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A CODE RELEASE

We plan to make the code for Segmentation Dreamer publicly available upon acceptance.

B VISUALIZATION OF TASKS

B.1 DEEPMIND CONTROL SUITE (DMC)

Fig. 6 visualizes the six tasks in DMC (Tassa et al., 2018) used in our experiments. Each row
presents the observation from the standard environment, the corresponding observation with added
distractions, the ground-truth segmentation mask, and the RGB target with the ground-truth mask
applied. Cartpole Swingup Sparse and Cartpole Swingup share the same embodiment and dynam-
ics. Cartpole Swingup Sparse only provides a reward when the pole is upright, whereas Cartpole
Swingup continuously provides dense rewards weighted by the proximity of the pole to the upright
position. Reacher Easy entails two objects marked with different colors in the segmentation mask,
as shown in Fig. 6e 3rd column. Before passing the mask to SD, the mask is converted to a binary
format where both objects are marked as true as task-relevant.

( a)  Car t pol e Swi ngup

( b)  Car t pol e Swi ngup Spar se

( c)  Cheet ah Run

( d)  Hopper  St and

( e)  Reacher  Easy

( f )  Wal ker  Run

Figure 6: DMC tasks. Left to right: (1) standard environment observations, (2) distracting environ-
ment observations, (3) ground-truth segmentation masks, and (4) RGB observations with ground-
truth masks applied. We use (4) as auxiliary reconstruction targets in SDGT.
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B.2 META-WORLD

Fig. 7 shows the six tasks from Meta-World-V2 used in our experiments. Meta-World is a realistic
robotic manipulation benchmark with challenges such as multi-object interactions, small objects,
and occlusions.

( a)  Cof f ee- But t on- V2

( b)  Dr awer - Cl ose- V2

( c)  Handl e- Pr ess- V2

( d)  But t on- Pr ess- Topdown- V2

( e)  Door - Open- V2

( f )  Dr awer - Open- V2

Figure 7: Meta-World tasks. Left to right: (1) standard environment observations, (2) distracting
environment observations, (3) ground-truth segmentation masks, and (4) RGB observations with
ground-truth masks applied. We use (4) as auxiliary reconstruction targets in SDGT. Masks with
multiple classes for different objects are converted to binary masks (all non-background regions are
true and task-relevant) before use with SD.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

C THE IMPACT OF PRIOR KNOWLEDGE

We investigate the impact of accurate prior knowledge of task-relevant objects. Specifically, we
conduct additional experiments on Cheetah Run—the task showing the largest disparity between
DREAMER* and SDGT in Fig. 3a. In our primary experiment, we designated only the cheetah’s
body as the task-relevant object. However, since the cheetah’s dynamics are influenced by ground
contact, the ground plate should have also been considered task-relevant.

Fig. 8 (a–c) illustrates the observation with distractions, the auxiliary target without the ground plate,
and with the ground plate included, respectively. Fig. 8d compares SDGT trained with different
selections of task-relevant objects included in the masked RGB reconstruction targets. We show
that including the ground plate leads to faster learning and performance closer to that of the oracle.
This highlights the significant influence of prior knowledge on downstream tasks, suggesting that
comprehensively including task-relevant objects yields greater benefits.

( b)  Tar get  w/  
Gr ound- Tr ut h w/ o 

Gr ound Pl at e Appl i ed

( a)  Obser vat i on 
I nput

( c)  Tar get  w/  
Gr ound- Tr ut h w/

 Gr ound Pl at e Appl i ed

( d)  Eval uat i on Ret ur n of  SDGT wi t h 
Di f f er ent  Pr i or  Knowl edge 

Figure 8: The impact of prior knowledge on Cheetah Run. (d) The mean over 4 seeds with the
standard error of the mean (SEM) is shaded.
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D THE IMPACT OF TEST-TIME SEGMENTATION QUALITY ON PERFORMANCE

We investigate how test-time segmentation quality affects SDapprox. as well as the As Input variation
that applies mask predictions to RGB inputs in addition to reconstruction targets. For this analysis,
we use PerSAM fine-tuned with a single data point for segmentation prediction. To measure seg-
mentation quality, we compute episodic segmentation quality by averaging over frame-level IoU.
In Fig. 9 we plot episode segmentation quality versus test-time reward on the evaluation episodes
during the last 10% of training time.

Fig. 9 illustrates that SDapprox. exhibits greater robustness to test-time segmentation quality com-
pared to the As Input variation, with the discrepancy increasing as the IoU decreases. This dispar-
ity primarily arises because As Input relies on observations restricted by segmentation predictions,
and thus its performance deteriorates quickly as the segmentation quality decreases. In contrast,
SDapprox. takes the original observation as input and all feature extraction is handled by the obser-
vation encoder, informed by our masked RGB reconstruction objective. Consequently, SDapprox.

maintains resilience to test-time segmentation quality.

An intriguing observation is that a poorly trained agent can lead to poor test-time segmentation
quality. For instance, Cartpole Swingup (Sparse) exhibits different segmentation quality distribu-
tions between SDapprox. and As Input. This discrepancy occurs because the sub-optimal agent often
positions the pole at the cart track edge, causing occlusion and hindering accurate segmentation
prediction by PerSAM.

Figure 9: Test-time episodic reward vs PerSAM episodic IoU for SDPerSAM
1

and As Input (SDPerSAM
1

with masked RGB observations as input). SDPerSAM
1

is more robust to test-time segmentation pre-
diction errors.
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E ABLATION WITHOUT STOP GRADIENT

Should the SDapprox. world model be shielded from gradients of the binary mask decoder head?
To estimate potential regions on RGB targets where task-relevant regions are incorrectly masked
out, we train a binary mask prediction head on the world model to help detect false negatives in
masks provided by the foundation model. We see better performance when gradients from this bi-
nary mask decoder objective are not propagated to the rest of the world model. Thus, the default
SDapprox. architecture is trained with the gradients of the binary mask branch stopped at its [ht; zt]
inputs, and the latent representations in the world model are trained only by the task-relevant RGB
branch in addition to the standard DREAMER reward/continue prediction and KL-divergence be-
tween the dynamics prior and observation encoder posterior. Tab. 2 shows that the performance
drops significantly when training without stopping these gradients.

We also examine masks predicted by the binary mask decoder head in Fig. 10. Predictions are
coarser grained than their RGB counterparts, lacking details important for predicting intricate
forward dynamics. Overall, reconstructing RGB observations with task-relevance masks applied
demonstrates itself as a superior inductive bias to learn useful features for downstream tasks com-
pared to binary masks or raw unfiltered RGB observations.

Table 2: Final performance of SD and SD without stop gradient.

Task SDPerSAM
1

No SG

Cartpole Swingup 730 ± 75 439 ± 81
Cartpole Swingup Sparse 521 ± 92 112 ± 40
Cheetah Run 619 ± 35 376 ± 50
Hopper Stand 846 ± 27 587 ± 127
Reacher Easy 597 ± 97 273 ± 74
Walker Run 730 ± 13 407 ± 62

( a)  Car t pol e Swi ngup ( b)  Car t pol e Swi ngup Spar se

( c)  Cheet ah Run ( d)  Hopper  St and

( e)  Reacher  Easy ( f )  Wal ker  Run

Figure 10: From the top row to the bottom row: (1) ground-truth segmentation masks, (2) SDapprox.

binary mask predictions, and (3) SDapprox. RGB predictions.
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F DISTRACTING DMC SETUP

We follow the DBC (Zhang et al., 2021) implementation to replace the background with color
videos. The ground plate is also presented in the distracting environment. We used hold-out videos
as background for testing. We sampled 100 videos for training from the Kinetics 400 training set of
the ’driving car’ class, and test-time videos were sampled from the validation set of the same class.

G DISTRACTING META-WORLD SETUP

We test on six tasks from Meta-World-V2. For all tasks, we use the corner3 camera viewpoint.
The maximum episode length for Meta-World tasks is 500 environment steps, with the action re-
peat of 2 (making 250 policy decision steps). We classify these tasks into easy, medium, and
difficult categories based on the training curve of DREAMER* (DREAMER trained in the stan-
dard environments). Coffee Button, Drawer Close, and Handle Press are classified as easy, and we
train baselines on these for 30K environment steps. Button Press Topdown (medium) is trained for
100K steps, and Door Open and Drawer Open (difficult) are trained for 1M environment steps.

H RESULTS ON META-WORLD WITH SPARSE REWARDS

We also evaluate on sparse reward variations of the distracting Meta-World environments where
a reward of 1 is only provided on timesteps when a success signal is given by the environment
(e.g. objects are at their goal configuration). Rewards are 0 in all other timesteps. The maximum
attainable episode reward is 250.

The sparse reward setting is more challenging because the less informative reward signal makes
credit assignment more difficult for the RL agent. Fig. 11 shows that our method consistently
achieves higher sample efficiency and better performance, showing promise for training agents
robust to visual distractions without extensive reward engineering. In Meta-World experiments,
TIA (Fu et al., 2021) is not included as it requires exhaustive hyperparameter tuning for new do-
mains and is the lowest-performing method in DMC in general.

Figure 11: Learning curves on six visual robotic manipulation tasks from Meta-World with sparse
rewards.
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I FINE-TUNING PERSAM AND SEGFORMER

In this section, we describe how we fine-tune segmentation models and collect RGB and segmenta-
tion mask examples to adapt them.

PerSAM. Personalized SAM (PerSAM) (Zhang et al., 2023) is a segmentation model designed
for personalized object segmentation building upon the Segment Anything Model (SAM) (Kirillov
et al., 2023). This model is particularly a good fit for our SD use case since it can obtain a person-
alized segmentation model without additional training by one-shot adapting to a single in-domain
image. In our experiments, we use the model with ViT-T as a backbone.

SegFormer. We use 5 or 10 pairs of examples to fine-tune SegFormer (Xie et al., 2021) MiT-b0.

To collect a one-shot in-domain RGB image and mask example for DMC and MetaWorld exper-
iments, we sample a state from the initial distribution p0 and render the RGB observation. In a
few-shot scenario, we deploy a random agent in to collect more diverse observations from more
diverse states.

To generate the associated masks for these states, we make additional queries to the simulation
rendering API. We represent the pixel values for background and irrelevant objects as false and
task-relevant objects as true. In multi-object cases, we may perform a separate adaptation operation
for each task-relevant object, resulting in more than 2 mask classes. In such cases, before integrating
masks with SDapprox., we will combine the union of the mask classes for all pertinent objects as a
single true task-relevant class, creating a binary segmentation mask compatible with our method.

In cases where example masks cannot be programmatically extracted, because such a small number
of examples are required (1-10), it should also be very feasible for a human to use software to
manually annotate the needed mask examples from collected RGB images.

J DETAILS ON SELECTIVE L2 LOSS

The binary mask prediction branch in SDapprox. is equipped with the sigmoid layer at its output. In
order to obtain binary maskSD, we binarize the SD binary mask prediction with a threshold of 0.9.

K DETAILS ON BASELINES

It is known that RePo (Zhu et al., 2023) outperforms many earlier works (Fu et al., 2021; Hansen
et al., 2022; Zhang et al., 2021; Wang et al., 2022; Gelada et al., 2019) and that DreamerPro (Deng
et al., 2022) surpasses TPC (Nguyen et al., 2021). However, theses two groups of works have been
using slightly different environment setups and have not been compared with each other despite
addressing the same high-level problem on the same DMC environments. In our experiments, we
evaluate the representatives in each cluster on a common ground (See Appendix F) and compare
them with our method.

In our experiments, we use hyperparameters used in the original papers for all the baselines, ex-
cept RePo (Zhu et al., 2023) in Meta-World. RePo does not have experiments on Meta-World in
which case we use hyperparameters used for Maniskill2 (Gu et al., 2023) which is another robot
manipulation benchmark.

L EXTENDED RELATED WORK

There are several model-based RL approaches which introduce new auxiliary tasks. Dynalang (Lin
et al., 2024) integrates language modeling as a self-supervised learning objective in world-model
training. It shows impressive performance on benchmarks where the dynamics can be effectively
described in natural language. However, it is not trivial to apply this method in low-level control sce-
narios such as locomotion control in DMC. Informed POMDP (Lambrechts et al., 2024) introduces
an information decoder which uses priviledged simulator information to decode a sufficient statistic
for optimal control. This shares an idea of using additional information available at training time
with our method SDGT. Although this can be effective on training in simulation where well-shaped
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proprioceptive states exist, it cannot be applied to cases where such information is hard to obtain. In
goal-conditioned RL, GAP (Nair et al., 2020) proposed to decode the difference between the future
state and the goal state to help learn goal-relevant features in the state space.

M LIMITATIONS

Segmentation Dreamer achieves excellent performance across diverse tasks in the presence of dis-
tractions and provides a human interface to indicate task relevance. This capability enables prac-
titioners to readily train an agent for their specific purposes without suffering from poor learning
performance due to visual distractions. However, there are several limitations to consider.

First, since SDapprox. harnesses a segmentation model, it can become confused when a scene contains
distractor objects that resemble task-relevant objects. This challenge can be mitigated by combining
our method with approaches such as InfoPower (Bharadhwaj et al., 2022), which learns control-
lable representations through empowerment (Mohamed & Jimenez Rezende, 2015). This integra-
tion would help distinguish controllable task-relevant objects from those with similar appearances
but move without agent interaction.

Second, our method does not explicitly address randomization in the visual appearance of task-

relevant objects, such as variations in brightness, illumination, or color. Two observations of the
same internal state but with differently colored task-relevant objects may be guided toward differ-
ent latent representations because our task-relevant ”pixel-value” reconstruction loss forces them to
be differentiated. Ideally, these observations should map to the same state abstraction since they
exhibit similar behaviors in terms of the downstream task. Given that training with pixel-value
perturbations on task-relevant objects is easier compared to dealing with dominating background
distractors (Stone et al., 2021), our method is expected to manage such perturbations effectively
without modifications. However, augmenting our approach with additional auxiliary tasks based on
behavior similarity (Zhang et al., 2021) would further enhance representation learning and directly
address this issue.

Finally, our approximation model faces scalability challenges when task-relevant objects constitute
an open set. For instance, in autonomous driving scenarios, obstacles are task-relevant but cannot
be explicitly specified. While our method serves as an effective solution when task-relevant objects
are easily identifiable, complementary approaches should be considered when this assumption does
not hold true.
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