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A: Comparing computation time of ML-MotEx with a 'brute-force’ approach 
 

 Brute-force 
time (s) 

XGBoost model 
time (s) / rmse (%) 

(CH3)4N)4SiW12O401 1215 0.14 / 0.010 
[Hpy]4H2[H2W12O40] (py = pyridine)2 3376 0.11 / 0.026 

(((CH3)2NH2)6 
(Cu(HCON(CH3)2)4)(GeW12O40)2)(HCON(CH3)2)23 2300 0.12 / 0.032  

((CH3)2NH2)3(PW12O40)4 3983 0.14 / 0.023 
 
Table S1 | The XGBoost model is significantly faster than a ‘brute-force’ approach while providing high 
accuracy of the predicted goodness-of-fit values. Here a MacBook Pro with 2.3 GHz Dual-Core Intel Core 
i5 processor is used to do 10,000 fits on motifs extracted from four different structures. The goodness-of-fit 
values, Rwp, and structure catalogue generated are used to train a XGBoost model which is significantly faster, 
~10.000-times, while obtaining high accuracy, 0.023 % root-mean-squared-error (rmse).  
 
Calculating how long time it would take to fit all the possible structure motifs using the brute-force approach: 
 
In order to calculate the overall time, t, that it takes to fit all the structure motifs that can be generated from a 
starting model containing N atoms, we use the formula: 

𝑡 = #𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒	𝑚𝑜𝑡𝑖𝑓𝑠	 ∙ 𝑓𝑖𝑡𝑡𝑖𝑛𝑔	𝑡𝑖𝑚𝑒 = 2!"# ∙ 𝑓𝑖𝑡𝑡𝑖𝑛𝑔	𝑡𝑖𝑚𝑒 
 
(CH3)4N)4SiW12O401 – 24 atoms – 1215 s / 10.000 fits. 

𝑡 = 	 (2$% − 1) ∙
1215
10000 = 2038432	s = 	23.6	days 

[Hpy]4H2[H2W12O40] (py = pyridine)2 – 48 atoms – 3376 s / 10.000 fits. 

𝑡 = 	 (2%& − 1) ∙
3376
10000 = 28147497671	s = 	3011191	years 

(((CH3)2NH2)6 (Cu(HCON(CH3)2)4)(GeW12O40)2)(HCON(CH3)2)23 – 48 atoms – 2300 s / 10.000 fits. 

𝑡 = 	 (2%& − 1) ∙
2300
10000 = 64739244643451	s = 	2051463	years 

((CH3)2NH2)3(PW12O40)4 – 72 atoms – 3983 s / 10.000 fits. 

𝑡 = 	 (2'$ − 1) ∙
3983
10000 = 1.88091857012698e21	s = 	59602712821222	years 

 
 

B: PDF calculation parameters for all the examples provided in the paper 

 
Example 1: 
A single C60 
buckyball 

Example 1: 
A supercell 
made of 1 

unit cells of 
crystalline 

C60 polymer5 

Example 2: 
The 

Mo36O128 
starting 
model 

Example 3: 
A W12O40 

unit 
(data from 

Juelsholt et 
al.)6 

Example 3: 
A W12O40 

unit 
(data 

collected at 
DanMax) 

Example 4: 
A supercell 

made of 
2x2x3 unit 
cells of β-

Bi2O3 
r-range (Å) 0 – 30 0 – 30 3 – 12 1.6 – 10 1.6 – 10 2 – 15 

r-step 0.1 0.1 0.01 0.01 0.01 0.01 
Qmin (Å-1) 0.5 0.5 0.5 1.2 0.7 0.7 
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Qmax (Å-1) 24 24 24 17 20 15.5 
Qdamp (Å-1) 0.02 0.02 0.04 0.04 0.05 0.04 
ADP (Å2) 0.5 0.5 0.3 0.3 0.3 1.35 

Table S2 | PDF calculation parameters for all the examples provided in the paper. Note: the r-step was 
set to 0.01 Å for the data in the plots, but 0.1 Å for some of the simulated data used in the data analysis.  
 
 

C: Visualisation of the ML-MotEx analysis on the simulated PDF data of the C60 buckyball using a 
continuous colorbar 

 
 
Figure S1 | Summary of the ML-MotEx analysis on simulated C60 PDF data. A) Plot of the SHAP values 
obtained in the C60 analysis, showing if atoms in the starting model are favourable for the fit quality.  For the 
models where the atom is not present in the model, the SHAP value is shown in blue, while it is shown in red 
for the atoms where it is present in the model. The SHAP values are plotted as a violin plot. B) Structural 
visualisation where the colorbar indicates the atom contribution value of the atom. 
 

D: SHAP value plots from ML-MotEx utilized on experimental PDF data obtained at DanMAX from 0.05 
M ammonium metatungstate hydrate in water 
Total X-ray scattering data were measured using the RA-PDF7 geometry at DanMAX (MAX IV, Lund) with X-
ray wavelength 0.3542 Å providing a Qmax of 20 Å-1. Both the 0.05 M ammonium metatungstate hydrate solution 
and the water background were transferred to Kapton tubes with an inner diameter of 1.00 mm and data was 
measured for 15 min. The data were integrated using Fit2D8 and PDFs were obtained using xPDFSuite.9 
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Figure S2 | Plot of the SHAP values obtained in the analysis of the PDF measured at MAX IV on 
ammonium metatungstate hydrate. The plot is showing if atoms in the starting model Left) 
[Hpy]4H2[H2W12O40] (py = pyridine),2 Right) (((CH3)2NH2)6 (Cu(HCON(CH3)2)4)(GeW12O40)2)(HCON(CH3)2)2,3 
are favourable for the fit quality.  For the models where the atom is not present in the model, the SHAP value 
is shown in blue, while it is shown in red for the atoms where it is present in the model. The SHAP values are 
plotted as a violin plot. 
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Figure S3 | Plot of the SHAP values obtained in the analysis of the PDF measured at MAX IV on 
ammonium metatungstate hydrate. The plot is showing if atoms in the starting model Left) 
((CH3)2NH2)3(PW12O40).,4 Right) (CH3)4N)4SiW12O40,1 are favourable for the fit quality.  For the models where 
the atom is not present in the model, the SHAP value is shown in blue, while it is shown in red for the atoms 
where it is present in the model. The SHAP values are plotted as a violin plot. 
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Figure S4 | Results from the ML-MotEx method on a PDF from a solution of ammonium metatungstate 
hydrate, using four different starting models: A) [Hpy]4H2[H2W12O40] (py = pyridine),2 B) 
(CH3)4N)4SiW12O40,1 C) (((CH3)2NH2)6 (Cu(HCON(CH3)2)4)(GeW12O40)2)(HCON(CH3)2)2,3 D) 
((CH3)2NH2)3(PW12O40).4 The colorbar indicates the atom contribution value of the atom. The minimum and 
maximum values indicated is the minimum and maximum value used for the colorbar. 

 

E: Using ML-MotEx on experimental PDF data from Juelsholt et al.6 of 0.05 M ammonium 
metatungstate hydrate in water 

 
Figure S5 | Comparison of the data and the simulated data of the four different starting models [1]–[4]. 
The simulation parameters mimic typical values of a PDF dataset and can be seen in Table S1.  
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Figure S6 | Plot of the SHAP values obtained in the analysis of the PDF measured at DESY on 
ammonium metatungstate hydrate. The plot is showing if atoms in the starting model Left) 
[Hpy]4H2[H2W12O40] (py = pyridine),2 Right) (((CH3)2NH2)6 (Cu(HCON(CH3)2)4)(GeW12O40)2)(HCON(CH3)2)2,3 
are favourable for the fit quality.  For the models where the atom is not present in the model, the SHAP value 
is shown in blue, while it is shown in red for the atoms where it is present in the model. The SHAP values are 
plotted as a violin plot. 
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Figure S7 | Plot of the SHAP values obtained in the analysis of the PDF measured at DESY on 
ammonium metatungstate hydrate. The plot is showing if atoms in the starting model Left) 
((CH3)2NH2)3(PW12O40).,4 Right) (CH3)4N)4SiW12O401 are favourable for the fit quality.  For the models where 
the atom is not present in the model, the SHAP value is shown in blue, while it is shown in red for the atoms 
where it is present in the model. The SHAP values are plotted as a violin plot. 
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Figure S8 | Structural visualisation of kept and removed atoms using the colorbar to indicate the atom 
contribution value of each atom in the structure. ML-MotEx has been used on 4 different starting models 
but with the same fitting-algorithm. A) The [Hpy]4H2[H2W12O40] (py = pyridine)2, B) (CH3)4N)4SiW12O401, C) 
(((CH3)2NH2)6 (Cu(HCON(CH3)2)4)(GeW12O40)2)(HCON(CH3)2)23, D) ((CH3)2NH2)3(PW12O40)4. The colorbar is 
discrete colouring the A) 24, B) 12, C) 24 and D) 24 atoms with the lowest atom contribution value yellow and 
the rest black. Results from the analysis of data published by Juelsholt et al.6  

 

 
MacBook Pro with 2.3 

GHz Dual-Core Intel Core 
i5 processor (s) 

2.9/4.3 GHz 64-core 
AMD Ryzen 

Threadripper 3990 X 
(s) 

(CH3)4N)4SiW12O401 3376 106 
[Hpy]4H2[H2W12O40] (py = pyridine)2 1215 47 

(((CH3)2NH2)6 
(Cu(HCON(CH3)2)4)(GeW12O40)2)(HCON(CH3)2)23 2300 87 

((CH3)2NH2)3(PW12O40)4 3983 166 
 
Table S3 | The code is highly scalable, allowing significantly faster computer time on computers with 
many cores. Here a normal laptop is compared with a workstation by doing 10,000 fits on motifs extracted 
from 4 different structures. Results from the analysis of data published by Juelsholt et al.6  
 
 

F: How can we determine if the starting model is good? 
A limitation of ML-MotEx is that it needs a starting model that contains the right structural motif to work. How 
can we know that the starting model that is provided does contain the right structural motif? 
To investigate this question, we here do an experiment where we, on purpose, use a range of starting 
models without the right structural motif and compare it to results using good starting models. 
We use the PDF data from example 3, obtained from a solution of 0.05 M ammonium metatungstate hydrate, 
(NH4)6[H2W12O40]∙H2O in water, which dissolves to form monodisperse ⍺-Keggin clusters.6 In the main text, we 
show that 4 different starting models, all containing the ⍺-Keggin cluster, allows to extract the ⍺-Keggin cluster 
using ML-MotEx. We here show what happens if we use other starting models that do not contain an ⍺-Keggin 
cluster. To do so, we use starting models created from; 1) the Na5(H7W12O42)(H2O)20 crystal (containing a 
Dodecatungstate icosahydrate cluster),10 2) the (Ba(H2O)2(H(N(CH3)2)CO)3)2(W10O32)(H(N(CH3)2)CO)2 
crystal,11 (containing a decatungstate polyoxometalate) 3) the (NH4)10(H2W12O42)(H2O)4 crystal,12 (containing 
a paratungstate cluster) and 4) Cs2K0.5P2W18O62C3O6 (containing a Dawson type cluster).13  
As a positive control (starting models including the ⍺-Keggin cluster) we use the 5) (CH3)4N)4SiW12O40,1 
crystal,3 6) [Hpy]4H2[H2W12O40] (py = pyridine) crystal,2 7) C) (((CH3)2NH2)6 
(Cu(HCON(CH3)2)4)(GeW12O40)2)(HCON(CH3)2)2 crystal3 and the 8) ((CH3)2NH2)3(PW12O40) crystal.4 
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Figure S9 shows the SHAP analysis on the 8 starting models using the same experimental PDF. 
 

 
 
Figure S9 | SHAP summary plot of ML-MotEx used on an experimental PDF measured on a ⍺-Keggin 
cluster using different starting models created from; 1) the Na5(H7W12O42)(H2O)20 crystal,10 2) the 
(Ba(H2O)2(H(N(CH3)2)CO)3)2(W10O32)(H(N(CH3)2)CO)2 crystal,11 3) the (NH4)10(H2W12O42)(H2O)4 crystal,12 4) 
Cs2K0.5P2W18O62C3O613 and as a positive control the 5) (CH3)4N)4SiW12O40,1 crystal,3 6) [Hpy]4H2[H2W12O40] (py 
= pyridine) crystal,2 7) C) (((CH3)2NH2)6 (Cu(HCON(CH3)2)4)(GeW12O40)2)(HCON(CH3)2)2 crystal3 and the 8) 
((CH3)2NH2)3(PW12O40) crystal.4 
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We observe that the SHAP values are more scattered across positive and negative values when the starting 
model does not contain the ⍺-Keggin cluster, i.e. the correct structural motif. This is seen when comparing 
the SHAP values obtained for models 1-4 (not containing Keggin structures) with those from models 5-8. 
We can quantify this effect by calculating an uncertainty (root mean square / RMS) on the atom contribution 
value: 

atom contribution value RMS = (SHAPRMSaverage-kept2 – SHAPRMSaverage-removed2)0.5 
 

We can now calculate the ratio of the atom contribution value and the uncertainty on the atom contribution 
value, which we refer to as the confidence factor as it tells how confident we can be about 
including/excluding that atom in a structural motif: 

Confidence factor = atom contribution value / atom contribution value RMS 
 
We can also calculate an average confidence factor for the starting model and use that as a proxy for how 
good the starting model is together with the Rwp values. Figure S10 shows the 8 starting models presented 
with their average confidence factors and the Rwp value of the best fit in the structure catalogue. We see that 
the 4 starting models containing the ⍺-Keggin cluster all have larger confidence factors than the 4 starting 
models that do not. We also observe that the Rwp value of the best fitting structure is in general lower if the ⍺-
Keggin cluster is found in the starting model. 
 

 
 
Figure S10 | Results of using ML-MotEx on an experimental PDF measured on a ⍺-Keggin cluster and 
different starting models created from; 1) the Na5(H7W12O42)(H2O)20 crystal,10 2) the 
(Ba(H2O)2(H(N(CH3)2)CO)3)2(W10O32)(H(N(CH3)2)CO)2 crystal,11 3) the (NH4)10(H2W12O42)(H2O)4 crystal,12 4) 
Cs2K0.5P2W18O62C3O613 and as a positive control the 5) (CH3)4N)4SiW12O40,1 crystal,3 6) [Hpy]4H2[H2W12O40] (py 
= pyridine) crystal,2 7) C) (((CH3)2NH2)6 (Cu(HCON(CH3)2)4)(GeW12O40)2)(HCON(CH3)2)2 crystal3 and the 8) 
((CH3)2NH2)3(PW12O40) crystal.4 
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G: Example 3: Identification of structural motifs in disordered molybdenum oxides 
Christiansen et al. have recently used the brute-force automated modelling method to identify structural motifs 
in disordered molybdenum oxides from PDF analysis.14 Here we show that by reassessing the data with ML-
MotEx, we can reproduce the results from Christiansen et al.14 but in an automated way that allows analysis 
of the resulting structure model using SHAP values. Figure S11A shows the difference-PDF (d-PDF) obtained 
from amorphous molybdenum oxide supported on g-Al2O3 nanoparticles (15 w% Mo), where the signal from 
the g-Al2O3 nanoparticles has been subtracted. The d-PDF thus only reflects the structure of the supported 
material. The aim is to develop a structural model for the amorphous MoOx. In the previous paper, different 
starting models were tested, which were all based on structures of molybdenum-based polyoxometalates 
(POMs) built from [MoO4] tetrahedra and [MoO6] octahedra. The analysis showed that the best fitting models 
did not contain tetrahedral motifs. Instead, the brute-force automated modelling approach hinted to a unit of 
three edge-sharing [MoO6] octahedra, or a ‘triad’, to be present in the structure. However, the use of the 
computationally expensive brute-force method limited the number of atoms that could be included in the 
starting model. This meant that a range of different smaller starting models were used to test different structure 
hypotheses. With ML-MotEx, we can instead test much larger systems and thereby include several different 
structural motifs at the same time in one starting model, as well as a quantitatively analyse the results using 
SHAP values. We therefore use a larger POM as starting model namely the entire Mo36O128 cluster cut out of 
the K8(Mo36O112(H2O)16)×(H2O)37 crystal structure,15 which contains a range of different chemical topologies. 
Figure S11A shows the simulated data from the Mo36O128 cluster which has some similarities to the 
experimental PDF and Figure S11B shows the structure of the Mo36O128 cluster. 
 
 

 
 

Figure S11: Analysis of experimental PDF from disordered molybdenum oxide. A) Comparison of 
experimental PDF from a disordered molybenum oxide,14  and simulated data from  Mo36O128 cluster, used as 
starting model. The simulation parameters mimic typical values of a PDF dataset and can be seen in section 
B in the Supplementary Information. B) Structure of the Mo36O128 cluster. C) Rwp values obtained in the fits 
using the Mo36O128 structure catalogue, plotted as a function of number of atoms in the structure motifs.  

 
We apply ML-MotEx to the molybdenum oxide system in the same manner as we did to the C60 buckyball. 
First, we used the starting model to make a catalogue of candidate structure motifs, as described in detail in 
the Methods section. These are all fit to the experimental PDF, and the results are used to train the GBDT 
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model. The fits are made with the same fitting algorithm as used in the paper from Christiansen et al.14 Figure 
S11C illustrates the Rwp values of the fits, plotted as a function of the number of molybdenum atoms present 
in the structural motif. The best fitting models contain 5–7 molybdenum atoms. The model that fits the data 
with the lowest Rwp value (45 %) can be identified as a Mo5O24 structure as shown in section H in the Supporting 
Information. However, it is difficult to justify that this structural model is unique representing the structure in 
the sample, purely based on the Rwp value.  

We therefore use step 3 and 4 of ML-MotEx to analyse the results of the ensemble of fits. The 
resulting SHAP values are shown in Figure S12A. The plot should be interpreted in the same way as for the 
C60 example: Each atom is assigned a SHAP value in each of the fits in the training set. For the models where 
the atom is not present in the model, the SHAP value is shown in blue, while it is shown in red for the atoms 
where it is present in the model. When considering the amplitudes of the SHAP values, we see that the atoms 
labelled with 14, 15, 19, and 20 are marked as very important by ML-MotEx. When these atoms are present 
in the structure (red), they all have large negative SHAP values, indicating that their presence in the model 
pushes the Rwp down. When they are not present in the structure (blue), they all have large positive SHAP 
values, also indicating that they should be present in the structure to obtain a good fit. Atom 22 and 23 are 
examples of atoms that ML-MotEx do not suggest keeping in the structure. As seen from the SHAP values, its 
presence pushes up the Rwp value.  

Based on the SHAP analysis, atom contribution values were calculated. The results are visually 
illustrated in Figure S12B, where the molybdenum atoms in the structure are coloured yellow if the atom 
contributed to a better fit quality, otherwise it is coloured black. Figure S12B clearly shows a specific motif that 
ML-MotEx wants to keep in the model. The yellow molybdenum atoms are all part of a ‘triad’ structure, where 
three [MoO6] octahedra share edges, and all oxygen atoms that bond to 3 or 4 Mo atoms are connected to 
yellow molybdenum atoms. This is further illustrated in section H in the Supplementary Information. 
Specifically, the resulting structural unit that ML-MotEx wants to keep is similar to heptamolybdate [Mo7O24]6-, 
which can be described as several triads connected through edge-sharing. These results indicate that a motif 
of connected edge-sharing triads as shown in Figure S12C are important in order to describe the data of the 
disordered molybdenum oxides, which was also found by Christiansen et al.14 We note here that when fitting 
this model to the PDF itself, we cannot describe the medium-range order present in the PDF. The ML-MotEx 
rather allows identifying the main local motifs in the data. 

 
 

 
Figure S12: Summary of the ML-MotEx analysis of experimental PDF from disordered molybdenum 
oxide. A) Plot of the SHAP values obtained in the molybdenum oxide analysis, showing if atoms in the starting 
model Mo36O128 are favourable for the fit quality. For the models where the atom is not present in the model, 
the SHAP value is shown in blue, while it is shown in red for the atoms where it is present in the model. The 
SHAP values are plotted as a violin plot. B) Structural visualisation of kept (yellow) and removed (black) atoms. 
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Section H in the Supplementary Information shows a similar representation but where the atom contribution 
values are directly shown from a continuous colour bar. 

 

H: Best fitting model of the Mo36O128 system obtained with brute-force modelling 

 
Figure S13 | Using a brute-force approach to extract the structure motifs on an experimental PDF from 
disordered molybdenum oxide which has the best fit quality. A) Fit of the best fitting model, B) the Mo5O24 
cluster (green atoms), extracted with brute-force modelling of the data obtained from amorphous molybdenum 
oxide supported on g-Al2O3 nanoparticles (15 w% Mo). The signal from the g-Al2O3 nanoparticles has been 
subtracted. Rwp = 45.1 % 

 
Example system Mo36O128 

r-range (Å) 3–12 
Scale 0.28 

ADPBi (Å2) 0.34 
ADPO (Å2) 0.37 

Isotropic expansion 1.00 
Delta2 (Å2) 6.00 

 
Table S4 | Refinement details to Figure S14. Refinement details from the fit of the Mo5O24 cluster, extracted 
with brute-force modelling of the data obtained from amorphous molybdenum oxide supported on g-Al2O3 
nanoparticles (15 w% Mo), where the signal from the g-Al2O3 nanoparticles has been subtracted. 
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Figure S14 | Summary of the ML-MotEx analysis on an experimental PDF from disordered molybdenum 
oxide. A) Plot of the SHAP values obtained in the molybdenum oxide analysis, showing if atoms in the starting 
model Mo36O128 are favourable for the fit quality.  For the models where the atom is not present in the model, 
the SHAP value is shown in blue, while it is shown in red for the atoms where it is present in the model. The 
SHAP values are plotted as a violin plot. B) Structural visualisation of kept and removed atoms. The colorbar 
is discrete colouring the 14 atoms with the lowest atom contribution value yellow and the rest black. The 
turquoise oxygen atoms are either bonded to 3 or 4 Mo atoms while red oxygen atoms are bonded to less than 
3 Mo atoms.C) Structural visualisation where the colorbar indicates the atom contribution value of the atom. 

 
I: Example 4: Extracting structural motifs from ionic bismuth oxido clusters in solution using a 
‘cookie-cutter’ strategy 
In example 3, we showed that ML-MotEx can be applied for ionic clusters in solution, and it was possible to 
identify the Keggin-motifs from different POM starting clusters. In this final example, we will show another 
example of an ionic cluster in solution, namely bismuth oxido clusters in solution. Specifically, we study the 
[Bi38O45] (Figure S15A), which is well known to be a stable cluster in solution.16, 17 If considering the structure 
of [Bi38O45], it can be seen that this can be described as a cut-out of the β-Bi2O3 structure, Figure S15B.16, 17 
The cut-out of the [Bi38O45] cluster in the 2x2x3 supercell of the β-Bi2O3 structure is visualized in yellow in 
Figure S15B. We can therefore apply the ML-MotEx method for analysis of a PDF from this cluster, using a 
starting model reflecting the β-Bi2O3 structure. The starting model is thus a discrete model consisting of 2x2x3 
β-Bi2O3 unit cells. 
Figure S15C shows the experimental PDF obtained from a solution of [Bi38O45] clusters compared to the 
simulated PDF data of the discrete starting model built from 2x2x3 unit cells of the β-Bi2O3 structure. As 
expected, the local range of the PDFs from the two structures are highly similar, but peaks to higher r-values 
are present for the β-Bi2O3 starting model. This confirms that the local structure is the same in the [Bi38O45] 
sample as the starting model, but that the cluster size is smaller.  
 

 
 
Figure S15 | The experimental PDF from bismuth oxido clusters in solution. A) The [Bi38O45] cluster. B) 
The β-Bi2O3 structure starting model, where the yellow corresponds to the [Bi38O45] cluster. C) Comparison of 
the experimental PDF of the [Bi38O45] cluster and simulated data of a model consisting of 2x2x3 β-Bi2O3 unit 
cells, treated as a discrete model The simulation parameters mimic typical values of a PDF dataset and can 
be seen in Table S2. 
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In order to only produce physically sensible clusters from the β-Bi2O3 structure, the strategy for generating the 
structural motifs is different than for the other examples. Rather than using permutations over different atoms 
in the structure, we first cut out geometrically reasonable shapes using a ‘cookie-cutter’ strategy. Instead of 
deleting a number of random atoms, a range of reasonable shapes and sizes are made from the discrete β-
Bi2O3 structure. Four shapes are used; spherical, cubic, ellipsoidal and disk.  All the atoms in the starting model 
were kept or removed if they were inside the geometric object or not. Finally, oxygen atoms were removed if 
they had no bismuth atoms within the threshold distance of 2.5 Å which is the shortest Bi···O distance in the 
experimental PDF. Further details on the ‘cookie-cutter’ algorithm can be found in section N in the Supporting 
Information. 
We first cut out 5950 unique clusters and fit them to the PDF. As in the previous examples, we can first analyse 
the Rwp values without using ML. Figure 16A shows all the Rwp values obtained from the PDF fits, where the 
fit quality is again plotted versus the number of bismuth atoms. The refinement parameters are given in Table 
S1. It is evident that the Rwp values are lowest when a structure of ca. 38 Bi atoms is used to fit the data, 
however, the curve is not very shallow. In Figure S16B, we plot the Rwp value plotted for the 4 different shape 
categories used in the ‘cookie-cutter’ strategy, where the colour of the point indicates the sphericity. Sphericity 
is a measure of how spherical an object is. A sphere has a sphericity of 1, while a cube has a sphericity of 
0.806 and the sphericity of an ellipsoid depends on its radii. The equation and a detailed description of 
sphericity are given in section O in the Supporting Information. 
  The plot shows that cube-shaped structures generally result in a higher Rwp value than the 
other shapes, ruling out this shape for describing the cluster structure. The spheres generally give good fits, 
but the structures providing the lowest Rwp values are not spherical. The structures resulting in the lowest Rwp 
values are ellipsoids or disks, however, common for those two shapes is that the best fitting structures have 
high sphericity, meaning that the structure is very close to being spherical. In Figure S16C, we further analyse 
the results of fitting spherical models to the data. The figure shows the Rwp value plotted as a function of radius, 
showing a minimum at ca. 7.2 Å. Similar plots of the volume and ellipsoidal radius are shown in section P in 
the Supporting Information. The best structure found with the brute-force approach is shown in Figure S17A 
where the yellow polyhedra represent parts of the [Bi38O45] structure. 
 

 
 

Figure S16 | Using a brute-force approach to extract structure motifs on an experimental PDF from 
bismuth oxido clusters in solution. Overview of the Rwp values of the PDF fits versus important structural 
parameters. A) The Rwp values plotted versus the number of bismuth atoms present in the structure, B) The 
Rwp value plotted versus the shape and sphericity of the structures and C) The Rwp value plotted versus the 
radius of the structures made with a spherical shape. 

 
We now again move to ML-analysis for further analysis. Again, this allows taking all 5950 fits into account 
when finding an appropriate structure motif that fits the data, rather than only considering a few of the fits in 
the minimum in the Rwp plot. Section Q in the Supporting Information shows the results of the SHAP analysis 
of the motifs made from the discrete starting model built from 2x2x3 unit cells of the β-Bi2O3 structure and their 
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corresponding Rwp values. Afterward, the atom contribution values are again calculated and since the best 
fitting structure from the brute-force approach had 38 Bi atoms, we choose to keep the 38 atoms with the 
lowest atom contribution value. Figure S17B illustrates the structure when all other than the 38 Bi atoms with 
the lowest SHAP value are removed. This structure fits the data with an Rwp value of 17.4 %, i.e a slightly 
higher value than the motif identified from the brute-force calculations, however, it contains more of the original 
[Bi38O45] structure than the brute-force model does, making it more intuitive for an experienced chemist to 
‘finish’ the model by constructing closed-shell structures. Fitting parameters are given in section K in the 
Supporting Information. The fits of the [Bi38O45] are shown in comparison in section S in the Supporting 
Information. From this example, it is clear that the automated brute-force routine itself reveals valuable insight 
into the structure and shape of the cluster in question. However, it is a cumbersome and biased process to 
extract the information from the many fits to build a structure that fits the data, and only the best fit is usually 
considered. By applying ML-MotEx we obtain a reasonable structural estimate, which can be used with 
chemical knowledge to construct the right model that fits the data.  
 

 
 

Figure S17 | Summary of the brute-force and ML-MotEx analysis on an experimental PDF from bismuth 
oxido clusters in solution. Structural visualisation of the kept atoms in the model built from 2x2x3 unit cells 
of β-Bi2O3 by A) brute-force approach and B) ML-MotEx.  The polyhedral, which are part of the real [Bi38O45] 
cluster are shown in yellow.  

 

J: How large a catalogue of candidate structure motifs does ML-MotEx need as training data to 
output reasonable results  

When the number of structures in the structure catalogue is increased, the confidence factor goes up. The 
confidence factor can thereby be used to tell how many structures are needed in the structure catalogue. 
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Figure S18 | Results of using ML-MotEx on an experimental PDF measured on a ⍺-Keggin cluster and 
various amount of structures in the structure catalogue generated from the same starting model. 
 
 

K: Fitting variables for all the examples provided in the paper 
 C60 buckyball Mo36O128 ⍺-Keggin β-Bi2O3 

PDF     
r-range (Å) 0 – 30 3 – 12 1.6 – 10 2 – 15 

r-step 0.01 0.01 0.01 0.01 
Qmin (Å-1) 0.5 0.5 1.2 0.7 
Qmax (Å-1) 24 24 17 15.5 
Qdamp (Å-1) 0.02 0.04 0.04 0.04 
Qbroad (Å-1) - - 0.01 - 

Oxygen threshold (Å) - 2.5 2.5 2.5 
PDF Scaling factor 0 – ∞ (1) 0 – ∞ (1) 0 – ∞ (1) 0 – 1.5 (0.9) 

Delta2 (Å2) 0 – 2 (1) 0.5 – 6 (5) 0 – ∞ (0) - 
ADPC/Mo/w/Bi (Å2) 0 – 2 (0.5) 0.3 – 3 (0.3) 0 – ∞ (0.4) 0.01 – 3 (1.35) 

ADPO (Å2) - 0.3 – 4 (0.5) 0 – ∞ (0.4) 2 

Isotropic expansion 0.98 – 1.02 
(1.00) 0.98 – 1.02 (1.00) 0.98 – 1.01 (1.00) 0.98 – 1.02 (1.00) 

Table S5 | Data specific parameters and fitting parameters for the 4 examples provided in the paper. 
The initial values of the parameters are written inside the parentheses, while the fitting range is written outside 
the parentheses.  
 
The output of the fit is a Rwp value reflecting the quality of the fit: 
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𝑅() = H
∑ [𝐺*+,(𝑟-) − 𝐺./0.(𝑟- , 𝑃)]$1
-2#

∑ 𝐺*+,(𝑟-)$1
-2#

∙ 100	% 

 
Here, Gobs and Gcalc are the observed and calculated PDFs, and P is the refinement parameters in the 
model. 
 

L: Example of how structure motifs can be extracted from a starting model with 4 metal atoms 
coordinated to oxygen and used as input to the GBDT model 

 
 

Figure S19: Example of how structure motifs can be extracted from a starting model with 4 metal atoms 
coordinated to oxygen and used as input to the GBDT model. A) The metal atoms are permuted randomly 
by creating an array of zeros and ones, where 0 refers to a deleted atom and 1 refers to an atom that is kept 
in the structure. Oxygen atoms are removed if they do not bond to any metal atoms within a distance threshold 
that is set by the user. Note that the metal atoms (blue) are slightly distorted from the centre of the octahedra. 
B) Example of how the four structures from Figure 8A and Figure 1 are given as input to the GBDT model 
which predicts the Rwp value. 
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M: Effect of changing the hyperparameters of the Gradient Boosting Decision Tree (GBDT) algorithm 
or the seed 

 
Figure S20 | Effect of changing the hyperparameters of the Gradient Boosting Decision Tree (GBDT) 
algorithm. Results of using ML-MotEx on four different starting models on the same experimental PDF using 
the same 10.000 fits but various hyperparameters for the GBDT algorithm before calculating the SHAP- and 
the atom contribution values. 
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Figure S21 | Effect of changing the seed of ML-MotEx.  
 

N: Cookie-Cutter algorithm 

 
Figure S22 | The ‘cookie-cutter strategy. A) The initial box with atoms 0.1 Å apart. B–E shows 4 examples 
of shapes that can be cut out with the cookie-cutter tool B) the sphere, C) the cube, D) the ellipsoid, E) the 
disk. In all examples, all atoms from outside this object in A) have been removed. 
 
 

Sphere  
Radius (Å) 2 – 12 

Cube  

Height and length (Å) 3 – 16 
Ellipsoid  

Radius1, Radius2, Radius3 (Å) 0 – 20 
Disk  

Radius (Å) 0 – 20 
Height (Å) 0 – 20 
Angle (o) 0 – 360 

A B C

D E
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Table S6 | Parameter thresholds for sampling geometries with spherical-, cubic-, ellipsoidal- or a disk 
shape. The parameters are sampled from a uniform distribution in this range. 
 

O: Sphericity 
 
The sphericity, Ψ, of an object was defined in 1935 by Wadell and measures how spherical a geometry is. It 
can be calculated with the following formula18: 

(2)   Ψ = 3
!
"(56#)

$
"

8#
 

Where Vp is the volume of the object and Ap is the surface area of the object. 
 

P: Analysis of the PDF fits of data from the [Bi38O45] cluster 
 

 
Figure S23 | Using a brute-force approach to extract structure motifs on an experimental PDF from 
bismuth oxido clusters in solution. Overview of the Rwp values of the PDF fits versus important structural 
parameters. A) The Rwp values versus the volume of the structure, B) The Rwp value versus radius1 and radius2 
in the ellipsoidal shaped structures and C) The Rwp value versus radius1 and radius3 in the ellipsoidal shaped 
structures. 
 

A B C
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Q: SHAP value summary plot from ML-MotEx applied on a PDF from the [Bi38O45] cluster 

 
Figure S24 | Plot of the SHAP values obtained in the analysis of the bismuth oxido PDF. The plot is 
showing if atoms in the starting model 2x2x3 supercell of the β-Bi2O3 are favourable for the fit quality.  For 
the models where the atom is not present in the model, the SHAP value is shown in blue, while it is shown in 
red for the atoms where it is present in the model. The SHAP values are plotted as a violin plot. 
 
 

R: Fitting details of the fit using the best model found with the brute-force approach and the best 
model found with the ML-MotEx approach 
 

Example system Brute-Force ML-MotEx 
r-range (Å) 2 – 15 2 – 15 

Scale 0.89 0.86 
ADPBi (Å2) 1.71 1.71 
ADPO (Å2) Fixed to 1 Fixed to 1 

Isotropic expansion 0.98 0.98 
 
Table S7 | Refinement details the best fitting cluster extracted with brute-force modelling and ML-
MotEx to the background subtracted PDF measured on the [Bi38O45] cluster.  
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S: Fits of the PDF data using the [Bi38O45] cluster as model 

 
Figure S25 | [Bi38O45] fit. Fit of the A) PDF data using the B) [Bi38O45] cluster as model. 
 

Example system PDF 
r-range (Å) 2 – 15 

Scale 0 – 10 (0.91) 
ADPBi (Å2) 0 – 4 (1.3) 
ADPO (Å2) Fixed to 1 

Isotropic expansion 0.95 – 1.05 
(1.01) 

Table S8 | Refinement details the fit of the [Bi38O45] cluster to the background subtracted PDF data 
from the [Bi38O45] cluster. The initial guesses of the parameters are written inside the parentheses, while the 
fitting range is written outside the outside the parentheses. 
 

T: Enlarged SHAP plots 
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Figure S26 | Enlarged summary SHAP plot of Figure 5A removing the number of atoms to highlight the 
effect of each atom. 
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Figure S27 | Enlarged summary SHAP plot of Figure S13A removing the number of atoms to highlight 
the effect of each atom. 
 



 28 

 
Figure S28 | Enlarged summary SHAP plot of Figure S2,left removing the number of atoms to highlight 
the effect of each atom. 
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Figure S29 | Enlarged summary SHAP plot of Figure S3,right removing the number of atoms to 
highlight the effect of each atom. 
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Figure S30 | Enlarged summary SHAP plot of Figure S2,right removing the number of atoms to 
highlight the effect of each atom. 
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Figure S31 | Enlarged summary SHAP plot of Figure S3,left removing the number of atoms to highlight 
the effect of each atom. 
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