware Minimization (SAM) Foret et al. (2021)—to accelerometer data.
While relevant, these efforts largely rely on repurposing generic techniques for a domain-specific
challenge.

Thus, despite the progress achieved with adaptations of methods like DRO and SAM for wearable
sensor data Kuhn et al. (2024), the field still lacks a well-defined, data-driven regularization frame-
work tailored explicitly to HAR.

B METHODOLOGY

B.1 MODELS

This work focused on the Time-LogCosh-GAN (TLCGAN)Souza et al. (2023) model to generate
synthetic data. The Time-Series LogCosh Generative Adversarial Network (Time-LogCosh-GAN)
is a model with a classical GAN architecture. Its noise vector uses two different concatenated noises
as input for the generator. Its loss is a logarithmic, hyperbolic cosine loss, and the model is trained
using 10-fold stratified data for 200 epochs, with a learning rate lr = 0.0001 and batch size equal to
5.

In this evaluation, the ML classifier used is an essential aspect of the analysis, so we chose the
DClassifier Singh et al. (2020), Time-Series Random Forest (TSRF)for, Time-Series Bag of features
(TSBF) fea, and TS-Classifier hfawaz (2020) because they are the state-of-the-art models for this
dataset.

Deep ConvLSTM with self-attention for human activity decoding using wearable sensors (DClassi-
fier)Singh et al. (2020) is the state-of-the-art classifier and the baseline for this task on the datasets
adopted. It is a daily activity classifier based on a Convolutional Long Short-Term Memory (ConvL-
STM) network. It is also a baseline classifier for five datasets of daily activities, and it is a promising
method for accurately recognizing human activities using wearable sensor data. We trained the
model using 3 CNN filters and one layer for 10-fold cross-validation (default); 16 epochs, with a
learning rate lr = 10−4 and batch size equal to 32. We used the SNOW mode with the attention
length equal to 32 and the output length equal to 10.

Time Series Random Forest (RF) for is a random forest classifier for time series. It fits the classifiers
based on various sub-samples of the dataset and extracts the mean, the standard deviation, and the
slope for each window. Then, a random forest is built using these features as input data. We used the
Gini index Brown & Myles (2009) as a criterion, using all possible workers, the number of windows
equal to the respective dataset, and the random state equal to 43.

Time-Series Bag of features (TSBF) fea is a random forest-based classifier that extracts random
subsequences from each input, splitting it into several intervals. Some statistics are selected from
these extractions: the mean, the standard deviation, and the slope. In this process, one random forest
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is trained using the subsequences, and the other is fitted using the information extracted as features.
We use a random state equal to 43 and the others’ configuration by default.

Time-series Classifier (TS-Classifier) hfawaz (2020) is a time-series classifier with a simple archi-
tecture, just composed of Conv1D, batch normalization, Relu, and Average pooling. We used it with
the input size equal to the temporal window for each dataset and the batch size equal to 16, and
trained it for 16 epochs.

B.2 DATASETS AND METRICS

We used the UTD-MHAD dataset Chen et al. (2015), which consists of a publicly available dataset
designed for human action recognition. The UTD-MHAD dataset contains sensor data from wear-
able devices that capture various human actions. The dataset includes 27 actions performed by eight
different individuals. It is composed of accelerometer, gyroscope, and magnetometer data. This
dataset has been widely used for research on HAR using ML techniques; in particular, DClassifier
Singh et al. (2020) uses it.

Mobile HEALTH (MHEALTH) dataset Banos et al. (2014). This dataset features 12 different ac-
tivities, each carried out by ten participants. The objective was to simulate typical daily activities,
focusing on the movements of various body parts and the intensity of these actions. The gathered
data comprises readings from multiple sensors, including an accelerometer and ECG.

The WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Weiss comprises data
obtained from 51 participants, each tasked with completing 18 activities for 3-minute intervals.
Participants wore a smartwatch on their dominant hand and carried a smartphone in their pocket.
Data collection was overseen by a custom app running on both devices. Sensor data was collected
from the accelerometer and gyroscope of the smartphone and smartwatch, totaling four sensors.

Wearable Human Activity Recognition Folder (WHARF) Bruno et al. (2013) is a public repository
of code and data sets for Human Activity Recognition systems based on information provided by
wearable sensors.

As suggested in Singh et al. (2020), we divided the dataset into two: UTD-MHAD1 (referred to as
MHAD1) and UTD-MHAD2 (referred to as MHAD2) datasets. The first contains 21 activities, and
the second contains six activities. All previously cited datasets were divided into 10-stratified folds
with a proportion of 90% of data for training and 10% for testing. We only used the data from the
accelerometer sensor.

B.3 HYPERPARAMETERS

Although our primary focus lies in evaluating synthetic datasets, we also extended our investigation
to include the corresponding real datasets to validate the general applicability of our method. All
experiments, synthetic and real, were conducted under consistent evaluation protocols, particularly
with respect to hyperparameter selection.

We explored two key hyperparameters: the constant value used in the augmented windows, denoted
by γ, and the duplication factor i. For γ, we evaluated several settings, including fixed values γ = 0,
γ = 1, and γ = 5.

The duplication factor i—which determines the number of constant windows appended to each side
of a real window—was varied across i ∈ {1, 5, 16} in the synthetic data experiments. For real
data, we further tested i = 32 to assess the potential of more extensive augmentation in practical,
non-synthetic scenarios. While synthetic data remains the central focus of this study, the inclusion
of additional hyperparameter values for real datasets ensures a comprehensive evaluation of RIP’s
applicability across domains.

B.4 EVALUATION AND METRICS

The TLCGAN model has been shown to meet the three established criteria for synthetic data quality:
fidelity, diversity, and label consistency Souza et al. (2023). Since our objective is to improve the
utility of synthetic samples using RIP—without altering the underlying generative model—we adopt

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

the Train on Synthetic, Test on Real (TSTR) evaluation strategy, which is particularly appropriate
for this context.

TSTR evaluates whether synthetic data effectively contributes to model learning by measuring its
ability to generalize to real-world data. This strategy also serves as a diagnostic for mode collapse
Fekri et al. (2019), a common failure mode in generative models where synthetic samples lack
diversity. Poor TSTR performance indicates that the generated data fails to sufficiently cover the
real data distribution. In our framework, we use TSTR to compare model performance with and
without RIP, thereby isolating the effect of our proposed regularization technique on synthetic data
quality.

For experiments involving real data only, we adopt the conventional Train on Real, Test on Real
(TRTR) setup as a baseline. This allows us to directly assess whether RIP contributes positively to
model generalization in practical deployment scenarios.

Given the inherent class imbalance in HAR datasets, we report multiple metrics: accuracy, precision,
recall, and F1 score. Among these, the F1 score is emphasized due to its balanced consideration of
false positives and false negatives, making it especially suitable for imbalanced classification tasks.

Each experimental configuration is defined as a tuple σ = (γ, i,Dataset,Model). When referencing
performance metrics, we use the notation F1RIP(σ) to denote the F1 score achieved using RIP under
configuration σ.

C RESULTS

This section analyzes the outcomes of applying the Regularization via Invariant Patterns (RIP)
method. We report results in terms of percentage points (p.p.) to quantify improvements. For-
mally, the gain is defined as:

x = F1RIP(σ) − F1baseline, (3)

where σ = (γ, i,Dataset,Model) represents a specific experimental configuration.

It is important to emphasize that percentage points measure absolute differences in F1 score. For
example, if the baseline F1 score is 10% and the improvement is 4 p.p., the new score is 14%, not
10.4%.

DClassifier Results. We analyzed the impact of RIP across four levels of granularity. For that, we
consider the Tables 5 and 6.

(i) Real vs. Synthetic: In the TRTR setting, the baseline already achieves high scores in some
datasets (e.g., WISDM with F1 ≈ 99.2%), where RIP only brings marginal improvements (+0.5
p.p. for γ = 0, i = 5). However, in more challenging datasets such as MHAD1 (baseline F1 ≈
67.1%), RIP provides substantial gains (+19 p.p. with γ = 0, i = 16). The effect is even stronger in
the TSTR setting, where the baseline fails to generalize (e.g., WHARF baseline F1 ≈ 6.1%), while
RIP recovers performance up to ≈ 87%.

(ii) Per Dataset: RIP consistently improves results across all benchmarks. Gains are modest
when the baseline is already strong (e.g., WISDM TRTR), but critical in harder scenarios such
as MHAD1/2 and WHARF, particularly under TSTR.

(iii) Parameter Sensitivity: The duplication factor i shows that performance generally increases
with higher values (i = 1 → 5 → 16), though extremely large i can sometimes saturate or slightly
decrease results (e.g., MHEALTH TRTR with γ = 1). The modulation constant γ = 0 emerges as
the most stable and effective choice, frequently yielding the best outcomes.

(iv) Global View: Overall, RIP provides consistent improvements across datasets and settings, with
the most significant impact in synthetic transfer scenarios. The configuration γ = 0 with i ∈ {5, 16}
stands out as a robust default, offering strong generalization and closing the domain gap between
real and synthetic data.

TSRF Results. We consider Tables 8 and 11 for this analysis.
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(i) Real vs. Synthetic: The TRTR–TSRF setting results show that training and testing on real data
lead to nearly perfect performance across all datasets, with F1 scores consistently above 99%. In
contrast, the TSTR–TSRF setting reveals the challenges of transferring from synthetic to real data:
baseline F1 scores drop dramatically, reaching as low as 4% for WHARF and below 20% for
MHAD1. RIP provides modest but stable improvements in this setting, highlighting its role as a
data-centric regularizer rather than a mechanism to boost performance in already saturated scenar-
ios.

(ii) Per Dataset: For MHEALTH, RIP preserves ceiling-level performance in TRTR–TSRF while
stabilizing improvements in TSTR–TSRF, where F1 increases from 31.0% to about 33.4%. For
MHAD1, baseline values are near 99.8% in TRTR–TSRF, leaving no room for improvement, but
TSTR–TSRF baselines fall to 18.9%, with RIP recovering scores up to 20.6%. For MHAD2, TRTR–
TSRF results again saturate near 99.9%, while TSTR–TSRF baselines around 29.7% are modestly
improved by RIP, reaching values close to 30.6%. For WISDM, RIP matches the perfect TRTR–
TSRF baseline but yields consistent improvements in TSTR–TSRF, from 24.1% to 24.6%, particu-
larly at higher i. Finally, for WHARF, the gap is most striking: while TRTR–TSRF nearly saturates
at 99.4%, the TSTR–TSRF baseline of 4.05% is only slightly improved by RIP (up to 4.4%), under-
scoring the severe challenge of synthetic-to-real transfer in this dataset.

(iii) Parameter Sensitivity: Across datasets, RIP is robust to changes in γ and i under TRTR–TSRF,
as performance is already saturated. In TSTR–TSRF, however, slight variations matter: γ = 0 and
γ = 1 tend to yield the best results, especially when combined with higher duplication factors (i = 5
or i = 16). Negative γ values occasionally stabilize performance but do not consistently outperform
the neutral or positive settings. This suggests that RIP’s effectiveness depends more on balancing
pattern duplication than on aggressive weighting of invariant features.

(iv) Global View: The analyses show that RIP has a negligible effect when models already achieve
near-perfect scores (TRTR–TSRF) but provides consistent and meaningful gains in more challeng-
ing transfer scenarios (TSTR–TSRF). Although the absolute improvements are often small in per-
centage points, they represent relative robustness against domain shift, ensuring that performance
does not collapse when moving from synthetic to real data. Thus, RIP should be interpreted as a
stabilizing regularizer designed to improve generalization under distribution mismatch, rather than
as a mechanism to boost in-distribution accuracy.

TS-Classifier Results. We considered tables 10 and 9.

(i) Real vs. Synthetic: The TRTR–TS-Classifier results show clear improvements when RIP is ap-
plied: while baselines are generally low (e.g., F1=24.1% for MHEALTH and 15.7% for MHAD1),
RIP boosts performance substantially, often by more than 20 percentage points. In contrast, the
TSTR–TS-Classifier setting presents a mixed scenario. Some datasets, such as WISDM, exhibit
dramatic gains compared to the weak baseline (F1=47.4%), with RIP reaching over 92%. How-
ever, for datasets like MHAD1 and MHEALTH, TSTR performance remains fragile, and RIP does
not consistently improve over the baseline. This highlights a crucial distinction: while RIP sig-
nificantly enhances generalization in real-to-real transfer (TRTR), its benefits in synthetic-to-real
transfer (TSTR) are dataset-dependent and more variable.

(ii) Per Dataset: For MHEALTH, RIP improves TRTR baselines dramatically (from 24.1% to up
to 55.5% F1), but in TSTR, results are less consistent, with performance dropping compared to the
baseline (57.4%). For MHAD1, RIP boosts TRTR performance by nearly 10 percentage points,
while in TSTR, results fluctuate around the baseline (32.6%), with no stable improvement. For
MHAD2, TRTR baselines (24.5% F1) rise to 43.2% with RIP, showing the most substantial gains.
TSTR also improves in some settings (up to 41.5%), but performance remains unstable, suggesting
sensitivity to parameter choices. For WHARF, RIP consistently enhances TRTR (baseline 10.3%
→ 28.6%), but in TSTR, the effect is limited: despite gains over the baseline (11.4%), F1 scores
plateau around 26%. Finally, for WISDM, the contrast is striking. TRTR baselines are already
strong (87.2%), and RIP provides only small adjustments. In TSTR, however, the baseline is weak
(47.4%), and RIP achieves massive improvements, consistently pushing performance above 90%.

(iii) Parameter Sensitivity: RIP’s effect depends on both γ and i. For TRTR, positive and neutral
γ values (0 or 1) combined with low duplication (i = 1) deliver the best results. Increasing i tends
to degrade performance, suggesting diminishing returns from excessive duplication. In TSTR, the
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sensitivity is sharper: while i = 1 often yields strong performance (e.g., WISDM), larger i can
drastically reduce results, as seen in MHEALTH and MHAD2. Negative γ occasionally stabilizes
results but does not consistently outperform other settings. Overall, RIP favors moderate duplication
and non-negative weighting.

(iv) Global View: Overall, RIP proves highly effective in the TRTR–TS-Classifier scenario, con-
sistently raising weak baselines by 10–30 percentage points. In TSTR–TS-Classifier, however, im-
provements are less predictable: some datasets (notably WISDM) experience dramatic boosts, while
others show stagnation or even regressions. This dual behavior underscores RIP’s strengths and lim-
itations: it excels when applied to real-to-real data. However, its benefits in synthetic-to-real transfer
depend strongly on dataset characteristics and parameter choices. From a global perspective, RIP
emerges as a versatile regularizer that can close significant gaps in challenging TRTR baselines,
while offering selective robustness under TSTR conditions.

TSBF Results. We consider tables 12 and tab:TRTR-TSBF.

(i) Real vs. Synthetic:
When comparing TRTR (real training / real test) and TSTR (synthetic training / real test) results, it
is evident that performance on real data is consistently higher than when trained on synthetic data.
For instance, in MHEALTH, Accuracy and F1 scores in TRTR reach 100%, while in TSTR they
drop to around 61% Accuracy and 57% F1. This trend holds across all datasets, highlighting that,
although synthetic data can augment dataset size, a domain gap still exists that reduces the model’s
ability to generalize to real data.

(ii) Per Dataset:
MHEALTH: Real performance is nearly perfect (99.92–100%), while training with synthetic data
leads to substantial drops, especially for higher values of i.
MHAD1: TRTR shows high results (99.92–100%), but TSTR metrics are much lower, ranging
from 24% to 36% Accuracy, demonstrating sensitivity to synthetic dataset size.
MHAD2: Similarly, TRTR reaches 100% for γ = 1 and i = 16, while TSTR shows high variability,
indicating that this dataset is particularly challenging to replicate with synthetic data.
WHARF: Despite TRTR achieving high metrics (around 99%), TSTR scores are very low
(20–45%), showing that transferring synthetic data to real data is especially difficult for this dataset.
WISDM: Interestingly, TRTR is near perfect, but TSTR improves with γ = −1 and i = 1–5
(91–93% Accuracy), suggesting that synthetic data can be more effective for larger or more diverse
datasets.

(iii) Parameter Sensitivity:
The parameters γ and i notably affect synthetic data performance. Across datasets, moderate values
of i (1–5) generally yield better TSTR metrics, while extreme values (16) often lead to performance
drops. Similarly, γ = −1 occasionally improves synthetic data effectiveness, particularly in
WISDM, whereas γ = 0 or γ = 1 show mixed effects. This indicates that parameter tuning is
crucial when using synthetic data for training.

(iv) Global View:
TRTR results demonstrate that the models can achieve almost perfect classification when trained
and tested on real data. In contrast, TSTR results reveal that synthetic data can partially replicate
the real data distribution but often suffers from domain gaps and parameter sensitivity. Specific
datasets (like WISDM) benefit more from synthetic data augmentation than others (like WHARF or
MHAD1), highlighting the dataset-dependent effectiveness of synthetic data generation.

γ = 5 results. Refer to Tables 13- 18.

(i) Real vs. Synthetic:
For γ = 5, the real training and test scenario (TRTR) consistently achieves near-perfect metrics
across all datasets, with accuracies, recalls, and F1 scores ranging from 99.92% to 100%. In
contrast, synthetic training scenarios (TSTR, TSRF, TSBF) show lower performance, indicating
a clear domain gap. For instance, MHEALTH TSTR accuracy ranges from 59.27% to 62.54%,
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whereas TRTR achieves up to 97.33%. This confirms that synthetic data can partially replicate real
distributions but is insufficient for training high-performing models.

(ii) Per Dataset:
MHEALTH: Synthetic data improves over the baseline (55.79% acc) as i increases, reaching
62.54% for TSTR. However, real training achieves almost perfect results (97.33% acc), emphasizing
the performance gap.
MHAD1: Synthetic TSTR metrics are low (around 21–33% acc) compared to real TRTR (up to
100% acc), suggesting that MHAD1 is more challenging to emulate with synthetic samples.
MHAD2: TSTR shows progressive improvement with higher i, reaching 53.25% acc, but remains
lower than TRTR (81.78% acc), indicating both dataset complexity and parameter sensitivity.
WHARF: Synthetic metrics remain very low (12–17% acc) despite increasing i, whereas TRTR
reaches up to 100%, demonstrating that WHARF is particularly difficult to synthesize effectively.
WISDM: Synthetic data slightly underperforms baseline (30–38% acc), but TRTR achieves nearly
perfect performance (99–100% acc), confirming that synthetic augmentation has a limited effect on
highly structured datasets.

(iii) Parameter Sensitivity:
Increasing i generally improves TSTR performance across most datasets, especially MHEALTH
and MHAD2. For example, MHEALTH TSTR acc rises from 59.27% (i = 1) to 62.54% (i = 16).
However, in datasets like WHARF and WISDM, the increase in i has minimal effect. The choice
of γ = 5 shows slightly better performance than baseline synthetic data for some datasets (e.g.,
MHAD2 and MHEALTH), but the overall gap with TRTR remains significant.

(iv) Global View:
Overall, γ = 5 enhances synthetic training metrics moderately, with larger i often providing incre-
mental gains. Nevertheless, TRTR consistently outperforms all synthetic configurations. Datasets
vary in synthetic data effectiveness: MHEALTH and MHAD2 benefit the most, while WHARF and
WISDM show limited improvement. This indicates that dataset characteristics and the choice of
hyperparameters (γ and i) are critical when using synthetic data to approximate real-world perfor-
mance.

C.1 COMPUTATIONAL COST ANALYSIS

The number of samples primarily influences the computational cost of applying RIP in the dataset
and the duplication factor i, which controls the number of constant samples added. Since the RIP
process involves the addition of synthetic samples with fixed distributions, larger datasets inher-
ently lead to higher memory and time consumption. However, the impact of RIP on computational
resources also depends on the model architecture and the hardware used. For the deep learning
models (DClassifier and TS-Classifier), experiments can be efficiently performed on a GPU (e.g.,
NVIDIA RTX 3090) without compromising the entire system. In contrast, traditional models such
as TSBF and TSRF do not utilize GPU acceleration and rely primarily on CPU and memory. As
an illustrative example, the WISDM dataset—our largest dataset with over 10,000 training sam-
ples—requires approximately 4 GB of memory and takes about 2 hours to run using TSBF without
RIP. When RIP is applied with i = 1, memory usage increases slightly, and execution time extends
by around 10 minutes. For i = 16 (implying roughly 10,000× 2× 16 synthetic samples), memory
consumption rises to approximately 10 GB, and runtime increases to around 4 hours. In contrast,
using a GPU with i = 16, the memory usage reaches about 9 GB, but training (e.g., 16 epochs) takes
only 30 minutes.

We emphasize that the computational cost associated with generating synthetic data is not considered
in our analysis. This is because RIP assumes that the data have already been generated in advance
and focuses solely on the impact of adding such constant samples during model training.
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Table 5: TRTR - DClassifier
dataset gamma i acc recall f1

MHEALTH baseline - 91.21 ± 1.61 90.52 ± 2.81 90.46 ± 2.84
MHEALTH -1 1 97.06 ± 0.44 97.31 ± 0.40 97.28 ± 0.42
MHEALTH -1 5 97.10 ± 0.34 97.33 ± 0.32 97.29 ± 0.33
MHEALTH -1 16 97.19 ± 0.28 97.42 ± 0.26 97.40 ± 0.26
MHEALTH 0 1 97.15 ± 0.49 97.37 ± 0.45 97.36 ± 0.46
MHEALTH 0 5 97.61 ± 0.35 97.81 ± 0.32 97.79 ± 0.33
MHEALTH 0 16 97.84 ± 0.21 98.02 ± 0.19 98.01 ± 0.20
MHEALTH 1 1 96.75 ± 0.65 96.99 ± 0.63 96.99 ± 0.61
MHEALTH 1 5 97.37 ± 0.29 97.59 ± 0.27 97.57 ± 0.28
MHEALTH 1 16 96.82 ± 0.30 97.08 ± 0.28 97.06 ± 0.28
MHAD1 baseline - 58.25 ± 2.06 67.15 ± 1.17 67.13 ± 1.14
MHAD1 -1 1 71.71 ± 0.93 56.25 ± 2.21 55.91 ± 2.02
MHAD1 -1 5 76.38 ± 0.80 76.37 ± 0.77 76.31 ± 0.77
MHAD1 -1 16 80.91 ± 0.78 80.81 ± 0.80 80.78 ± 0.79
MHAD1 0 1 75.38 ± 0.77 75.49 ± 0.79 75.31 ± 0.77
MHAD1 0 5 81.91 ± 0.81 82.07 ± 0.81 82.01 ± 0.81
MHAD1 0 16 86.12 ± 0.55 86.09 ± 0.54 86.13 ± 0.53
MHAD1 1 1 72.33 ± 0.70 72.51 ± 0.71 72.20 ± 0.73
MHAD1 1 5 78.82 ± 0.89 79.05 ± 0.89 78.84 ± 0.90
MHAD1 1 16 82.11 ± 1.30 82.13 ± 1.36 82.15 ± 1.29
MHAD2 baseline - 68.32 ± 1.05 67.55 ± 1.02 67.58 ± 1.31
MHAD2 -1 1 72.67 ± 1.20 71.47 ± 1.46 71.97 ± 1.29
MHAD2 -1 5 78.17 ± 1.29 77.32 ± 1.32 77.75 ± 1.30
MHAD2 -1 16 80.93 ± 1.14 79.48 ± 1.23 80.13 ± 1.18
MHAD2 0 1 73.64 ± 1.22 72.89 ± 1.27 72.89 ± 1.36
MHAD2 0 5 79.17 ± 0.75 78.42 ± 0.91 78.65 ± 0.87
MHAD2 0 16 82.12 ± 0.72 81.08 ± 0.82 81.68 ± 0.74
MHAD2 1 1 73.07 ± 1.13 72.01 ± 1.11 72.11 ± 1.35
MHAD2 1 5 78.32 ± 1.19 77.30 ± 1.37 77.58 ± 1.40
MHAD2 1 16 80.04 ± 0.71 78.82 ± 0.63 79.40 ± 0.68
WHARF baseline - 83.11 ± 1.85 77.63 ± 2.34 78.62 ± 2.08
WHARF -1 1 83.85 ± 2.20 78.36 ± 2.95 79.57 ± 2.78
WHARF -1 5 86.94 ± 1.86 82.62 ± 2.23 83.75 ± 2.18
WHARF -1 16 89.81 ± 1.08 86.24 ± 1.48 87.25 ± 1.32
WHARF 0 1 83.39 ± 2.63 78.17 ± 3.21 79.29 ± 3.24
WHARF 0 5 86.93 ± 2.22 82.23 ± 2.75 83.65 ± 2.60
WHARF 0 16 90.25 ± 1.19 86.18 ± 1.90 87.48 ± 1.70
WHARF 1 1 83.03 ± 2.83 76.78 ± 3.73 78.24 ± 3.51
WHARF 1 5 86.60 ± 2.03 81.92 ± 2.43 83.28 ± 2.36
WHARF 1 16 90.25 ± 1.21 86.37 ± 1.75 87.42 ± 1.59
WISDM baseline - 99.47 ± 0.09 99.20 ± 0.15 99.21 ± 0.12
WISDM -1 1 99.73 ± 0.05 99.62 ± 0.09 99.58 ± 0.08
WISDM -1 5 99.73 ± 0.04 99.56 ± 0.12 99.55 ± 0.10
WISDM -1 16 99.66 ± 0.03 99.45 ± 0.07 99.46 ± 0.06
WISDM 0 1 99.76 ± 0.06 99.62 ± 0.10 99.62 ± 0.09
WISDM 0 5 99.80 ± 0.04 99.70 ± 0.04 99.68 ± 0.05
WISDM 0 16 99.68 ± 0.03 99.56 ± 0.04 99.54 ± 0.03
WISDM 1 1 99.70 ± 0.04 99.47 ± 0.09 99.47 ± 0.10
WISDM 1 5 99.77 ± 0.06 99.60 ± 0.14 99.59 ± 0.13
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Table 6: TSTR - DClassifier
dataset gamma i acc recall f1

MHEALTH baseline - 55.79 ±2.44 55.07 ±2.48 52.56 ±2.33
MHEALTH -1 1 96.84 ±0.40 97.10 ±0.37 97.09 ±0.36
MHEALTH -1 5 97.21 ±0.36 97.44 ±0.33 97.41 ±0.33
MHEALTH -1 16 96.97 ±0.31 97.22 ±0.29 97.19 ±0.30
MHEALTH 0 1 97.34 ±0.36 97.55 ±0.33 97.55 ±0.33
MHEALTH 0 5 97.75 ±0.37 97.94 ±0.33 97.92 ±0.34
MHEALTH 0 16 97.80 ±0.28 97.98 ±0.25 97.96 ±0.26
MHEALTH 1 1 96.92 ±0.55 97.16 ±0.51 97.15 ±0.51
MHEALTH 1 5 97.19 ±0.30 97.42 ±0.27 97.39 ±0.29
MHEALTH 1 16 97.20 ±0.24 97.42 ±0.22 97.40 ±0.22
MHAD1 baseline - 33.86 ±1.46 33.35 ±1.57 32.85 ±1.66
MHAD1 -1 1 71.47 ±0.91 71.45 ±0.93 71.42 ±0.92
MHAD1 -1 5 76.29 ±0.77 76.32 ±0.75 76.20 ±0.74
MHAD1 -1 16 81.11 ±0.82 80.95 ±0.82 80.99 ±0.81
MHAD1 0 1 75.33 ±0.73 75.43 ±0.75 75.27 ±0.74
MHAD1 0 5 82.02 ±0.83 82.25 ±0.83 82.07 ±0.83
MHAD1 0 16 86.03 ±0.59 86.01 ±0.60 86.03 ±0.58
MHAD1 1 1 72.13 ±0.71 72.32 ±0.72 72.01 ±0.71
MHAD1 1 5 78.76 ±1.01 78.99 ±1.01 78.78 ±1.02
MHAD1 1 16 82.53 ±1.29 82.51 ±1.35 82.55 ±1.28
MHAD2 baseline - 46.97 ±3.70 45.90 ±3.39 43.52 ±3.78
MHAD2 -1 1 72.67 ±1.20 71.47 ±1.46 71.97 ±1.29
MHAD2 -1 5 78.17 ±1.29 77.32 ±1.32 77.75 ±1.30
MHAD2 -1 16 81.02 ±0.84 79.80 ±0.75 80.39 ±0.84
MHAD2 0 1 73.64 ±1.22 72.89 ±1.27 72.89 ±1.36
MHAD2 0 5 79.17 ±0.75 78.42 ±0.91 78.65 ±0.87
MHAD2 0 16 81.66 ±0.63 80.57 ±0.71 81.10 ±0.73
MHAD2 1 1 73.12 ±1.27 72.18 ±1.30 72.29 ±1.53
MHAD2 1 5 77.92 ±1.33 77.07 ±1.45 77.28 ±1.36
MHAD2 1 16 80.04 ±0.71 78.82 ±0.63 79.40 ±0.68
WHARF baseline - 15.46 ±3.04 14.30 ±1.67 6.14 ±1.78
WHARF -1 1 83.44 ±2.43 77.47 ±3.46 78.84 ±3.34
WHARF -1 5 87.01 ±1.57 81.97 ±1.87 83.57 ±1.88
WHARF -1 16 89.99 ±0.87 86.27 ±1.46 87.26 ±1.26
WHARF 0 1 83.31 ±2.80 77.72 ±3.56 79.04 ±3.61
WHARF 0 5 86.96 ±2.09 82.00 ±2.62 83.51 ±2.47
WHARF 0 16 90.12 ±1.44 86.25 ±2.11 87.41 ±1.92
WHARF 1 1 82.96 ±2.84 77.39 ±3.46 78.50 ±3.44
WHARF 1 5 86.60 ±1.93 81.73 ±2.76 82.94 ±2.63
WHARF 1 16 89.95 ±1.56 85.91 ±2.34 86.99 ±2.15
WISDM baseline - 53.03 ±3.04 50.44 ±2.32 44.94 ±2.51
WISDM 0 1 99.73 ±0.05 99.61 ±0.06 99.57 ±0.07
WISDM 0 5 99.78 ±0.04 99.66 ±0.05 99.65 ±0.05
WISDM 0 16 99.69 ±0.05 99.51 ±0.08 99.52 ±0.07
WISDM 1 1 99.73 ±0.06 99.52 ±0.14 99.51 ±0.13
WISDM 1 5 99.79 ±0.05 99.66 ±0.09 99.66 ±0.08



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Table 7: TRTR - TSRF
dataset gamma i acc recall f1

MHEALTH baseline - 99.92 ±0.00 99.93 ±0 99.93 ±0
MHEALTH -1 1 100.00 ±0 100.00 ±0 100.00 ±0
MHEALTH -1 5 99.96 ±0 99.96 ±0 99.96 ±0.00
MHEALTH -1 16 99.96 ±0 99.96 ±0 99.96 ±0.00
MHEALTH 0 1 99.92 ±0.00 99.93 ±0 99.93 ±0
MHEALTH 0 5 99.84 ±0 99.86 ±0 99.86 ±0.00
MHEALTH 0 16 100.00 ±0 100.00 ±0 100.00 ±0
MHEALTH 1 1 100.00 ±0 100.00 ±0 100.00 ±0
MHEALTH 1 5 100.00 ±0 100.00 ±0 100.00 ±0
MHEALTH 1 16 99.96 ±0 99.96 ±0 99.96 ±0.00
MHAD1 baseline - 99.92 ±0 99.91 ±0 99.92 ±0
MHAD1 -1 1 99.92 ±0 99.91 ±0 99.92 ±0.00
MHAD1 -1 5 99.95 ±0.00 99.94 ±0.00 99.95 ±0.00
MHAD1 -1 16 100.00 ±0 100.00 ±0 100.00 ±0
MHAD1 0 1 99.92 ±0 99.91 ±0 99.92 ±0.00
MHAD1 0 5 100.00 ±0 100.00 ±0 100.00 ±0
MHAD1 0 16 99.97 ±0.00 99.97 ±0.00 99.97 ±0.00
MHAD1 1 1 99.95 ±0.00 99.94 ±0.00 99.95 ±0.00
MHAD1 1 5 99.97 ±0.00 99.97 ±0 99.97 ±0.00
MHAD1 1 16 99.95 ±0.00 99.94 ±0 99.95 ±0
MHAD2 baseline - 99.91 ±0.00 99.89 ±0 99.89 ±0
MHAD2 -1 1 99.91 ±0.00 99.89 ±0 99.89 ±0
MHAD2 -1 5 99.91 ±0.00 99.89 ±0 99.89 ±0
MHAD2 -1 16 100.00 ±0 100.00 ±0 100.00 ±0
MHAD2 0 1 99.74 ±0 99.67 ±0 99.66 ±0.00
MHAD2 0 5 99.74 ±0 99.67 ±0 99.66 ±0.00
MHAD2 0 16 100.00 ±0 100.00 ±0 100.00 ±0
MHAD2 1 1 99.74 ±0 99.67 ±0 99.66 ±0.00
MHAD2 1 5 99.74 ±0 99.67 ±0 99.66 ±0.00
MHAD2 1 16 100.00 ±0 100.00 ±0 100.00 ±0
WHARF baseline - 99.61 ±0.00 98.86 ±0 99.15 ±0.00
WHARF -1 1 99.77 ±0.00 99.31 ±0.00 99.44 ±0.00
WHARF -1 5 99.82 ±0.00 99.52 ±0.00 99.63 ±0
WHARF -1 16 99.85 ±0.00 99.54 ±0 99.64 ±0
WHARF 0 1 99.77 ±0.00 99.31 ±0.00 99.44 ±0.00
WHARF 0 5 99.82 ±0.00 99.52 ±0.00 99.63 ±0
WHARF 0 16 99.85 ±0.00 99.54 ±0 99.64 ±0
WHARF 1 1 99.77 ±0.00 99.31 ±0.00 99.44 ±0.00
WHARF 1 5 99.82 ±0.00 99.52 ±0.00 99.63 ±0
WHARF 1 16 99.85 ±0.00 99.54 ±0 99.64 ±0
WISDM baseline - 99.99 ±0.00 99.99 ±0.00 100.00 ±0.00
WISDM -1 1 99.99 ±0.00 99.99 ±0.00 100.00 ±0.00
WISDM -1 5 99.99 ±0.00 99.99 ±0.00 100.00 ±0.00
WISDM -1 16 100.00 ±0 100.00 ±0 100.00 ±0
WISDM 0 1 100.00 ±0.00 100.00 ±0.00 100.00 ±0
WISDM 0 5 100.00 ±0 100.00 ±0 100.00 ±0
WISDM 0 16 100.00 ±0.00 100.00 ±0 100.00 ±0
WISDM 1 1 100.00 ±0 100.00 ±0 100.00 ±0
WISDM 1 5 100.00 ±0 100.00 ±0 100.00 ±0
WISDM 1 16 100.00 ±0 100.00 ±0 100.00 ±0
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Table 8: TSTR - TSRF
dataset gamma i acc recall f1

MHEALTH baseline - 29.72 ± 1.68 28.14 ± 1.52 25.98 ± 1.07
MHEALTH -1 1 29.70 ± 2.47 28.12 ± 2.27 26.22 ± 1.82
MHEALTH -1 5 29.91 ± 2.42 28.37 ± 2.20 26.52 ± 1.75
MHEALTH -1 16 29.62 ± 2.34 28.06 ± 2.11 26.21 ± 1.75
MHEALTH 0 1 28.22 ± 2.61 26.80 ± 2.44 25.07 ± 2.24
MHEALTH 0 5 28.44 ± 2.80 27.04 ± 2.62 25.31 ± 2.46
MHEALTH 0 16 28.09 ± 2.45 26.67 ± 2.27 25.14 ± 2.33
MHEALTH 1 1 27.01 ± 2.44 25.68 ± 2.29 24.27 ± 2.17
MHEALTH 1 5 27.16 ± 2.57 25.84 ± 2.40 24.36 ± 2.30
MHEALTH 1 16 27.17 ± 2.30 25.83 ± 2.15 24.53 ± 2.29
MHAD1 baseline - 21.51 ± 0.84 20.85 ± 0.90 19.59 ± 0.97
MHAD1 -1 1 21.75 ± 0.82 21.10 ± 0.87 19.85 ± 0.96
MHAD1 -1 5 21.75 ± 0.91 21.08 ± 0.96 19.80 ± 1.04
MHAD1 -1 16 21.70 ± 0.87 21.05 ± 0.93 19.77 ± 1.00
MHAD1 0 1 21.75 ± 0.83 21.05 ± 0.86 19.79 ± 0.88
MHAD1 0 5 21.61 ± 0.85 20.93 ± 0.89 19.68 ± 0.94
MHAD1 0 16 21.69 ± 0.84 21.01 ± 0.88 19.69 ± 0.90
MHAD1 1 1 21.52 ± 0.85 20.83 ± 0.90 19.51 ± 0.92
MHAD1 1 5 21.33 ± 0.97 20.63 ± 1.01 19.28 ± 1.01
MHAD1 1 16 21.48 ± 0.89 20.77 ± 0.94 19.43 ± 0.96
MHAD2 baseline - 34.65 ± 2.95 35.42 ± 2.90 31.13 ± 3.08
MHAD2 -1 1 36.11 ± 2.57 36.69 ± 2.44 32.68 ± 2.57
MHAD2 -1 5 36.15 ± 2.43 36.76 ± 2.36 32.77 ± 2.65
MHAD2 -1 16 36.05 ± 2.57 36.68 ± 2.41 32.63 ± 2.47
MHAD2 0 1 35.84 ± 2.82 36.46 ± 2.79 32.00 ± 3.06
MHAD2 0 5 36.17 ± 2.66 36.73 ± 2.72 32.38 ± 2.81
MHAD2 0 16 36.02 ± 2.68 36.64 ± 2.69 32.05 ± 3.10
MHAD2 1 1 35.76 ± 2.89 36.37 ± 2.84 31.89 ± 3.06
MHAD2 1 5 36.01 ± 2.77 36.57 ± 2.80 32.15 ± 2.86
MHAD2 1 16 35.95 ± 2.73 36.59 ± 2.72 31.94 ± 3.05
WHARF baseline - 12.60 ± 3.39 10.98 ± 1.62 4.05 ± 1.09
WHARF -1 1 12.94 ± 3.21 9.93 ± 1.64 4.26 ± 1.15
WHARF -1 5 12.93 ± 3.26 9.95 ± 1.58 4.26 ± 1.19
WHARF -1 16 13.35 ± 3.24 10.18 ± 1.80 4.41 ± 1.17
WHARF 0 1 12.72 ± 3.42 10.05 ± 1.90 4.39 ± 1.25
WHARF 0 5 12.64 ± 3.43 10.04 ± 1.81 4.38 ± 1.28
WHARF 0 16 12.82 ± 3.37 10.18 ± 1.80 4.41 ± 1.22
WHARF 1 1 12.62 ± 3.45 10.32 ± 1.87 4.21 ± 1.18
WHARF 1 5 12.57 ± 3.46 10.26 ± 1.83 4.18 ± 1.23
WHARF 1 16 12.57 ± 3.45 10.31 ± 1.80 4.15 ± 1.13
WISDM baseline - 29.58 ± 6.75 34.13 ± 3.25 24.14 ± 4.21
WISDM -1 1 30.17 ± 6.99 33.72 ± 3.32 24.02 ± 4.37
WISDM -1 5 30.16 ± 6.83 33.83 ± 3.15 24.11 ± 4.27
WISDM -1 16 30.20 ± 7.01 34.24 ± 3.56 24.60 ± 4.69
WISDM 0 1 30.23 ± 7.01 33.62 ± 3.28 24.04 ± 4.33
WISDM 0 5 30.21 ± 6.79 33.85 ± 3.07 24.18 ± 4.19
WISDM 0 16 30.27 ± 6.98 34.14 ± 3.51 24.59 ± 4.63
WISDM 1 1 30.32 ± 6.81 33.58 ± 3.08 24.09 ± 4.10
WISDM 1 5 30.22 ± 6.58 33.73 ± 3.00 24.15 ± 4.04
WISDM 1 16 30.41 ± 6.87 34.19 ± 3.41 24.66 ± 4.49
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Table 9: TRTR - TS-Classifier
dataset gamma i acc recall f1

MHEALTH baseline - 32.37 ± 2.40 31.58 ± 2.69 24.08 ± 2.59
MHEALTH -1 1 58.45 ± 2.20 59.76 ± 2.23 53.99 ± 2.40
MHEALTH -1 5 55.72 ± 1.22 54.40 ± 1.40 46.52 ± 1.81
MHEALTH -1 16 44.07 ± 2.02 43.37 ± 2.14 35.81 ± 2.40
MHEALTH 0 1 58.11 ± 2.60 59.54 ± 2.59 53.46 ± 2.99
MHEALTH 0 5 54.34 ± 2.72 54.30 ± 3.05 47.07 ± 3.13
MHEALTH 0 16 49.96 ± 1.71 51.18 ± 1.48 42.88 ± 1.56
MHEALTH 1 1 59.98 ± 2.03 61.24 ± 1.94 55.54 ± 2.42
MHEALTH 1 5 54.29 ± 2.12 54.58 ± 2.16 47.07 ± 1.99
MHEALTH 1 16 46.68 ± 2.12 47.95 ± 1.82 39.98 ± 2.13
MHAD1 baseline - 20.45 ± 1.15 19.04 ± 1.22 15.67 ± 1.41
MHAD1 -1 1 27.75 ± 1.08 26.61 ± 1.13 23.30 ± 1.29
MHAD1 -1 5 31.67 ± 0.73 30.90 ± 0.61 26.08 ± 0.70
MHAD1 -1 16 29.19 ± 1.07 28.62 ± 1.10 25.26 ± 1.17
MHAD1 0 0 20.44 ± 1.14 19.03 ± 1.20 15.65 ± 1.39
MHAD1 0 1 29.08 ± 1.08 27.94 ± 1.07 24.52 ± 1.33
MHAD1 0 5 28.85 ± 0.69 27.89 ± 0.69 22.84 ± 0.75
MHAD1 0 16 22.09 ± 1.33 22.37 ± 1.12 17.23 ± 0.94
MHAD1 1 1 26.82 ± 1.15 25.75 ± 1.18 23.39 ± 1.05
MHAD1 1 5 30.15 ± 1.62 29.00 ± 1.71 24.38 ± 1.93
MHAD1 1 16 27.56 ± 0.72 26.94 ± 0.73 23.73 ± 0.94
MHAD2 baseline - 31.25 ± 1.64 32.19 ± 1.81 24.46 ± 1.72
MHAD2 0 1 24.55 ± 4.28 25.09 ± 2.94 12.94 ± 2.70
MHAD2 0 5 36.10 ± 1.85 34.58 ± 2.04 25.91 ± 2.82
MHAD2 0 16 39.54 ± 6.22 41.40 ± 5.69 33.64 ± 7.04
MHAD2 1 1 25.79 ± 3.33 27.08 ± 2.77 16.50 ± 2.09
MHAD2 1 5 33.23 ± 1.63 31.20 ± 1.72 22.90 ± 2.47
MHAD2 1 16 52.49 ± 3.16 51.29 ± 3.37 43.22 ± 3.91
WHARF baseline - 19.19 ± 6.71 22.27 ± 2.98 10.28 ± 3.63
WHARF -1 1 47.31 ± 3.15 35.12 ± 1.25 27.97 ± 1.49
WHARF -1 5 46.62 ± 1.45 32.31 ± 2.06 24.42 ± 1.77
WHARF -1 16 42.27 ± 4.74 26.39 ± 2.22 20.20 ± 1.97
WHARF 0 1 44.07 ± 4.88 36.02 ± 1.83 28.09 ± 2.03
WHARF 0 5 45.93 ± 1.13 30.39 ± 2.15 23.25 ± 2.21
WHARF 0 16 42.96 ± 2.66 25.86 ± 2.29 19.88 ± 2.54
WHARF 1 1 46.06 ± 4.34 35.99 ± 2.03 28.63 ± 2.24
WHARF 1 5 44.18 ± 3.50 31.85 ± 1.22 24.11 ± 1.52
WHARF 1 16 42.81 ± 4.12 26.27 ± 1.99 20.06 ± 2.37
WISDM baseline - 90.32 ± 1.63 86.87 ± 2.93 87.19 ± 2.62
WISDM -1 1 92.45 ± 0.38 92.05 ± 0.73 90.65 ± 0.54
WISDM -1 5 93.12 ± 1.21 94.36 ± 1.25 92.30 ± 1.46
WISDM -1 16 89.94 ± 1.25 88.94 ± 1.99 86.21 ± 1.60
WISDM 0 1 92.21 ± 0.83 91.03 ± 1.76 90.31 ± 1.35
WISDM 0 5 91.61 ± 1.00 91.42 ± 1.47 89.70 ± 1.39
WISDM 0 16 89.19 ± 1.86 84.90 ± 3.76 85.98 ± 3.05
WISDM 1 1 91.34 ± 0.62 89.54 ± 1.34 88.87 ± 1.02
WISDM 1 5 90.79 ± 2.46 92.03 ± 2.57 89.63 ± 2.74
WISDM 1 16 90.36 ± 1.61 90.56 ± 1.34 88.43 ± 1.48



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Table 10: TSTR - TS-Classifier
dataset gamma i acc recall f1

MHEALTH baseline - 61.00 ±4.09 60.72 ±3.78 57.42 ±4.38
MHEALTH -1 1 58.06 ±2.23 59.44 ±2.23 53.70 ±2.26
MHEALTH -1 5 54.97 ±1.45 54.60 ±1.87 47.06 ±1.95
MHEALTH -1 16 45.74 ±1.87 45.06 ±2.06 37.57 ±2.47
MHEALTH 0 1 58.83 ±2.34 60.07 ±2.35 53.99 ±2.72
MHEALTH 0 5 55.45 ±1.38 56.32 ±1.54 48.92 ±1.69
MHEALTH 0 16 47.17 ±2.72 47.30 ±2.10 38.60 ±2.58
MHEALTH 1 1 59.53 ±2.23 60.74 ±2.21 55.06 ±2.60
MHEALTH 1 5 55.01 ±2.01 55.70 ±2.37 48.05 ±2.53
MHEALTH 1 16 47.00 ±4.15 47.16 ±3.84 39.27 ±4.98
MHAD1 baseline - 35.62 ±1.98 35.15 ±2.12 32.58 ±2.39
MHAD1 -1 1 28.24 ±1.14 27.03 ±1.26 23.82 ±1.26
MHAD1 -1 5 31.13 ±0.84 30.33 ±0.76 25.34 ±0.93
MHAD1 -1 16 29.92 ±1.02 29.29 ±1.04 25.99 ±1.12
MHAD1 0 1 29.06 ±1.11 27.95 ±1.09 24.48 ±1.40
MHAD1 0 5 28.93 ±0.95 27.98 ±0.85 23.06 ±0.96
MHAD1 0 16 24.40 ±3.30 24.40 ±3.18 19.97 ±3.00
MHAD1 1 1 26.65 ±1.19 25.52 ±1.20 23.33 ±1.14
MHAD1 1 5 29.34 ±0.82 28.14 ±0.86 23.33 ±1.07
MHAD1 1 16 28.59 ±1.43 27.97 ±1.40 24.70 ±1.28
MHAD2 baseline - 48.31 ±3.62 47.47 ±2.49 41.97 ±4.12
MHAD2 -1 1 27.77 ±3.72 28.19 ±2.89 16.80 ±2.95
MHAD2 -1 5 40.19 ±2.01 38.46 ±2.01 32.15 ±1.94
MHAD2 -1 16 51.44 ±2.85 49.74 ±2.88 41.50 ±3.32
MHAD2 0 1 24.48 ±4.34 24.99 ±3.00 12.97 ±2.83
MHAD2 0 5 36.43 ±1.08 34.91 ±1.24 26.19 ±2.12
MHAD2 0 16 42.61 ±7.93 44.52 ±7.37 36.17 ±8.85
MHAD2 1 1 25.04 ±3.16 26.35 ±2.28 15.87 ±2.09
MHAD2 1 5 32.68 ±2.44 31.17 ±2.23 22.93 ±2.55
WHARF baseline - 20.94 ±3.16 20.12 ±2.65 11.41 ±2.47
WHARF -1 1 44.90 ±4.10 34.09 ±2.32 26.61 ±2.07
WHARF -1 5 45.37 ±2.12 31.66 ±1.34 23.96 ±1.24
WHARF -1 16 43.69 ±1.74 26.64 ±2.16 20.59 ±2.21
WHARF 0 1 43.37 ±4.33 34.12 ±2.51 26.35 ±2.30
WHARF 0 5 45.27 ±1.72 31.32 ±1.40 24.13 ±1.48
WHARF 0 16 40.33 ±6.41 26.07 ±2.63 19.78 ±2.82
WHARF 1 1 41.47 ±5.47 35.31 ±2.47 25.93 ±2.34
WHARF 1 5 45.25 ±3.03 31.71 ±1.25 23.96 ±1.28
WHARF 1 16 39.93 ±4.07 25.27 ±1.60 18.53 ±2.07
WISDM baseline - 50.07 ±3.78 55.08 ±2.21 47.38 ±2.49
WISDM -1 1 93.12 ±0.98 93.02 ±1.90 91.80 ±1.59
WISDM -1 5 92.25 ±0.86 92.86 ±1.36 90.80 ±1.40
WISDM -1 16 90.79 ±1.33 90.68 ±1.81 88.37 ±1.87
WISDM 0 1 91.38 ±0.84 89.70 ±1.84 89.09 ±1.33
WISDM 0 5 91.35 ±1.69 91.60 ±1.45 89.94 ±1.63
WISDM 0 16 88.57 ±1.40 84.39 ±2.87 84.85 ±2.58
WISDM 1 1 91.46 ±1.05 89.48 ±2.05 88.87 ±1.60
WISDM 1 5 93.14 ±1.50 94.55 ±1.60 92.42 ±1.76
WISDM 1 16 89.66 ±1.08 89.60 ±1.28 86.51 ±1.13
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Table 11: TRTR - TSBF
dataset γ i Accuracy Recall F1

MHEALTH baseline - 99.92 ±0.00 99.93 ±0 99.93 ±0
MHEALTH -1 1 100.00 ±0 100.00 ±0 100.00 ±0
MHEALTH -1 5 99.96 ±0 99.96 ±0 99.96 ±0.00
MHEALTH -1 16 99.96 ±0 99.96 ±0 99.96 ±0.00
MHEALTH 0 1 99.92 ±0.00 99.93 ±0 99.93 ±0
MHEALTH 0 5 99.84 ±0 99.86 ±0 99.86 ±0.00
MHEALTH 0 16 100.00 ±0 100.00 ±0 100.00 ±0
MHEALTH 1 1 100.00 ±0 100.00 ±0 100.00 ±0
MHEALTH 1 5 100.00 ±0 100.00 ±0 100.00 ±0
MHEALTH 1 16 99.96 ±0 99.96 ±0 99.96 ±0.00
MHAD1 baseline - 99.92 ±0 99.91 ±0 99.92 ±0
MHAD1 -1 1 99.92 ±0 99.91 ±0 99.92 ±0.00
MHAD1 -1 5 99.95 ±0.00 99.94 ±0.00 99.95 ±0.00
MHAD1 -1 16 100.00 ±0 100.00 ±0 100.00 ±0
MHAD1 0 1 99.92 ±0 99.91 ±0 99.92 ±0.00
MHAD1 0 5 100.00 ±0 100.00 ±0 100.00 ±0
MHAD1 0 16 99.97 ±0.00 99.97 ±0.00 99.97 ±0.00
MHAD1 1 1 99.95 ±0.00 99.94 ±0.00 99.95 ±0.00
MHAD1 1 5 99.97 ±0.00 99.97 ±0 99.97 ±0.00
MHAD1 1 16 99.95 ±0.00 99.94 ±0 99.95 ±0
MHAD2 baseline - 99.91 ±0.00 99.89 ±0 99.89 ±0
MHAD2 -1 1 99.91 ±0.00 99.89 ±0 99.89 ±0
MHAD2 -1 5 99.91 ±0.00 99.89 ±0 99.89 ±0
MHAD2 -1 16 100.00 ±0 100.00 ±0 100.00 ±0
MHAD2 0 1 99.74 ±0 99.67 ±0 99.66 ±0.00
MHAD2 0 5 99.74 ±0 99.67 ±0 99.66 ±0.00
MHAD2 0 16 100.00 ±0 100.00 ±0 100.00 ±0
MHAD2 1 1 99.74 ±0 99.67 ±0 99.66 ±0.00
MHAD2 1 5 99.74 ±0 99.67 ±0 99.66 ±0.00
MHAD2 1 16 100.00 ±0 100.00 ±0 100.00 ±0
WHARF baseline - 99.61 ±0.00 98.86 ±0 99.15 ±0.00
WHARF -1 1 99.77 ±0.00 99.31 ±0.00 99.44 ±0.00
WHARF -1 5 99.82 ±0.00 99.52 ±0.00 99.63 ±0
WHARF -1 16 99.85 ±0.00 99.54 ±0 99.64 ±0
WHARF 0 1 99.77 ±0.00 99.31 ±0.00 99.44 ±0.00
WHARF 0 5 99.82 ±0.00 99.52 ±0.00 99.63 ±0
WHARF 0 16 99.85 ±0.00 99.54 ±0 99.64 ±0
WHARF 1 1 99.77 ±0.00 99.31 ±0.00 99.44 ±0.00
WHARF 1 5 99.82 ±0.00 99.52 ±0.00 99.63 ±0
WHARF 1 16 99.85 ±0.00 99.54 ±0 99.64 ±0
WISDM baseline - 99.99 ±0.00 99.99 ±0.00 100.00 ±0.00
WISDM -1 1 99.99 ±0.00 99.99 ±0.00 100.00 ±0.00
WISDM -1 5 99.99 ±0.00 99.99 ±0.00 100.00 ±0.00
WISDM -1 16 100.00 ±0 100.00 ±0 100.00 ±0
WISDM 0 1 100.00 ±0.00 100.00 ±0.00 100.00 ±0
WISDM 0 5 100.00 ±0 100.00 ±0 100.00 ±0
WISDM 0 16 100.00 ±0.00 100.00 ±0 100.00 ±0
WISDM 1 1 100.00 ±0 100.00 ±0 100.00 ±0
WISDM 1 5 100.00 ±0 100.00 ±0 100.00 ±0
WISDM 1 16 100.00 ±0 100.00 ±0 100.00 ±0
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dataset gamma i acc recall f1

MHEALTH baseline - 61.00 ± 4.09 60.72 ± 3.78 57.42 ± 4.38
MHEALTH -1 1 58.06 ± 2.23 59.44 ± 2.23 53.70 ± 2.26
MHEALTH -1 5 54.97 ± 1.45 54.60 ± 1.87 47.06 ± 1.95
MHEALTH -1 16 45.74 ± 1.87 45.06 ± 2.06 37.57 ± 2.47
MHEALTH 0 1 58.83 ± 2.34 60.07 ± 2.35 53.99 ± 2.72
MHEALTH 0 5 55.45 ± 1.38 56.32 ± 1.54 48.92 ± 1.69
MHEALTH 0 16 47.17 ± 2.72 47.30 ± 2.10 38.60 ± 2.58
MHEALTH 1 1 59.53 ± 2.23 60.74 ± 2.21 55.06 ± 2.60
MHEALTH 1 5 55.01 ± 2.01 55.70 ± 2.37 48.05 ± 2.53
MHEALTH 1 16 47.00 ± 4.15 47.16 ± 3.84 39.27 ± 4.98
MHAD1 baseline - 35.62 ± 1.98 35.15 ± 2.12 32.58 ± 2.39
MHAD1 -1 1 28.24 ± 1.14 27.03 ± 1.26 23.82 ± 1.26
MHAD1 -1 5 31.13 ± 0.84 30.33 ± 0.76 25.34 ± 0.93
MHAD1 -1 16 29.92 ± 1.02 29.29 ± 1.04 25.99 ± 1.12
MHAD1 0 1 29.06 ± 1.11 27.95 ± 1.09 24.48 ± 1.40
MHAD1 0 5 28.93 ± 0.95 27.98 ± 0.85 23.06 ± 0.96
MHAD1 0 16 24.40 ± 3.30 24.40 ± 3.18 19.97 ± 3.00
MHAD1 1 1 26.65 ± 1.19 25.52 ± 1.20 23.33 ± 1.14
MHAD1 1 5 29.34 ± 0.82 28.14 ± 0.86 23.33 ± 1.07
MHAD1 1 16 28.59 ± 1.43 27.97 ± 1.40 24.70 ± 1.28
MHAD2 baseline - 48.31 ± 3.62 47.47 ± 2.49 41.97 ± 4.12
MHAD2 -1 1 27.77 ± 3.72 28.19 ± 2.89 16.80 ± 2.95
MHAD2 -1 5 40.19 ± 2.01 38.46 ± 2.01 32.15 ± 1.94
MHAD2 -1 16 51.44 ± 2.85 49.74 ± 2.88 41.50 ± 3.32
MHAD2 0 1 24.48 ± 4.34 24.99 ± 3.00 12.97 ± 2.83
MHAD2 0 5 36.43 ± 1.08 34.91 ± 1.24 26.19 ± 2.12
MHAD2 0 16 42.61 ± 7.93 44.52 ± 7.37 36.17 ± 8.85
MHAD2 1 1 25.04 ± 3.16 26.35 ± 2.28 15.87 ± 2.09
MHAD2 1 5 32.68 ± 2.44 31.17 ± 2.23 22.93 ± 2.55
WHARF baseline - 20.94 ± 3.16 20.12 ± 2.65 11.41 ± 2.47
WHARF -1 1 44.90 ± 4.10 34.09 ± 2.32 26.61 ± 2.07
WHARF -1 5 45.37 ± 2.12 31.66 ± 1.34 23.96 ± 1.24
WHARF -1 16 43.69 ± 1.74 26.64 ± 2.16 20.59 ± 2.21
WHARF 0 1 43.37 ± 4.33 34.12 ± 2.51 26.35 ± 2.30
WHARF 0 5 45.27 ± 1.72 31.32 ± 1.40 24.13 ± 1.48
WHARF 0 16 40.33 ± 6.41 26.07 ± 2.63 19.78 ± 2.82
WHARF 1 1 41.47 ± 5.47 35.31 ± 2.47 25.93 ± 2.34
WHARF 1 5 45.25 ± 3.03 31.71 ± 1.25 23.96 ± 1.28
WHARF 1 16 39.93 ± 4.07 25.27 ± 1.60 18.53 ± 2.07
WISDM baseline - 50.07 ± 3.78 55.08 ± 2.21 47.38 ± 2.49
WISDM -1 1 93.12 ± 0.98 93.02 ± 1.90 91.80 ± 1.59
WISDM -1 5 92.25 ± 0.86 92.86 ± 1.36 90.80 ± 1.40
WISDM -1 16 90.79 ± 1.33 90.68 ± 1.81 88.37 ± 1.87
WISDM 0 1 91.38 ± 0.84 89.70 ± 1.84 89.09 ± 1.33
WISDM 0 5 91.35 ± 1.69 91.60 ± 1.45 89.94 ± 1.63
WISDM 0 16 88.57 ± 1.40 84.39 ± 2.87 84.85 ± 2.58
WISDM 1 1 91.46 ± 1.05 89.48 ± 2.05 88.87 ± 1.60
WISDM 1 5 93.14 ± 1.50 94.55 ± 1.60 92.42 ± 1.76
WISDM 1 16 89.66 ± 1.08 89.60 ± 1.28 86.51 ± 1.13

Table 12: TSTR - TSBF
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dataset gamma i acc recall f1

MHEALTH baseline - 55.79 ± 2.44 55.07 ± 2.48 52.56 ± 2.33
MHEALTH 5 1 59.27 ± 1.80 58.00 ± 2.19 55.69 ± 2.32
MHEALTH 5 5 61.95 ± 2.13 60.92 ± 2.26 59.17 ± 2.32
MHEALTH 5 16 62.54 ± 2.21 62.39 ± 1.98 60.00 ± 1.77
MHAD1 baseline - 33.86 ± 1.46 33.35 ± 1.57 32.85 ± 1.66
MHAD2 baseline - 46.97 ± 3.70 45.90 ± 3.39 43.52 ± 3.78
MHAD2 5 1 46.81 ± 3.70 46.29 ± 3.42 43.84 ± 3.75
MHAD2 5 5 49.19 ± 3.46 48.71 ± 3.14 46.82 ± 3.63
MHAD2 5 16 53.25 ± 2.18 52.88 ± 1.74 50.68 ± 2.53
WHARF baseline - 15.46 ± 3.04 14.30 ± 1.67 6.14 ± 1.78
WHARF 5 1 15.49 ± 2.84 13.68 ± 1.41 5.84 ± 1.16
WHARF 5 5 17.21 ± 3.60 13.16 ± 2.20 5.76 ± 1.43
WHARF 5 16 16.32 ± 3.57 12.86 ± 1.70 6.32 ± 1.27
WISDM baseline - 53.03 ± 3.04 50.44 ± 2.32 44.94 ± 2.51
WISDM 5 1 50.65 ± 4.22 47.15 ± 2.37 41.49 ± 2.28
WISDM 5 5 48.09 ± 4.79 45.71 ± 2.63 39.48 ± 2.94
WISDM 5 16 47.96 ± 5.75 45.27 ± 2.78 39.01 ± 3.20

Table 13: TSTR-DClassifier- γ=5

dataset gamma i acc recall f1

MHEALTH baseline - 96.08 ± 0.79 96.38 ± 0.74 96.37 ± 0.75
MHEALTH 5 1 96.64 ± 0.50 96.91 ± 0.46 96.89 ± 0.47
MHEALTH 5 5 97.20 ± 0.25 97.43 ± 0.23 97.40 ± 0.24
MHEALTH 5 16 97.33 ± 0.37 97.55 ± 0.34 97.53 ± 0.34
MHAD1 baseline - 67.08 ± 1.18 67.15 ± 1.17 67.13 ± 1.14
MHAD2 baseline - 68.32 ± 1.05 67.55 ± 1.02 67.58 ± 1.31
MHAD2 5 1 71.66 ± 1.45 70.50 ± 1.60 71.18 ± 1.52
MHAD2 5 5 78.02 ± 0.98 77.03 ± 1.00 77.46 ± 0.92
MHAD2 5 16 81.78 ± 1.41 80.58 ± 1.35 81.19 ± 1.43
WHARF baseline - 83.11 ± 1.85 77.63 ± 2.34 78.62 ± 2.08
WHARF 5 1 81.97 ± 3.34 75.61 ± 4.48 76.72 ± 4.62
WHARF 5 5 85.34 ± 2.85 80.41 ± 3.66 81.74 ± 3.50
WHARF 5 16 88.21 ± 2.66 84.02 ± 3.84 84.65 ± 3.60
WISDM baseline - 99.47 ± 0.09 99.20 ± 0.15 99.21 ± 0.12
WISDM 5 1 99.53 ± 0.06 99.18 ± 0.12 99.25 ± 0.08
WISDM 5 5 99.59 ± 0.05 99.21 ± 0.11 99.36 ± 0.08
WISDM 5 16 99.39 ± 0.03 98.73 ± 0.07 99.01 ± 0.04

Table 14: DClassifier - TRTR - γ = 5
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dataset gamma i acc recall f1

MHEALTH 5 1 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
MHEALTH 5 5 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
MHEALTH 5 5 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
MHEALTH 5 5 99.96 ± 0.0 99.96 ± 0.0 99.96 ± 0.00
MHEALTH 5 16 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
MHEALTH 5 16 99.96 ± 0.0 99.96 ± 0.0 99.96 ± 0.00
MHAD1 5 1 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
MHAD1 5 5 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
MHAD1 5 5 99.95 ± 0.00 99.94 ± 0.0 99.94 ± 0.00
MHAD1 5 5 99.92 ± 0.0 99.91 ± 0.0 99.92 ± 0.00
MHAD1 5 16 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
MHAD1 5 16 99.95 ± 0.00 99.94 ± 0.0 99.94 ± 0.00
MHAD2 5 1 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
MHAD2 5 5 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
MHAD2 5 5 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
MHAD2 5 5 99.74 ± 0.0 99.67 ± 0.0 99.66 ± 0.00
MHAD2 5 16 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
MHAD2 5 16 99.74 ± 0.0 99.67 ± 0.0 99.66 ± 0.00
WHARF 5 1 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
WHARF 5 5 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
WHARF 5 5 99.85 ± 0.00 99.54 ± 0.0 99.64 ± 0.0
WHARF 5 5 99.82 ± 0.00 99.52 ± 0.00 99.63 ± 0.0
WHARF 5 16 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
WHARF 5 16 99.77 ± 0.00 99.31 ± 0.00 99.44 ± 0.00
WISDM 5 1 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
WISDM 5 5 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
WISDM 5 5 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
WISDM 5 5 99.99 ± 0.0 99.99 ± 0.0 99.99 ± 0.00
WISDM 5 16 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
WISDM 5 16 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0

Table 15: TRTR - TSRF - γ = 5



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

dataset gamma i acc recall f1

MHAD2 5 5 38.06 ± 1.61 38.55 ± 1.64 33.79 ± 2.02
MHAD2 5 5 38.04 ± 1.65 38.36 ± 1.61 33.67 ± 2.05
MHAD2 5 16 37.77 ± 1.75 38.27 ± 1.59 33.49 ± 2.10
MHAD2 5 5 36.01 ± 2.77 36.57 ± 2.80 32.15 ± 2.86
MHAD2 5 16 35.95 ± 2.73 36.59 ± 2.72 31.94 ± 3.05
MHAD2 5 1 35.76 ± 2.89 36.37 ± 2.84 31.89 ± 3.06
WISDM 5 5 38.00 ± 7.01 34.62 ± 2.46 29.36 ± 3.59
WISDM 5 16 37.91 ± 5.62 34.42 ± 2.62 29.31 ± 3.56
WISDM 5 5 37.27 ± 5.47 34.67 ± 2.18 28.57 ± 3.48
MHEALTH 5 16 31.46 ± 2.21 30.10 ± 1.78 26.76 ± 2.24
MHEALTH 5 5 31.22 ± 2.81 29.86 ± 2.18 26.57 ± 2.61
MHEALTH 5 5 30.85 ± 2.57 29.46 ± 1.99 26.18 ± 2.80
WISDM 5 16 30.71 ± 6.96 34.58 ± 3.46 25.30 ± 4.57
WISDM 5 1 30.62 ± 6.72 34.18 ± 3.25 25.17 ± 4.25
WISDM 5 5 30.48 ± 6.84 34.15 ± 3.18 24.74 ± 4.39
MHEALTH 5 1 24.11 ± 2.98 23.03 ± 2.73 21.03 ± 2.74
MHEALTH 5 16 23.65 ± 3.29 22.60 ± 3.02 20.37 ± 3.00
MHEALTH 5 5 23.50 ± 3.19 22.51 ± 2.93 20.24 ± 3.00
MHAD1 5 1 21.59 ± 0.85 20.89 ± 0.89 19.56 ± 0.93
MHAD1 5 16 21.43 ± 0.91 20.74 ± 0.96 19.43 ± 0.97
MHAD1 5 5 21.37 ± 0.95 20.67 ± 0.97 19.30 ± 0.99
MHAD1 5 5 20.32 ± 0.77 19.73 ± 0.78 18.78 ± 0.73
MHAD1 5 5 20.13 ± 0.86 19.54 ± 0.87 18.63 ± 0.82
MHAD1 5 16 20.09 ± 0.84 19.49 ± 0.84 18.59 ± 0.79
WHARF 5 5 15.37 ± 3.69 13.84 ± 1.64 5.45 ± 1.69
WHARF 5 5 15.03 ± 3.72 13.53 ± 1.59 5.19 ± 1.57
WHARF 5 16 15.01 ± 3.55 13.55 ± 1.56 5.04 ± 1.37
WHARF 5 5 12.44 ± 3.52 10.40 ± 1.81 4.03 ± 1.24
WHARF 5 16 12.40 ± 3.52 10.37 ± 1.78 3.99 ± 1.15
WHARF 5 1 12.45 ± 3.51 10.43 ± 1.83 3.98 ± 1.19

Table 16: TSTR - TSRF - γ = 5
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dataset gamma i acc recall f1

MHEALTH 5 1 31.46 ± 2.21 30.10 ± 1.78 26.76 ± 2.24
MHEALTH 5 1 23.50 ± 3.19 22.51 ± 2.93 20.24 ± 3.00
MHEALTH 5 5 31.22 ± 2.81 29.86 ± 2.18 26.57 ± 2.61
MHEALTH 5 16 30.85 ± 2.57 29.46 ± 1.99 26.18 ± 2.80
MHEALTH 5 16 24.11 ± 2.98 23.03 ± 2.73 21.03 ± 2.74
MHEALTH 5 16 23.65 ± 3.29 22.60 ± 3.02 20.37 ± 3.00
MHAD1 5 1 21.37 ± 0.95 20.67 ± 0.97 19.30 ± 0.99
MHAD1 5 1 20.09 ± 0.84 19.49 ± 0.84 18.59 ± 0.79
MHAD1 5 5 20.32 ± 0.77 19.73 ± 0.78 18.78 ± 0.73
MHAD1 5 16 21.59 ± 0.85 20.89 ± 0.89 19.56 ± 0.93
MHAD1 5 16 21.43 ± 0.91 20.74 ± 0.96 19.43 ± 0.97
MHAD1 5 16 20.13 ± 0.86 19.54 ± 0.87 18.63 ± 0.82
MHAD2 5 1 37.77 ± 1.75 38.27 ± 1.59 33.49 ± 2.10
MHAD2 5 1 36.01 ± 2.77 36.57 ± 2.80 32.15 ± 2.86
MHAD2 5 5 38.06 ± 1.61 38.55 ± 1.64 33.79 ± 2.02
MHAD2 5 16 38.04 ± 1.65 38.36 ± 1.61 33.67 ± 2.05
MHAD2 5 16 35.95 ± 2.73 36.59 ± 2.72 31.94 ± 3.05
MHAD2 5 16 35.76 ± 2.89 36.37 ± 2.84 31.89 ± 3.06
WHARF 5 1 15.01 ± 3.55 13.55 ± 1.56 5.04 ± 1.37
WHARF 5 1 12.44 ± 3.52 10.40 ± 1.81 4.03 ± 1.24
WHARF 5 5 15.37 ± 3.69 13.84 ± 1.64 5.45 ± 1.69
WHARF 5 16 15.03 ± 3.72 13.53 ± 1.59 5.19 ± 1.57
WHARF 5 16 12.40 ± 3.52 10.37 ± 1.78 3.99 ± 1.15
WHARF 5 16 12.45 ± 3.51 10.43 ± 1.83 3.98 ± 1.19
WISDM 5 1 37.91 ± 5.62 34.42 ± 2.62 29.31 ± 3.56
WISDM 5 1 30.48 ± 6.84 34.15 ± 3.18 24.74 ± 4.39
WISDM 5 5 37.27 ± 5.47 34.67 ± 2.18 28.57 ± 3.48
WISDM 5 16 38.00 ± 7.01 34.62 ± 2.46 29.36 ± 3.59
WISDM 5 16 30.71 ± 6.96 34.58 ± 3.46 25.30 ± 4.57
WISDM 5 16 30.62 ± 6.72 34.18 ± 3.25 25.17 ± 4.25

Table 17: TSTR - TSBF - γ = 5
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dataset gamma i acc recall f1

MHEALTH 5 1 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
MHEALTH 5 1 99.96 ± 0.0 99.96 ± 0.0 99.96 ± 0.00
MHEALTH 5 5 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
MHEALTH 5 16 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
MHEALTH 5 16 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
MHEALTH 5 16 99.96 ± 0.0 99.96 ± 0.0 99.96 ± 0.00
MHAD1 5 1 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
MHAD1 5 1 99.95 ± 0.00 99.94 ± 0.0 99.94 ± 0.00
MHAD1 5 5 99.95 ± 0.00 99.94 ± 0.0 99.94 ± 0.00
MHAD1 5 16 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
MHAD1 5 16 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
MHAD1 5 16 99.92 ± 0.0 99.91 ± 0.0 99.92 ± 0.00
MHAD2 5 1 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
MHAD2 5 1 99.74 ± 0.0 99.67 ± 0.0 99.66 ± 0.00
MHAD2 5 5 99.74 ± 0.0 99.67 ± 0.0 99.66 ± 0.00
MHAD2 5 16 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
MHAD2 5 16 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
MHAD2 5 16 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
WHARF 5 1 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
WHARF 5 1 99.77 ± 0.00 99.31 ± 0.00 99.44 ± 0.00
WHARF 5 5 99.82 ± 0.00 99.52 ± 0.00 99.63 ± 0.0
WHARF 5 16 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
WHARF 5 16 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
WHARF 5 16 99.85 ± 0.00 99.54 ± 0.0 99.64 ± 0.0
WISDM 5 1 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
WISDM 5 1 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
WISDM 5 5 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
WISDM 5 16 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
WISDM 5 16 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0
WISDM 5 16 99.99 ± 0.0 99.99 ± 0.0 99.99 ± 0.00

Table 18: TRTR - TSBF - γ = 5
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D DISCUSSIONS

We performed a layer-wise analysis of the DClassifier’s weight distributions to investigate the effects
of RIP as a regularization technique. We hypothesize that RIP promotes weight uniformity—a
property often associated with effective regularization Zhang et al. (2019). To test this, we compare
the weight distributions of a model trained with RIP against a baseline model (trained without RIP)
and a uniform distribution. We use the Kolmogorov–Smirnov (KS) test Cong et al. (2021) and the
Wasserstein distance Panaretos & Zemel (2019) as our primary metrics. We denote our KS test
setting as:

SRIP(L) = KS(LRIP(σ), LUniform) and Sbaseline(L) = KS(Lbaseline, LUniform)

Analogously, our Wasserstein settings:

WRIP(L) = W (LRIP(σ), LUniform) and Wbaseline(L) = W (Lbaseline, LUniform)

where:

1. LRIP(σ) represents the weight values of layer L trained with RIP under setting σ =
(γ, i,MHAD2,DClassifier); γ ∈ {0, 1, 5} and i is the best performer in the dataset,

2. Lbaseline corresponds to the same layer trained without RIP,

3. LUniform is a reference uniform distribution with the same shape as the weights in L (i.e.,
LUniform ∼ scipy.uniform(shape = L.shape)).

The same LUniform is used when comparing RIP and baseline weights to ensure fairness.

We selected the MHAD2 dataset, which has the fewest classes and allows faster training while
preserving model validity. The DClassifier was chosen as it serves as a common baseline across
datasets. Since the model was trained using 10-fold cross-validation, we selected the fold with
the best validation score, assuming that its weights represent the model’s generalization capabil-
ity Grimm et al. (2017). This evaluation is carried out for both the real and synthetic versions of
MHAD2, enabling us to assess whether RIP’s regularization effect holds across data modalities. In
the following sections, we discuss some aspects of the outcomes in this investigation. Lower values
for the KS statistic (S) and Wasserstein distance (W ) indicate a greater similarity to the uniform dis-
tribution, suggesting more effective regularization. Full details on the experimental setup, including
the selection of the MHAD2 dataset and the specific model configuration, are provided in Appendix
D.

Effects on Synthetic Data. Weight Uniformity, Layer-wise Effects, and the Role of γ: Figures 2
show that RIP, particularly with γ = 1 and γ = 5, promotes more uniform weight distributions
across layers, as reflected by reduced SRIP(L) values compared to the baseline. This effect is most
significant in contextual layers such as SelfAttention, LSTM, and RNN, indicating that RIP is well-
suited for sequential architectures. The method’s effectiveness stems from introducing invariant
patterns — γi,j , xi,j , γi,j — which reinforce contextual information and reduce overfitting. How-
ever, the impact is not uniform: γ = 1 provides stable regularization across layers, while γ = 5
induces stronger but less stable shifts in deeper layers, and γ = 0 shows minimal effect. Overall,
γ = 1 emerges as the most reliable setting. Statistical Proximity vs. Distributional Cost: KS statis-
tics capture local deviations from uniformity, while Wasserstein distance reflects global shifts. RIP
reduces KS values—improving local uniformity—but often increases Wasserstein distances, espe-
cially in Conv2D and Dense layers, suggesting broader structural changes. Among variants, γ = 1
yields the smoothest trade-off, whereas γ = 0 is unstable and γ = 5 introduces more dispersion.
This reveals a key trade-off: RIP enforces local regularization but may distort global distributions,
making careful tuning of γ essential. Output and Model Confidence: RIP also affects output distri-
butions. KS tests over logits (Figure 3) show that baseline models are overly uniform—reflecting
uncertainty—while RIP, especially with γ = 1, produces less uniform logits, i.e., more confident
predictions. This aligns with higher F1-scores, indicating that RIP improves both decisiveness and
accuracy.

Effects on Real Data. Layer-wise Propagation, Sensitivity, and Contextual Suitability: On real
datasets, RIP propagates nonlinearly and asymmetrically through the network. Early Conv2D lay-
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ers show minor sensitivity to γ, while intermediate layers (LSTM3, SelfAttention1, Lambda) re-
spond strongly, with divergence metrics decreasing as γ increases. Deeper dense layers show lim-
ited change, likely due to accumulated nonlinearities. This highlights that RIP is most effective
in context-aware layers, with diminishing influence in final representations. Predictive Confidence,
Trustworthiness, and Reliability: RIP regularizes output confidence differently on real data. It re-
duces overconfidence, producing more calibrated predictions (Figure 3). Unlike the baseline, which
is often overconfident and inaccurate, RIP with γ = 1 yields the best performance and the most
reliable calibration. The trade-off between variance control and accuracy reappears: γ = 5 en-
forces strong uniformity but reduces accuracy, while γ = 1 balances regularization and predictive
power. In practice, moderate RIP enhances generalization by mitigating overfitting without overly
constraining representational capacity.

Is RIP a Form of Data-centric Regularization? Our analysis shows that RIP has consistent archi-
tectural effects across datasets: contextual layers (e.g., LSTM, SelfAttention) are sensitive, while
Dense layers are not. However, its influence on output confidence differs by domain. In syn-
thetic data, RIP increases decisiveness, while in real data, it reduces overconfidence, leading to
better-calibrated predictions in both cases. The performance–regularization trade-off is also domain-
dependent. Our findings suggest that RIP is a data-centric regularization technique, implemented
through a novel form of structured data augmentation, shaping weight dynamics through input
structure without modifying the architecture or loss function. Unlike traditional ℓ2 regularization,
which imposes global penalties, RIP steers optimization toward more uniform weight distributions
by leveraging properties of the data itself. Its effect is not monotonic with γ, varying across layer
types and depths—highlighting the need for careful tuning. By embedding a structural prior directly
into training, RIP emerges as a compelling alternative to classical methods: when properly tuned,
it encourages more uniform weights, yields better-calibrated predictions, and enhances generaliza-
tion without compromising performance. By reducing overconfidence and overfitting, RIP proves
especially useful for models prone to excessive certainty, such as LSTM-based architectures.

E SKETCHED FORMAL ANALYSIS

The model analyzed has six layers, called respectively by Rnn inputs, Conv2d, Lambda, LSTM,
Self-Attention, and Dense. Two are RNN-based. We will focus on RNN inputs and LSTM because
we focused on them in the previous section. The LSTM in this TensorFlow implementation returns
only three weights (called for ’whole sequence output,’ ‘final memory state,’ and’ final carry state’;
for more details, see TensorFlow API Docs tfl).

As discussed in the main paper, the discussions showed that RNN-based layers are more affected by
RIP. Considering that, we decided to analyze the impact of the RNN-based layers mathematically.
We consider an RNN with bias parameters b ∈ Rh and identity activation function φ(x) = x in the
hidden layers. At time step t, the input is xt ∈ Rd, and the corresponding target is yt. The hidden
state ht ∈ Rh and the output ot ∈ Rq are computed as follows:

ht = Wxt + Uht−1 + b,

ot = V ht + C,

ŷt = softmax(ot),

where W ∈ Rd×h, U ∈ Rh×h, V ∈ Rh×q , and C ∈ Rq . The output vector ot = (ot1, . . . , otq)
represents the logits for a q-class classification task. The softmax function is applied element-wise
as softmax(oti) = eoti∑q

j=1 eotj
, producing a probability vector ŷt ∈ Rq .

For a multi-class classification setting, we define the loss as the average cross-entropy over a mini-
batch:

ℓ = − 1

n

n∑
i=1

q∑
j=1

yij log(ŷij). (4)

Here, ht = ht(W,xt, ht−1, b) and the loss depends on V , ht, and C, i.e., ℓ = ℓ(V, ht, C). Therefore,
h1 =Wx1 + Uh0 + b = Wγ + b

h2 =Wx2 + Uh1 + b = Wγ + U [Wγ + b] + b
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Then,

h3 =Wx3 + Uh2 + b

= Wx3 + U [U [Wγ + b] + b] + b

= Wx3 + U2[Wγ + b] + Ub+ b

It implies in

h4 =Wx4 + Uh3 + b

=Wγ + U [Wx3 + U2[Wγ + b] + Ub+ b] + b

=Wγ + UWx3 + U3[Wγ + b] + U2b+ Ub+ b

Finally,

h5 =Wx5 + Uh4 + b

=Wγ + U{Wγ + UWx3 + U3[Wγ + b] + U2b+ Ub+ b}+ b

=[U4 + U3 + U + 1]Wγ + U2Wx3 +
i∑
4

U ib

However, without CAR,

h2 =Wx2 + Uh1 + b

=Wx2 + U [Wx1 + b] + b

=Wx2 + UWx1 + Ub+ b

Then,

h3 =Wx3 + Uh2 + b

=Wx3 + U [Wx2 + UWx1 + Ub+ b] + b

=Wx3 + UWx2 + U2Wx1 + U2b+ Ub+ b

Consequently.

h4 =Wx4 + Uh3 + b

=Wx4 + U [Wx3 + UWx2 + U2Wx1 + U2b+ Ub+ b] + b

=Wx4 + UWx3 + U2Wx2 + U3Wx1 + U3b+ U2b+ Ub+ b

Finally,

h5 =Wx5 + Uh4 + b

=Wx5 + U [Wx4 + UWx3 + U2Wx2 + U3Wx1 + U3b+ U2b+ Ub+ b] + b

=Wx5 + UWx4 + U2Wx3 + U3Wx2 + U4x1 + U4b+ U3b+ U2b++Ub+ b

=

4∑
i=0

(U ix5−i + U ib)

To investigate the effect of repeated input sequences, we simulate a training scenario with a mini-
batch of 5 steps and initialize h0 = 0. We assume that the constant samples γ is present at steps
t = 1, 2, 4, 5.

Under RIP As derived in previous equations, the hidden state at t = 5 can be written as:

h5 =
(
U4 + U3 + U + I

)
Wγ + U2Wx3 +

4∑
i=0

U ib, (5)

where x1 = x2 = x4 = x5 = γ are the inputs, following the RIP procedure.
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Without RIP In contrast, when all inputs are distinct (i.e., no constant samples added), the hidden
state at t = 5 becomes:

h5 =

4∑
i=0

(
U ib+ U iWx5−i

)
, (6)

where x1, . . . , x5 are assumed to be distinct inputs. This leads to a richer combination of temporal
features, diversifying the contribution of W and b over time.

Equations 4 and 2 clearly show that the resulting h5 is highly constrained by the repeated appearance
of γ, and the majority of the dynamics come from powers of U acting on a fixed term Wγ. Thus,
the variability of ht across time is dampened. Using RIP introduces a structural bias toward low-
variance representations, much like traditional regularization techniques such as weight decay or
dropout. Indeed, comparing the variance of the hidden state h5 in the two previously explored
scenarios, and assuming that each input xt ∈ Rh is drawn independently from a distribution with
mean µ and covariance Σ, i.e.,

E[xt] = µ, Cov(xt) = Σ.

Without RIP All inputs are distinct: x1, x2, x3, x4, x5 are i.i.d. Then the hidden state at t = 5 as
in Eq. 2,the expectation and variance:

E[h(noRIP)
5 ] =

4∑
i=0

U iWµ+

4∑
i=0

U ib,

Var(h(noRIP)
5 ) =

4∑
i=0

U iWΣW⊤(U i)⊤. (7)

With RIP Assume inputs x1 = x2 = x4 = x5 = γ are fixed and only x3 is random. Then, the
expected value and variance become:

E[h(RIP)
5 ] = (U4 + U3 + U + I)Wγ + U2Wµ+

4∑
i=0

U ib,

Var(h(RIP)
5 ) = U2WΣW⊤(U2)⊤. (8)

Although each input xt has the same covariance Σ, in the Eq. 7 the variance of h5 accumulates over
five independent sources xi;∀i = 1, · · · , 4, while in the Eq. 8, it depends solely on one term, x3.

This shows that RIP leads to reduced variance in the hidden representation. Repeatedly using the
fixed input γ reduces temporal diversity and constrains the representation to a smaller subspace.
This supports the interpretation of RIP as an implicit regularizer, promoting smoother gradient flow
and reducing overfitting—at the cost of reduced representational capacity when overused. The hid-
den states in RIP become combinations of a limited set of patterns, which reduces the RNN’s ability
to overfit to the training data. It results in more predictable and homogeneous hidden states, leading
to smaller gradient variance and acting as an implicit regularizer. This confirms the empirical obser-
vations that RIP can help generalization — mainly when used with moderation — but also explains
why excessive repetition (e.g., high i values) leads to stagnated performance.

Consequently, due to the chain rule, the weight updates are affected by the RIP, carrying this lower
variability and reinforcing the action of γ, as well as the regularization. Then, by the chain rule, for
all weight Ω ∈ {W,V, b, U},

Ω = Ωcurrent − α
∂ℓ

∂Pk

∂o5
∂Pk

∂Pk

∂Ω

where ∂Ω relies on h5, implies a lower variability in the RIP scenario, as previously discussed.
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F ADDITIONAL EXPERIMENTS

To enable a more in-depth investigation, we performed supplementary experiments designed to ad-
dress specific questions and validate our results.

F.1 ℓ1 AND ℓ2

Since we are introducing a novel regularization strategy for Human Activity Recognition (HAR)
classifiers, comparing our approach with similar techniques is essential. However, we could not
identify existing regularization methods tailored to HAR scenarios. Therefore, we compared our
method with the most traditional and widely used regularization techniques: ℓ1 and ℓ2 regularization.

Given the structure of the models, we applied these regularization techniques to the TS-Classifier
and DClassifier models previously used in this study. The experiments were conducted using the
same real and synthetic datasets employed throughout the paper. We evaluated four values for the
regularization parameter: 0.1, 0.01, 0.001, and 1.

To provide a clear overview, we summarize the results for the real and synthetic datasets separately.
Tables 22 and 20 present the best results obtained for each regularization technique in real and
synthetic datasets, respectively. The complete experimental results are provided in tables 21 and 20.
As in previous sections, the baseline for each dataset refers to the classifier trained on the respective
data type without any approach employed.

The following discussion analyzes the outcomes reported in Table 20. Due to the breadth of results
and potential analyses, our discussion emphasizes the key patterns and takeaways.

Performance in High-Baseline Scenarios. One of its key advantages is its ability to enhance
performance in datasets with high baseline metrics. For instance, in the MHEALTH dataset with
TS-Classifier, where the baseline accuracy is close to 99%, traditional regularization methods led
to performance drops of up to 40 percentage points. In contrast, configurations maintained the
baseline and in some cases reached 100% accuracy and F1. Similarly, in the WISDM dataset, which
also displayed strong baseline results, improved accuracy and F1 by one percentage point, whereas
ℓ1 and ℓ2 regularization resulted in significant degradation. These findings suggest that it does not
compromise performance in already high-performing models, an essential feature for sensitive or
high-stakes applications.

Robustness Across Diverse Data Distributions Consistently outperformed traditional regulariza-
tion methods across all five datasets tested with TS-Classifier and three out of five with DClassifier.
Notably, neither ℓ1 nor ℓ2 regularization surpassed the baseline in any of the evaluated scenarios,
yielding improvements in approximately 90% of the cases. For instance, in the WHARF dataset, tra-
ditional regularization caused performance drops exceeding 50 percentage points, while maintaining
or improving performance across all configurations.

In datasets with moderate or low baseline performance, such as MHAD1 and MHAD2, RIP deliv-
ered substantial gains: up to 30 percentage points in TS-Classifier and around 4 points in DClassi-
fier. In contrast, ℓ1 and ℓ2 regularization failed to improve results and occasionally degraded them.
These findings highlight the effectiveness as a generalization-enhancing mechanism, particularly in
scenarios where conventional regularization techniques fall short.

Versatility Across Configurations Another key strength is its versatility across various config-
urations. Across all datasets, multiple combinations of hyperparameters (γ and i values) led to
substantial performance gains, indicating that it is not overly sensitive to fine-tuning. For instance,
γ = −1 and γ = 1 produced strong results in different datasets such as MHAD1, WHARF, and
WISDM. This suggests that it has broad applicability and typically requires only the identification
of a reasonable γ value to achieve competitive performance.

Practicality Over Complexity In the DClassifier setting, datasets such as WISDM, WHARF,
and USCHAD exhibited only marginal improvements, approximately one percentage point over the
baseline, when using ℓ2 regularization. In one of these cases, it did not outperform the baseline;
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Table 19: Performance analysis of the proposed RIP method versus a baseline approach and the ℓ1
and ℓ2 regularization methods. Experiments were conducted on five public, real-world datasets. For
each metric, the highest-performing result is highlighted in bold. The reported performance for RIP
is based on its best-found hyperparameter configuration.

Model Dataset Method Accuracy (%) F1-score (%)

DClassifier

MHEALTH

Baseline 91.21±1.61 90.46±2.84
RIP (γ = 0, i = 16) 97.84±0.21 98.01±0.20
ℓ1 (ϵ = 0.001) 47.13±6.13 40.94±6.24
ℓ2 (ϵ = 0.001) 44.65±6.04 37.84±6.03

MHAD1

Baseline 58.25±2.06 67.13±1.14
RIP (γ = 0, i = 16) 86.12±0.55 86.13±0.53
ℓ1 (ϵ = 0.1) 29.36±2.29 26.63±2.12
ℓ2 (ϵ = 0.001) 16.09±1.23 9.28±1.39

MHAD2

Baseline 68.32±1.05 67.58±1.31
RIP (γ = 0, i = 16) 82.12±0.72 81.68±0.74
ℓ1 (ϵ = 0.001) 52.92±4.66 46.58±5.44
ℓ2 (ϵ = 0.001) 41.56±6.21 30.05±8.18

WHARF

Baseline 83.11±1.85 78.62±2.08
RIP (γ = 1, i = 16) 90.25±1.19 87.48±1.70
ℓ1 (ϵ = 0.001) 19.51±2.09 10.92±1.98
ℓ2 (ϵ = 0.001) 20.04±3.16 10.90±2.73

WISDM

Baseline 99.47±0.09 99.21±0.12
RIP (γ = 0, i = 5) 99.77±0.03 99.46±0.05
ℓ1 (ϵ = 1.0) 51.79±4.29 43.75±2.95
ℓ2 (ϵ = 0.1) 48.65±5.66 42.77±3.40

TS-Classifier

MHEALTH

Baseline 32.37±2.40 24.08±2.59
RIP (γ = 1, i = 1) 59.98±2.03 55.54±2.42
ℓ1 (ϵ = 1.0) 57.71±2.60 51.67±3.56
ℓ2 (ϵ = 0.1) 58.25±3.37 51.61±4.45

MHAD1

Baseline 20.45±1.15 15.67±1.41
RIP (γ = −1, i = 5) 31.67±0.73 26.08±0.70
ℓ1 (ϵ = 0.001) 31.49±1.95 27.62±2.00
ℓ2 (ϵ = 0.001) 33.42±1.95 29.70±2.29

MHAD2

Baseline 31.25±1.64 24.46±1.72
RIP (γ = 1, i = 16) 52.49±3.16 43.22±3.91
ℓ1 (ϵ = 0.001) 47.13±6.13 40.94±6.24
ℓ2 (ϵ = 0.001) 44.65±6.04 37.84±6.03

WHARF

Baseline 19.19±6.71 10.28±3.63
RIP (γ = 1, i = 1) 46.06±4.34 28.63±2.24
ℓ1 (ϵ = 0.001) 19.51±2.09 10.92±1.98
ℓ2 (ϵ = 0.001) 20.04±3.16 10.90±2.73

WISDM

Baseline 90.32±1.63 87.19±2.62
RIP (γ = −1, i = 5) 93.12±1.21 92.30±1.46
ℓ1 (ϵ = 0.001) 43.68±5.46 43.94±4.06
ℓ2 (ϵ = 0.001) 47.88±6.81 46.12±3.21

however, its best results were achieved with low values of i, still surpassing the baseline in sev-
eral configurations. This observation reinforces a concern previously raised by Jiang et al. (2024)
regarding the complexity of designing deep learning models. Traditional regularization techniques
often require substantial expertise and careful hyperparameter tuning to be effective. In contrast,
RIP offers a more practical and accessible alternative for practitioners, striking a balance between
ease of use and strong empirical performance.
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Table 20: Regularization in Synthetic Datasets.
Model Dataset Protocol Rate (γ, i) Acc F1

ℓ1 0.001 - 43.68 ± 5.46 43.94 ± 4.06
0.01 - 43.68 ± 5.46 43.94 ± 4.06
0.1 - 38.06 ± 6.39 38.36 ± 3.41
1.0 32.41 ± 9.07 29.44 ± 7.68

WISDM ℓ2 0.001 - 47.88 ± 6.81 46.12 ± 3.21
0.01 47.88 ± 6.81 46.12 ± 3.21
0.1 40.57 ± 5.65 37.77 ± 3.71
1.0 40.34 ± 8.84 38.43 ± 4.64

ℓ1 0.001 - 19.51 ± 2.09 10.92 ± 1.98
0.01 - 20.04 ± 3.16 10.90 ± 2.73
0.1 16.57 ± 4.33 10.90 ± 3.32
1.0 18.03 ± 3.94 8.19 ± 2.58

TS-Classifier WHARF ℓ2 0.001 - 20.04 ± 3.16 10.90 ± 2.73
0.01 20.04 ± 3.16 10.90 ± 2.73
0.1 16.57 ± 4.33 9.72 ± 3.32
1.0 18.03 ± 3.94 8.19 ± 2.58

ℓ1 0.01 - 56.44 ± 3.35 50.95 ± 3.05
0.001 - 56.44 ± 3.35 50.95 ± 3.05

0.1 48.93 ± 3.26 44.13 ± 3.67
1.0 31.07 ± 5.40 21.14 ± 4.92

MHEALTH ℓ2 0.001 - 59.80 ± 4.52 59.05 ± 3.89
0.01 59.80 ± 4.52 59.05 ± 3.89
0.1 54.87 ± 4.33 50.14 ± 3.42
1.0 48.22 ± 2.61 43.18 ± 2.90

ℓ2 0.001 - 47.13 ± 6.13 40.94 ± 6.24
0.01 47.13 ± 6.13 40.94 ± 6.24
0.1 38.98 ± 3.72 33.44 ± 3.59
1.0 39.74 ± 3.45 34.13 ± 3.84

MHAD2 ℓ1 0.001 - 44.65 ± 6.04 37.84 ± 6.03
0.01 44.65 ± 6.04 37.84 ± 6.03
0.1 39.83 ±4.48 33.64 ± 4.03
1.0 20.49 ± 0.74 5.67 ± 0.17

ℓ1 0.001 - 31.49 ± 1.95 27.62 ± 2.00
0.01 31.49 ± 1.95 27.62 ± 2.00
0.1 26.13 ± 1.92 23.92 ± 1.88
1.0 6.41 ± 0.23 0.57 ± 0.02

MHAD1 ℓ2 0.001 - 33.42 ± 1.95 29.70 ± 2.29
0.01 33.42 ± 1.95 29.70 ± 2.29
0.1 28.10 ± 2.95 24.93 ± 2.68
1.0 26.40 ± 2.45 22.73 ± 2.72

F.1.1 REAL DATA

Comparative Efficacy Across Models and Datasets Our experimental results across five di-
verse activity recognition datasets demonstrate that the RIP method generally outperforms tradi-
tional regularization techniques such as ℓ1 and ℓ2, particularly when applied to the TS-Classifier. In
all datasets (WISDM, WHARF, MHAD2, USCHAD, and MHEALTH), RIP consistently achieves
superior performance in both F1-score and accuracy. Notably, on the MHEALTH dataset, the con-
figuration (γ = 0, i = 1) resulted in gains of approximately 30 percentage points over the baseline.
For the DClassifier, RIP also surpassed traditional regularization in most cases. In datasets such as
WHARF, USCHAD, MHEALTH, and MHAD2, RIP led to consistent improvements, while conven-
tional methods either failed to improve performance or offered only marginal gains. The only excep-
tion was the WISDM dataset (the largest in our study, with over 10,000 training samples), where ℓ2
regularization outperformed RIP. This suggests that conventional techniques may still prove effec-

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Table 21: Regularization in Synthetic Datasets.
Model Dataset Protocol Rate (γ, i) Acc F1

ℓ2 1.0 - 51.79 ± 4.29 43.75 ± 2.95
0.001 51.69 ± 5.22 45.40 ± 4.09
0.01 51.69 ± 5.22 45.40 ± 4.09
0.1 46.96 ± 6.40 42.36 ± 4.90

WISDM ℓ1 1.0 - 48.65 ± 5.66 42.77 ± 3.40
0.001 48.89 ± 6.30 43.58 ± 3.06
0.01 48.89 ± 6.30 43.58 ± 3.06
0.1 50.74 ± 5.55 45.59 ± 3.53
1.0 48.65 ±5.66 42.77 ± 3.40

ℓ2 0.1 - 18.36 ± 4.51 9.62 ± 3.42
0.001 17.36 ± 3.85 7.38 ± 2.53
0.01 17.36 ± 3.85 7.38 ± 2.53
1.0 16.62 ± 4.60 7.29 ± 2.73

DClassifier WHARF ℓ1 0.001 - 19.45 ± 3.92 9.16 ± 2.53
0.01 19.45 ± 3.92 9.16 ± 2.53
0.1 17.23 ± 3.43 9.11 ± 1.15
1.0 10.87 ± 3.72 7.88 ± 2.31

ℓ2 0.1 - 15.06 ± 1.64 3.85 ± 3.27
0.001 14.90 ± 1.34 3.65 ± 2.90
0.01 14.90 ± 1.34 3.65 ± 2.90
1.0 15.85 ± 3.09 4.10 ± 3.73

ℓ2 1.0 - 57.71 ± 2.60 51.67 ± 3.56
0.1 55.83 ± 2.65 50.24 ± 3.54

0.01 54.84 ± 4.09 47.91 ± 3.91
0.001 54.84 ± 4.09 47.91 ± 3.91

MHEALTH ℓ1 0.1 - 58.25 ± 3.37 51.61 ± 4.45
0.001 56.64 ± 2.79 49.45 ± 2.98
0.01 56.64 ± 2.79 49.45 ± 2.98
1.0 53.84 ± 2.27 48.40 ± 3.30

ℓ2 0.001 - 52.92 ± 4.66 46.58 ± 5.44
0.01 - 52.92 ± 4.66 46.58 ± 5.44
0.1 - 51.67 ± 5.36 45.96 ± 5.94
1.0 50.10 ± 4.64 44.60 ± 3.98

MHAD2 ℓ1 0.001 - 41.56 ± 6.21 30.05 ± 8.18
0.01 - 41.56 ± 6.21 30.05 ± 8.18
0.1 42.29 ± 4.07 30.05 ± 8.18
1.0 38.75 ± 1.91 26.05 ± 3.45

ℓ2 0.1 - 29.36 ± 2.29 26.63 ± 2.12
0.001 28.05 ± 1.64 25.25 ± 1.66
0.01 28.05 ± 1.64 25.25 ± 1.66
1.0 27.68 ± 1.84 25.03 ± 1.78

MHAD1 ℓ1 0.001 - 16.09 ± 1.23 9.28 ± 1.39
0.01 16.09 ± 1.23 9.28 ± 1.39
0.1 15.24 ± 1.23 7.66 ± 1.70
1.0 15.51 ± 1.16 8.31 ± 1.52

tive in specific scenarios, especially those involving large and well-structured datasets. Nonetheless,
such cases were infrequent, reaffirming the general efficacy of RIP across models and datasets.

RIP Outperforms Traditional Regularization In most scenarios, RIP delivered substantial per-
formance gains over traditional regularization techniques. For example, on the MHEALTH dataset
with the TS-Classifier, RIP improved the F1-score by approximately 50 percentage points and accu-
racy by around 30% compared to the best ℓ1 configuration. In the case of MHAD2, RIP enhanced
performance in 13 out of 16 configurations, while traditional regularization methods showed no im-
provement. Furthermore, on datasets such as USCHAD and MHEALTH, traditional regularization
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Table 22: Regularization in Real Datasets.
Model Dataset Protocol Rate (γ, i) Acc F1

ℓ1 0.001 - 82.36±6.46 80.62± 6.21
WISDM ℓ2 0.001 - 80.51±4.93 74.78± 7.45

ℓ1 0.001 - 34.11 ± 7.97 20.82 ± 3.44
TS-Classifier WHARF ℓ2 0.01 - 32.17 ± 8.85 18.33 ± 4.96

ℓ1 0.001 - 30.47 ± 1.66 22.54 ±1.15
MHEALTH ℓ2 0.001 - 31.31 ± 3.40 22.46 ± 3.96

ℓ1 0.001 - 30.47 ± 1.66 22.64 ± 1.15
MHAD2 ℓ2 0.001 - 31.31 ± 3.40 23.26 ± 3.96

ℓ1 0.001 - 18.98 ± 1.34 13.79 ±1.55
MHAD1 ℓ2 0.001 - 20.10 ± 2.11 15.10 ± 2.45

ℓ1 0.001 - 96.94 ± 0.26 95.56 ± 0.37
WISDM ℓ2 0.01 - 93.91 ± 0.46 91.29 ± 0.64

ℓ1 1 - 78.38 ±2.48 70.44 ± 2.61
DClassifier WHARF ℓ2 0.001 - 68.23 ± 1.75 52.96 ± 3.36

ℓ1 0.01 - 91.78 ± 0.94 91.64 ± 1.30
MHEALTH ℓ2 0.1 - 85.55 ± 1.54 80.82 ± 3.06

ℓ1 0.1 - 52.75 ± 1.59 50.89 ± 1.34
MHAD2 ℓ2 0.01 - 15.55 ± 1.40 6.96 ± 1.22

ℓ1 0.01 - 69.27 ± 2.30 62.04 ± 3.11
MHAD1 ℓ2 0.001 - 55.00 ± 5.09 43.87 ± 6.68

consistently degraded performance, leading to up to 40 percentage points reductions, whereas RIP
improved both accuracy and F1-score across all tested configurations. These consistent gains across
diverse datasets with varying levels of complexity underscore the robustness and broad applicability
of RIP as an effective regularization strategy.

Generalization Across Architectures One of the most promising aspects of RIP is its ability to
generalize across different model architectures. When applied to both TS-Classifier and DClassifier,
RIP proved effective across various configurations (e.g., other values of γ and i), demonstrating flex-
ibility in both tuning and deployment. Although its impact was more pronounced in TS-Classifier,
the consistent improvements observed with DClassifier indicate that RIP adapts well to different ar-
chitectures while maintaining its effectiveness. This versatility is particularly valuable in scenarios
where traditional regularization techniques fail, offering a robust alternative that does not rely on
architecture-specific or loss-based adjustments.

F.1.2 SYNTHETIC VS. REAL DATA

Across all datasets and scenarios, constant data augmentation consistently outperformed both ℓ1 and
ℓ2 regularization techniques. Even in cases where performance gains were marginal, constant data
never degraded the model’s baseline performance (unlike regularization), highlighting its effective-
ness and reliability as a strategy to enhance synthetic data quality in Human Activity Recognition
(HAR) tasks. RIP proved a reliable and adaptable technique, delivering consistent performance im-
provements across all tested datasets and configurations. Unlike standard regularization methods,
RIP can boost weak baselines, preserve strong ones, and maintain robustness across data variations,
making it a strong candidate for general-purpose regularization in deep learning pipelines.

The following discussion analyzes the outcomes reported in Table 22. Due to the breadth of results
and potential analyses, our discussion emphasizes the key patterns and takeaways.

F.2 GENERAL TIME-SERIES DATA RESULTS

We extended the previous experiments conducted on wearable sensor data to more general time-
series datasets. The models employed focused on time-series classification, including TSBF, TSRF,
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and TS-Classifier. The only exception was D-Classifier, which is specific to HAR. We retained it for
consistency with prior experiments.

Specifically, we evaluated the following datasets: the Hydraulic dataset Helwig et al. (2015), which
comprises non-wearable sensor data used for predictive maintenance in hydraulic systems; the Eye
dataset Roesler (2013), containing 14 EEG-derived features used to detect eye states; and the Occu-
pancy dataset Candanedo (2016), composed of 14 environmental sensor features aimed at determin-
ing room occupancy. Since identifying the best generative models for each dataset lies beyond the
scope of this study, we restricted our experiments to constant data augmentation within the TRTR
protocol.

All datasets were preprocessed following the same methodology as in the main experiments. We
applied a 10-fold stratified cross-validation split with 90% of the data for training and 10% for
testing. Each dataset was segmented using the SNOW method, with fixed-length windows of 50
time steps and 50% overlap. This window size was selected based on preliminary validation: among
a randomly selected dataset, TSBF (our best-performing model overall) achieved its baseline using
this configuration.

We explored the same range of hyperparameters as in the main experiments, testing γ ∈ 0, 1,−1, 5
and i ∈ 1, 5, 16, 32. Table 23 presents only the best-performing configuration for each experiment.

Dataset Model Setup F1
Baseline 45.83 ± 3.74

TSBF (γ = 1, i = 5) 47.77 ± 6.65
Baseline 55.49 ± 5.68

TSRF (γ = 1, i = 1) 57.22 ± 4.84
Eye Baseline 34.73 ± 2.84

DClassifier (γ = −1, i = 16) 35.17 ± 2.74
Baseline 37.60 ± 5.45

TS-Classifier (γ = 0, i = 5) 37.18 ± 6.11
Baseline 72.00 ±1.97

TSBF (γ = 1, i = 16) 72.04 ± 1.68
Baseline 75.69 ± 1.68

TSRF (γ = 1, i = 5) 75.60 ± 1.92
Haydraulic Baseline 14.31 ± 0.15

DClassifier (γ = 1, i = 1) 13.43 ± 0.03
Baseline 36.42 ± 2.70

TS-Classifier (γ = −1, i = 5) 14.13 ± 2.36
Baseline 87.53 ± 1.73

TSBF (γ = 1, i = 5) 87.49 ±1.74
Baseline 12.74 ± 1.21

Occupancy DClassifier (γ = −1, i = 1) 10.46 ± 2.11
Baseline 15.61 ± 2.54

TS-Classifier (γ = 1, i = 1) 20.74 ± 3.87

Table 23: Experiments with general time-series data

Table 23 presents the results of extending RIP to non-wearable time-series datasets. Overall, the
impact of RIP in these settings was less pronounced compared to the wearable-focused datasets,
with mixed outcomes depending on the dataset and model architecture.

For the Eye dataset, marginal improvements were observed with the TSBF and TSRF models.
Specifically, TSBF slightly increased the F1 score from 45.83% to 47.77%, and TSRF from 55.49%
to 57.22%. While these gains suggest a potential benefit from CAR, the overlapping standard devi-
ations indicate that the improvements may not be statistically significant. Conversely, D-Classifier
and TS-Classifier exhibited minimal to no improvements, suggesting limited effectiveness of RIP
for these models in this dataset.

In the Hydraulic dataset, RIP yielded performance nearly identical to the baseline for TSBF and
TSRF, with negligible changes. Notably, TS-Classifier experienced a substantial decrease in perfor-
mance, from 36.42% to 14.13%, indicating that RIP may negatively impact models when the signal
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characteristics deviate substantially from those typically found in wearable sensor data. D-Classifier
also slightly underperformed in this setting when RIP was applied.

The Occupancy dataset produced mixed results. TSBF and D-Classifier matched or slightly un-
derperformed relative to the baseline. Interestingly, TS-Classifier showed a notable improvement
in F1 score, rising from 15.61% to 20.74%, suggesting that RIP can still offer benefits in specific
scenarios, even outside wearable contexts. However, this improvement appears both dataset- and
model-specific, limiting its generalizability.

These findings indicate that while RIP may retain some utility in general time-series scenarios, its
effectiveness is considerably more evident in datasets derived from wearable sensors. Its applicabil-
ity to non-wearable domains appears to be limited and highly dependent on the nature of the data
and the model used. This supports the view that RIP is most suitable as a regularization method
tailored to wearable sensor applications.

F.3 TABULAR DATA RESULTS

To perform experiments using tabular data, we considered nine datasets: Absenteeism Martiniano &
Ferreira (2018), Bank Moro et al. (2012), Diabetes Kahn, Glass German (1987), Iris Fisher (1988),
Wine Quality Cortez et al. (2009) (comprising both white and red wine), and Sonar Rossi & Ahmed
(2015). Further details on the datasets are provided in the Appendix.

We employed six classifiers: Decision Tree (DTree), Dummy, K-Nearest Neighbors (KNN), Multi-
Layer Perceptron (MLP), Support Vector Machine (SVM), and Stochastic Gradient Descent (SGD).
The goal was to experimentally evaluate whether the proposed RIP technique positively affects
classifier performance when applied to tabular data.

We assessed the technique using only real datasets, as generating synthetic data would require ad-
ditional effort to determine the best-performing generative model, an objective beyond the scope of
this work.

Initially, we tested the same γ values used in previous experiments; however, they did not produce
any variation from the baseline. Therefore, we conducted an Exploratory Data Analysis (EDA) on
each dataset and adjusted the constant distributions accordingly. As a result, different values were
tested for each dataset. Since RIP did not affect all datasets, we only report those where it had some
measurable impact.

Figure 4: F1-scores per model for the Student, Wine Quality, White Wine, and Bank datasets. The
x-axis displays the models, while the y-axis shows the corresponding F1-scores. Each bar represents
a different data distribution, distinguished by color and identified in the legend located to the left of
the figure. The label ”Avg” corresponds to the average of the features for the respective dataset.

Figure 4 reveals that although effective in some sensor-based and time-series contexts, this tech-
nique does not generalize as easily to structured tabular data. Our experiments with datasets such
as Bank, White Wine Quality, and Student show that most classifiers either maintained or experi-
enced a decline in performance when trained with constant-value data augmentations. Particularly,
Dummy classifiers consistently underperformed with RIP across all datasets and distributions, rein-
forcing that naı̈ve models are not robust to even minor changes in data structure. More importantly,

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Table 24: DClassifier -synthetic
acc recall f1 epsilon method

45.38 ± 2.83 44.03 ± 3.20 41.80 ± 4.05 0.1 cutmix
44.04 ± 3.85 42.41 ± 4.03 40.25 ± 4.62 0.3 cutmix
44.93 ± 3.21 43.07 ± 3.62 40.86 ± 4.68 0.2 cutmix
31.58 ± 3.28 31.09 ± 2.86 24.90 ± 3.61 0.2 dro
32.70 ± 4.71 32.65 ± 4.38 26.88 ± 4.99 0.3 dro
29.94 ± 2.77 29.28 ± 2.60 22.85 ± 2.85 0.1 dro
39.67 ± 6.03 36.69 ± 7.16 32.02 ± 9.51 0.2 mixup
39.78 ± 6.23 36.78 ± 7.33 31.79 ± 9.28 0.3 mixup
39.88 ± 6.14 37.01 ± 7.26 32.33 ± 9.63 0.1 mixup

SVM and MLP, typically more sensitive to data distribution changes, showed degraded F1 scores
in several cases. While SGD exhibited more stable behavior, its performance was still unable to
exceed the baseline in most settings. These findings suggest that RIP does not serve as a universal
regularization strategy for tabular data, likely due to the structured and often low-dimensional nature
of such datasets.

Although RIP can be applied to tabular datasets, its benefits are limited and highly context-
dependent. Nonetheless, its application should be critically evaluated case-by-case, especially when
dealing with classifiers sensitive to distributional changes.

F.4 CUTMIX, MIXUP AND DRO

Our literature review found a notable lack of research focusing on regularization or domain general-
ization for Human Activity Recognition (HAR). The closest related work is ?, which applied Mixup
and Distributionally Robust Optimization (DRO) to accelerometer-based HAR. This direction aligns
with our goal of enhancing model robustness.

While our proposed method (RIP) and DRO are not direct competitors, they aim to solve the same
problem: robustness to shifts in data distribution. However, they operate in fundamentally different
ways. DRO is an optimization-based approach that modifies the loss function to minimize perfor-
mance on a worst-case distribution from a defined uncertainty set. Given that DRO is one of the
few approaches specifically explored for robustness in the HAR literature, we deemed it an essential
benchmark for our experiments.

The work by ? also leverages techniques like Mixup and Cutmix, data augmentation, and regular-
ization methods proven highly effective in computer vision. Their main objective is to create new,
synthetic training examples from existing data, forcing the model to learn more robust representa-
tions and generalize better, thereby preventing overfitting. Their adaptation to time series follows
the same logic as in computer vision:

• Mixup creates a new training sample by combining two existing samples through a
weighted linear interpolation.

• Cutmix creates a new training sample by cutting a temporal segment from one example
and pasting it onto another.

Instead of operating on pixels and regions of a 2D image, these methods are applied to timesteps
and segments of a 1D signal.

The source code for our implementation and experiments is publicly available on our GitHub repos-
itory. These comparison experiments were conducted exclusively on the DClassifier based on previ-
ous results. We used the MHAD2 dataset to ensure consistency with our supplementary experiments.
Tables 24 and ?? show the full results. The comments are available in the main paper.
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Table 25: D-Classifier - real
acc recall f1 epsilon method

63.10 ± 1.18 62.26 ± 1.37 62.03 ± 1.47 0.1 cutmix
58.29 ± 1.79 57.19 ± 1.88 57.33 ± 2.26 0.3 cutmix
60.78 ± 0.75 59.50 ± 0.76 59.85 ± 0.89 0.2 cutmix
40.36 ± 3.81 39.13 ± 4.28 34.73 ± 4.32 0.2 dro
45.75 ± 2.08 43.44 ± 2.34 38.91 ± 2.76 0.3 dro
33.88 ± 3.00 31.80 ± 3.09 25.93 ± 4.09 0.1 dro
44.31 ± 10.62 41.71 ± 11.80 36.68 ± 13.98 0.2 mixup
46.49 ± 9.79 44.38 ± 10.82 39.71 ± 12.76 0.3 mixup
39.98 ± 12.17 36.95 ± 13.48 30.89 ± 16.12 0.1 mixup

??

G ABLATIONS

In this section, we conduct ablation studies to evaluate the most sensitive components of our pro-
posed method. These analyses aim to clarify our methodological choices and justify the effective-
ness of the approach when the protocol is followed rigorously. We do not focus here on evaluating
specific values of γ, i, or dataset-specific behaviors, as these aspects have already been thoroughly
discussed in the Results and Discussion sections, where their individual effects on performance were
highlighted.

Our method is grounded in the principle of effectively training models using synthetic data by nar-
rowing the domain gap through domain randomization, as proposed by Tremblay et al. (2018)
Tremblay et al. (2018). That study demonstrated that injecting random backgrounds into synthetic
images helped models focus on the relevant features (e.g., cars) by reducing their sensitivity to irrel-
evant details (e.g., backgrounds). Drawing inspiration from this, our RIP technique aims to construct
a modular textual representation that directs the model’s attention to semantically relevant informa-
tion for classification. This is achieved by embedding the target signal within constant distributions
defined by preselected γ values, effectively ”framing” the informative region of the input, much
like a picture frame draws focus to the subject within an image. From this central idea, the key
components of our approach were developed.

To further clarify the impact of these components, we conducted the following additional experi-
ments:

1. We assessed RIP in σ = (γ, ĩ,MHAD2,DClassifier) with γ ∈ {0, 1} and ĩ = 1
2 i such

i ∈ {1, 5, 16, 32}.
2. Instead of keeping γ invariant across the entire shape (ω, 3), we replaced it with a random

distribution D of the same shape (ω, 3), under different value constraints. These values
were randomly assigned while preserving the shape of the default temporal window. We
evaluated the following configurations:

• D = rand(): random values without any range restriction.
• D = rand(0, 4): random values in the range [0,4].
• D = rand(0, 1): random values in the range [0,1].
• D = Dup(xi), where Dup corresponds to make i duplicates of the sample xi, for all
i ∈ len(D).
For these experiments, we have a setting σ̃ = (D, i, MHAD2, DClassifier).

To assist interpretation of the results, the column labeled γ is filled only when constant values are
used, while the column D is filled only when random distributions are applied. The rows labeled
Baseline and TSTR correspond to training using the standard synthetic dataset without RIP and
serve as reference points for improvement. Since these experiments use only the synthetic MHAD2
dataset, these baselines are specific to that dataset. A table with baseline results from synthetic and
real datasets for each benchmark is available in the ??. The column Experiment ID refers to the
experiment numbers listed above.
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Experiment ID. γ D i F1
Baseline - - - 50.80±5.36

- 1 45.64±5.80 ↓
0 - 5 49.42±3.36 ↓

- 16 49.42±3.36 ↓
1. - 32 48.63±3.27 ↓

- 1 48.54±4.09 ↓
1 - 5 52.77±3.97 ↑

- 16 49.42±3.36 ↓
- 32 48.63±3.27 ↓

- rand() 1 45.76±5.92↓
- 5 48.83±6.03↓
- 16 50.67±5.59↓
- 32 49.08±3.54 ↓
- rand(0,4) 1 48.54±4.09 ↓
- 5 52.74±3.97 ↑
- 16 49.45±5.50 ↓
- 32 49.79±3.68 ↓

2. - rand(0,1) 1 45.64±5.80 ↓
- 5 49.42±3.36 ↓
- 16 51.67±4.30 ↑
- 32 48.63±3.27 ↓
- 1 50.69±6.00 ↓
- Dup(x) 5 52.43±4.50 ↑
- 16 50.06±4.61 ↓
- 32 50.07±5.26 ↓

Table 26: Ablation experiments.

Are simple data copies sufficient? Not quite. Table 26 highlights the limitations of this approach.
While the best result using direct duplication was achieved with i = 5 (replicating each original
window five times), the observed improvement over the synthetic baseline (TSTR) remains marginal
and falls within the range of standard deviation. This suggests that the gain is not statistically
significant. Moreover, increasing the duplication factor beyond this point (e.g., i = 16 or i = 32)
does not enhance performance and, in some cases, slightly degrades it.

This outcome is likely attributed to overfitting. Repeating identical samples increases the likelihood
that the model memorizes specific training patterns instead of learning generalizable representations.
This issue is particularly critical in time-series data, where minor variations in temporal dynamics
often encode important information for classification. Duplication fails to introduce such variations,
potentially biasing the model toward narrow and overconfident hypotheses.

Is i as a duplication factor necessary? Yes. Setting ĩ =
1

2
i, which implies using only a single

copy when i = 1, results in a RIP structure of the form γi,j , xi,j , γi,j , as opposed to the full con-
figuration γi,j , γi,j , xi,j , γi,j , γi,j . This minimal configuration performs worse than the synthetic
baseline, as shown in Table 26. In contrast, incorporating duplication yields improvements of up
to 4 percentage points in F1 score (see Figure ??). For example, with the DClassifier model on the
MHAD2 dataset using the full RIP setup, the F1 score reaches 55%, significantly narrowing the gap
with the model trained on real data. Without duplication, such improvement does not occur; on the
contrary, the performance gap increases.

An additional observation is that even without duplication, increasing the value of i still leads to per-
formance gains. We hypothesize that this is due to a ”widening” of the contextual frame, which fur-
ther emphasizes the central input window and helps the model focus on relevant features. However,
this effect alone does not match the benefits achieved through duplication. This may be because the
surrounding synthetic context, without sufficient repetition, remains too weak to steer the model’s
attention and enhance generalization reliably.
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Is using a random distribution instead of a constant one sufficient? No. While the configura-
tion with γ = rnd(0, 4) and i = 5 yielded the best performance among the randomized setups, this
improvement is not statistically significant. The maximum value obtained (mean plus one standard
deviation) only matches the best result from the baseline, rather than surpassing it. All other con-
figurations failed to reach baseline performance, leading to degradation in results in most cases. We
attribute this behavior to the model’s difficulty in distinguishing non-stationary, randomly generated
distributions from meaningful temporal patterns. This confusion hinders the model’s ability to learn
accurate representations and, therefore, to generalize effectively. Synthetic data often omits parts of
the true data distribution, focusing disproportionately on specific aspects Shumailov et al. (2024).
When random, non-stationary distributions are added, they may inadvertently resemble patterns be-
longing to other classes, leading the model to form misleading associations. As a result, rather than
enhancing robustness, this strategy tends to compromise the model’s generalization ability.

We also conducted additional experiments using RIP without adhering to the required or-
dering of γi,j , γi,j , xi,j , γi,j , γi,j for γ. Specifically, we tested configurations where σ =
(γ, i,MHAD2,DClassifier) with γ = Avg(features) and i ∈ 1, 5, 16, 32. Furthermore, we explored
using non-integer values for γ under the same setting.

Given that the results from these experiments were substantially lower than expected, we opted not
to include them in the main paper. When the required sequence was not followed, performance
deteriorated significantly, indicating that simply appending constant distributions in an unstructured
manner can mislead the model. This is particularly problematic when the class labels remain un-
changed, potentially causing the model to associate unrelated patterns with a specific class.

Similarly, non-integer values for γ, such as the average feature values, did not yield meaning-
ful improvements. The performance was indistinguishable from or worse than the baseline in
several cases. A comparable trend was also observed in experiments involving real data, where
γ = Avg(features) failed to produce any noticeable performance gain. These results reinforce the
importance of both the structure and the design of the contextual frame in RIP for achieving effective
model training.
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