
(a) Domain shift. In this paper, we assume that the
instances Xe from a domain e 2 Eall are generated by
a domain transformation model G(X, e), resulting in
domain shift. Thus, in the above SCM, X and e are
the sole causal ancestors of Xe. Further, we assume
that e is not a causally related to Y = Y e.

(b) Concept shift. In this figure, we illustrate a causal
data generating model in which the instances Xe can
be (spuriously) correlated with the label Y , leading to
concept shift. Note that unlike in the SCM shown in
(a), in this SCM, Y is also a causal parent of Xe.

Figure 7: Causal interpretations of domain generalization tasks. We compare structural causal
models (SCMs) for covariate shift and concept shift. Throughout, the environment e 2 Eall is assumed
to be independent of (X,Y), i.e. e ?? (X,Y).

A A causal interpretation of MBDG

The language of causal inference provides further intuition for the structure imposed on Problem 3.1
by Assumptions 4.1 and 4.2. In particular, the structural causal model (SCM) for problems in which
data is generated according to the mechanism described in Assumptions 4.1 and 4.2 is shown in
Figure 7a. Recall that in Assumption 4.1 imposes that X and e are causes of the random variable
X

e via the mechanism X
e = G(X, e). This results in the causal links e �! X

e � X . Further, in
Assumption 4.2, we assume that P(Y e|Xe) is fixed across environments, meaning that the label Y is
independent of the environment e. In Figure 7a, this translates to there being no causal link between
e and Y .

To offer a point of comparison, in Figure 7b, we show a different SCM that does not fulfill our
assumptions. Notice that in this SCM, Y and e are both causes of Xe, meaning that the distributions
P(Y e|Xe) can vary in domain dependent ways. This gives rise to concept shift, which has also been
referred to as spurious correlation [10]. Notably, the SCM shown in Figure 7b corresponds to the
data generating procedure used to construct the ColoredMNIST dataset [10], wherein the MNIST
digits in various domains Xe are (spuriously) colorized according to the label Y .3

3While the data-generating mechanism for ColoredMNIST does not fulfill our assumptions, the algorithm
we propose in Section 6 still empirically achieves state-of-the-art results on ColoredMNIST.

21

B Further theoretical results and discussion

B.1 On the optimality of relaxation of Problem 4.6 in (3)

In Section 5 of the main text, we claimed that the relaxation introduced in (3) was tight under certain
conditions. In this section of the appendix, we formally enumerate the conditions under which the
relaxation is tight. Further, we show that the tightness of the relaxation can be characterized by the
margin parameter �.

B.1.1 The case when � = 0

In Section 5, we claimed that the relaxation of the Model-Based Domain Generalization problem
given in (3) was tight when � = 0 under mild conditions on the distance metric d. In particular,
we simply require that d(P,T) = 0 if and only if P = T almost surely. We emphasize that this
condition is not overly restrictive. Indeed, a variety of distance metrics, including the KL-divergence
and more generally the family of f -divergences, satisfy this property (c.f. [146, Theorem 8.6.1]). In
what follows, we formally state and prove this result.
Proposition B.1. Let d be a distance metric between probability measures for which it holds that
d(P,T) = 0 for two distributions P and T if and only if P = T almost surely. Then P

?(0) = P
?.

Proof. The idea in this proof is simply to leverage the fact a non-negative random variable has
expectation zero if and only if it is zero almost everywhere. For ease of exposition, we remind the
reader of the definition of the relaxed constraints: Le(f) := EP(X) d(f(X), f(G(X, e))).

First, observe that because d(·, ·) is a metric, it is non-negative-valued. Then the following statement
is trivial

Le(f)  0 () Le(f) = 0. (11)
Next, we claim that under the assumptions given in the statement of the proposition, Le(f) = 0 is
equivalent to the G-invariance condition. To verify this claim, for simplicity we start by defining the
random variable

Ze , d
�
f(X), f(G(X, e))

�
(12)

and note that by construction Ze � 0 a.e. and Le(f) = EP(X) Ze. Now consider that because Ze is
non-negative and has an expectation of zero, we have that EP(X) Ze = 0 if and only if Ze = 0 almost
surely (c.f. Prop. 8.1 in [147]). In other words, we have shown that

Le(f) = 0 () d
�
f(x), f(G(x, e))

�
= 0 a.e. x ⇠ P(X) (13)

holds for each e 2 Eall. Now by assumption, we have that for any two distributions P and T sharing
the same support that d(P,T) = 0 holds if and only if P = T almost surely. Applying this to (13),
we have that

Le(f) = 0 () f(x) = f(G(x, e)) a.e. x ⇠ P(X). (14)
Altogether we have shown that Le(f)  0 if and only if f is G-invariant. Thus, when � = 0, the
optimization problems in (MBDG) and (3) are equivalent, which implies that P ?(0) = P

?.

B.2 The case when � > 0

When � > 0, the relaxation is no longer tight. However, if the perturbation function P
?(�) is assumed

to be Lipschitz continuous, we can directly characterize the tightness of the bound.
Remark B.2. Let us assume that the perturbation function P

?(�) is L-Lipschitz continuous in �.
Then given Proposition B.1, it follows that |P ? � P

?(�)|  L�.

Proof. Observe that by Proposition B.1, we have that P ? = P
?(0). It follows that

|P ? � P
?(�)| = |P ?(0)� P

?(�)| (15)
 L|0� �| (16)
= L� (17)

where the inequality in (16) follows by the definition of Lipschitz continuity.

22

We note that in general the perturbation function P
?(�) cannot be guaranteed to be Lipschitz.

However, as we will show in Remark B.4, when strong duality holds for (MBDG), P ?(�) turns out
to be Lipschitz continuous with a Lipschitz constant equal to the L1 norm of optimal dual variable for
the dual problem to (MBDG). Before proving this result, we state a preliminary lemma from [148].
Lemma B.3 (§5.6.2 in [148]). Consider a generic optimization problem

p
? , min

x2Rd
f0(x) subject to fi(x)  0 8i{1, . . . ,m}. (18)

Assume that strong duality holds for this problem, and let �? denote an optimal dual variable. Define
the perturbation function as follows:

p
?(u) , min

x2Rd
f0(x) subject to fi(x)  ui 8i 2 {1, . . . ,m} (19)

where u 2 Rm. Then it holds that p?(u) � p
? � u

>
�
?.

This useful result, which follows from a simple one-line proof in §5.6.2 of [148], shows that the
perturbation function p

?(u) can be related to the optimal value of the unperturbed problem via the
optimal dual variable. We can readily use a semi-infinite version of this lemma to prove the following
remark:
Remark B.4. Consider the dual problem to (MBDG):

D
? , max

�2B(Eall)
min
f2F

R(f) +

Z

Eall

[Le(f)� �] d⌫(e) (20)

where B(·) denotes the cone of non-regular, non-negative Borel measures supported on its argu-
ment [149]. Assume that strong duality holds, and let ⌫? denote an optimal dual variable for this
problem. Then it holds that

|P ? � P
?(�)|  � k⌫?kL1 . (21)

Proof. The idea here is to apply Lemma B.3 for the constant function defined by u = u(e) = �

8e 2 Eall. To begin, let h·, ·i denote the standard inner product on L
2; i.e. hf, gi =

R
Eall

f(e)g(e)de
for f, g 2 L

2(Eall). In this way, we find that

P
? � hu, ⌫?i  P

?(�)  P
? (22)

where the second inequality holds because for � strictly larger than zero, the relaxation in (3)
corresponds to an expansion of the feasible set of relative to (MBDG). In this case, since u is
constant, a simple calculation shows that

hu, ⌫?i =
Z

Eall

⌫
?(e)u(e)de = �

Z

Eall

⌫
?(e)de = � · k⌫?kL1 (23)

where in the last step we have used the fact that the optimal dual variable ⌫
? ⌫ 0. Now if we apply

this result to (22), we find that

P
? � � k⌫?k  P

?(�)  P
?
, (24)

which directly implies the desired result.

B.3 Relationship to constrained PAC learning

Recently, the authors of [150] introduced the Probably Approximately Correct Constrained (PACC)
framework, which extends the classical PAC framework to constrained problems. In particular, recall
the following definition of agnostic PAC learnability:
Definition B.5 (PAC learnability). A hypothesis class H is said to be (agnostic) PAC learnable if
for every ✏, � 2 (0, 1) and every distribution P0, there exists a ✓

? 2 H which can be obtained from
N � NH(✏, �) samples from P0 such that E `('(✓, X), Y)  U

? + ✏ with probability 1� �, where

U
? , minimize

✓2H

EP0(X,Y) `('(✓, X), Y) (25)

23

The authors of [150] extended this definition toward studying the learning theoretic properties of
constrained optimization problems of the form

C
? ,minimize

✓2H

EP0(X,Y) `0('(✓, X), Y) (26)

subject to EPi(X,Y) `i('(✓, X), Y)  ci for i 2 {1, . . . ,m} (27)
`j('(✓, X), Y)  cj Pj � a.e. for j 2 {m+ 1, . . .m+ q} (28)

via the following definition:
Definition B.6 (PACC learnability). A hypothesis class H is said to be PACC learnable if for every
✏, � 2 (0, 1) and every distribution Pi for i 2 {0, . . . ,m+ q}, there exists a ✓

? 2 H which can be
obtained from N � NH(✏, �) samples from each of the distributions Pi such that, with probability
1� �, ✓? is:

(1) approximately optimal, meaning that

EP0 `0('(✓
?
, X), Y)  C

? + ✏ (29)

(2) approximately feasible, meaning that

EPi(X,Y) `i('(✓, X), Y)  ci + ✏ for i 2 {1, . . . ,m} (30)
`j('(X), Y)  cj 8(x, y) 2 Kj for j 2 {m+ 1, . . . ,m+ q} (31)

where Kj ✓ X ⇥ Y are sets of Pj measure at least 1� ✏.

One of the main results in [150] is that a hypothesis class H is PAC learnable if and only if it is PACC
learnable.

Now if we consider the optimization problem in (26), we see that the admissible constraints are
both inequality constraints. In contrast, the optimization problem in Problem 4.6 contains a family
of equality constraints. Thus, in addition to easing the burden of enforcing hard G-invariance, the
relaxation in (3) serves to manipulate the Model-Based Domain Generalization problem into a form
compatible with (26). This is one of the key steps that sets the stage for deriving the learning theoretic
guarantees for Model-Based Domain Generalization (e.g. Theorems 5.3 and 6.1).

B.4 Regularization vs. dual ascent

A common trick for encouraging constraint satisfaction is to introduce soft constraints by adding a
regularizer multiplied by a fixed penalty weight to the objective. As noted in Section 7, this approach
yields a similar optimization problem to (6). In particular, the regularized version of (6) is the
following:

D̂
?
✏,N,Etrain

, minimize
✓2H

R̂(✓) +
1

|Etrain|
X

e2Etrain

h
L̂e(✓)� �

i
w(e) (32)

where w(e) � 0 e 2 Etrain are weights that are chosen as hyperparameters. From an optimization
perspective, the benefit of such an objective is that gradient-based algorithms are known to converge
to local minima given small enough step sizes (MBDG). However, classical results in learning theory
can only provide generalization guarantees on the aggregated objective, rather than on each term
individually. Furthermore, the choice of the penalty weights w(e) is non-trivial and often requires
significant domain knowledge, limiting the applicability of this approach.

In contrast, in primal-dual style algorithms, the weights �(e) are not fixed beforehand. Rather, the
�(e) are updated iteratively via the dual ascent step described in line 8 of Algorithm 1. Furthermore,
as we showed in the main text, the optimal value of the primal problem P

? can be directly related to
the solution of the empirical dual problem in (6) via Theorem 5.3. Such guarantees are not possible
in the regularization case, which underscores the benefits of the primal-dual iteration over the more
standard regularization approach.

24

C Omitted proofs

In this appendix, we provide the proofs that were omitted in the main text. For ease of exposition, we
restate each result before proving it so that the reader can avoid scrolling back and forth between the
main text and the appendices.

C.1 Proof of Proposition 4.3

Proposition 4.3. Under Assumptions 4.1 and 4.2, Problem 3.1 is equivalent to
minimize

f2F

max
e2Eall

EP(X,Y) `(f(G(X, e)), Y). (33)

Proof. The main idea in this proof is the following. First, we decompose the joint distribution
P(Xe

, Y
e) into P(Y e|Xe) · P(Xe) to expand the risk term in the objective of (DG). Next, we

leverage Assumptions 4.1 and 4.2 to rewrite the outer and inner expectations engendered by the tower
property. Finally, we undo our expansion to arrive at at the statement of the proposition.

To begin, observe that by the our decomposition P(Xe
, Y

e) = P(Y e|Xe) · P(Xe) of the joint
expectation, we can rewrite the objective of (DG) in the following way:

EP(Xe,Y e) `(f(X
e), Y e) = EP(Xe)

⇥
EP(Y e|Xe) `(f(X

e), Y e)
⇤
. (34)

Then, recall that by Assumption 4.2, we have that P(Y e|Xe) = P(Y |X) 8e 2 Eall, i.e. the conditional
distribution of labels given instances is the same across domains. Thus, if we consider the inner
expectation in (34), it follows that

EP(Y e|Xe) `(f(X
e), Y e) = EP(Y |X) `(f(X), Y). (35)

Now observe that under Assumption 4.1, we have that P(Xe)
d
= G#(P(X), �e). Therefore, a simple

manipulation reveals that
EP(Xe)

⇥
EP(Y e|Xe) `(f(X), Y)

⇤
= EG # (P(X), �e)

⇥
EP(Y |X) `(f(X), Y)

⇤
(36)

= EP(X)

⇥
EP(Y |X) `(f(G(X, e)), Y)

⇤
(37)

= EP(X,Y) `(f(G(X, e)), Y), (38)
where the final step again follows from the tower property of expectation. Therefore, by combining
(34) and (38), we conclude that

EP(Xe,Y e) `(f(X
e), Y e) = EP(X,Y) `(f(G(X, e)), Y), (39)

which directly implies the statement of the proposition.

C.2 Proof of Proposition 4.5

Proposition 4.5. Under Assumptions 4.1 and 4.2, if we restrict the feasible set to the set of G-invariant
predictors, then Problem 3.1 is equivalent to the following semi-infinite constrained problem:

P
? ,minimize

f2F

R(f) , EP(X,Y) `(f(X), Y) (40)

subject to f(x) = f(G(x, e)) a.e. x ⇠ P(X) 8e 2 Eall.

Proof. The main idea in this proof is simply to leverage the definition of G-invariance and the result
of Prop. 4.3. Starting from Prop. 4.3, we see that by restricting the feasible set to the set of G invariant
predictors, the optimization problem in (2) can be written as

P
? =minimize

f2F

max
e2Eall

EP(X,Y) `(f(G(X, e)), Y) (41)

subject to f(x) = f(G(x, e)) a.e.x ⇠ P(X), 8e 2 Eall (42)
Now observe that due to the constraint, we can replace the f(G(X, e)) term in the objective with
f(X). Thus, the above problem is equivalent to

P
? =minimize

f2F

max
e2Eall

EP(X,Y) `(f(X), Y) (43)

subject to f(x) = f(G(x, e)) a.e. x ⇠ P(X), 8e 2 Eall (44)
Now observe that the objective in (43) is free of the optimization variable e 2 Eall. Therefore, we can
eliminate the inner maximization step in (43), which verifies the claim of the proposition.

25

C.3 Proof of Proposition 5.2

Before proving Proposition 5.2, we formally state the assumptions we require on ` and d. These
assumptions are enumerated in the following Assumption:
Assumption C.1. We make the following assumptions:

1. The loss function ` is non-negative, convex, and L`-Lipschitz continuous in it’s first argu-
ment, i.e.

|`(f1(x), y)� `(f2(x), y)|  kf1(x)� f2(x)k1 (45)

2. The distance metric d is non-negative, convex, and satisfies the following uniform Lipschitz-
like inequality for some constant Ld > 0:

|d(f1(x), f1(G(x, e)))� d(f2(x), f2(G(x, e)))|  Ld kf1(x)� f2(x)k1 8e 2 Eall.
(46)

3. There exists a predictor f 2 F such that Le(f) < � � ✏ ·max{L`, Ld} 8e 2 Eall.

At a high level, these assumptions necessitate that ` and d are sufficiently regular and that the problem
is strictly feasible with a particular margin ✏ ·max{L`, Ld}. In particular, this final assumption is
essential as it implies that strong duality holds for (3), which is a key technical element of the proof.
Given these assumptions, we restate Proposition 5.2 below:

Proposition 5.2. Let � > 0 be given. Then under Assumption C.1, it holds that

P
?(�)  D

?
✏ (�)  P

?(�) + ✏

⇣
1 +

���?
pert

��
L1

⌘
·max{L`, Ld} (47)

where �
?
pert is the optimal dual variable for a perturbed version of (3) in which the constraints are

tightened to hold with margin � � ✏ ·max{L`, Ld}. In particular, this result implies that

|P ?(�)�D
?
✏ (�)|  ✏

⇣
1 +

���?
pert

��
L1

⌘
·max{L`, Ld} (48)

Proof. In this proof, we extend the results of [142] to optimization problems with an infinite number
of constraints. The key insight toward deriving the lower bound is to use the fact that maximizing
over the ✏-parameterization of F yields a sub-optimal result vis-a-vis maximizing over F . On the
other hand, the upper bound, which requires slightly more machinery, leverages Jensen’s and Hölder’s
inequalities along with the definition of the ✏-parameterization to over-approximate the parameter
space via a Lipschitz ✏-ball covering argument.

Step 1. In the first step, we prove the lower bound in (47). To begin, we define the dual problem to
the relaxed Model-Based Domain Generalization problem in (3) in the following way:

D
?(�) , maximize

�2B(Eall)
min
f2F

⇤(f,�) , R(f) +

Z

Eall

[Le('(✓, ·))� �] d�(e). (49)

where with a slight abuse of notation, we redefine the Lagrangian ⇤ from (4) in its first argument.
Now recall that by assumption, there exists a predictor f 2 F such that L(f) < � 8e 2 Eall. Thus,
Slater’s condition holds [148], and therefore so too does strong duality. Now let f? be optimal for the
primal problem (3), and let �? 2 B(Eall) be dual optimal for the dual problem (49); that is,

f
? 2 argmin

f2F

max
�2B(Eall)

R(f) +

Z

Eall

[Le('(✓, ·))� �] d�(e) (50)

and

�
? 2 argmax

�2B(Eall)
min
f2F

R(f) +

Z

Eall

[Le('(✓, ·))� �] d�(e) (51)

At this early stage, it will be useful to state the following saddle-point relation, which is a direct result
of strong duality:

⇤(f?
,�

0)  ⇤(f?
,�

?)  ⇤(f 0
,�

?) (52)

26

which holds for all f 0 2 F and for all �0 2 B(Eall). Now consider that by the definition of the
optimization problem in (4), we have that

D
?
✏ (�) = max

�2B(Eall)
min
✓2H

⇤(✓,�) � min
✓2H

⇤(✓,�0) 8�0 2 B(Eall). (53)

Therefore, by choosing �
0 = �

? in the above expression, and since A✏ = {'(✓, ·) : ✓ 2 H} ✓ F by
the definition of an ✏-parametric approximation, we have that

D
?
✏ (�) � min

✓2H

⇤(✓,�?) � min
f2F

⇤(f,�?) = P
?(�). (54)

This concludes the proof of the lower bound: P ?(�)  D
?
✏ (�).

Step 2. Next, we show that D?
✏ (�) is upper bounded by the optimal value of a perturbed version of

the empirical dual problem. To begin, we add and subtract minf2F ⇤(f,�) from the parameterized
dual problem in (4).

D
?
✏ (�) = max

�2B(Eall)
min
✓2H


⇤(✓,�) + min

f2F

⇤(f,�)�min
f2F

⇤(f,�)

�
(55)

= max
�2B(Eall)

min
✓2H

f2F

⇤(f,�) +
⇥
R('(✓, ·))�R(f)

⇤
+

Z

Eall

⇥
Le('(✓, ·))� Le(f)

⇤
d�(e) (56)

Now let µ(e) denote any probability measure with support over Eall. Consider the latter two terms in
the above problem, and observe that we can write

⇥
R('(✓, ·))�R(f)

⇤
+

Z

Eall

⇥
Le('(✓, ·))� Le(f)

⇤
d�(e) (57)

=

Z

Eall

⇥
R('(✓, ·))�R(f)

⇤
µ(e)de+

Z

Eall

⇥
Le('(✓, ·))� Le(f)

⇤
�(e)de (58)

=

Z

Eall


R('(✓, ·))�R(f)
Le('(✓, ·))� Le(f)

�> 
µ(e)
�(e)

�
de (59)

(⇤)


Z

Eall

����


µ(e)
�(e)

�����
1

·
����


R('(✓, ·))�R(f)
Le('(✓, ·))� Le(f)

�����
1

de (60)

=

Z

Eall

�
µ(e) + �(e)

�
·max {R('(✓, ·))�R(f),Le('(✓, ·))� Le(f)} de (61)

(⇤⇤)
 kµ+ �kL1 · kmax {R('(✓, ·))�R(f),Le('(✓, ·))� Le(f)}kL1 (62)
(⇤)
 (1 + k�kL1) · kmax {R('(✓, ·))�R(f),Le('(✓, ·))� Le(f)}kL1 . (63)

where (⇤) and (⇤⇤) follows from separate applications of Hölder’s ineqaulity [151], and (⇤) follows
from an application of Minkowski’s inequality and from the fact that µ is a (normalized) probability
distribution. Let us now consider the second term in the above product:

kmax {R('(✓, ·))�R(f),Le('(✓, ·))� Le(f)}kL1 (64)
= kmax{E[`('(✓, X), Y)� `(f(X), Y)],E[d('(✓, X),'(✓, G(X, e)))� d(f(X), f(G(X, e)))]}kL1

(65)
(�)
 kE [max{|`('(✓, X), Y)� `(f(X), Y)|, |d('(✓, X),'(✓, G(X, e)))� d(f(X), f(G(X, e)))|]kL1

(66)
(4)
 E kmax{|`('(✓, X), Y)� `(f(X), Y)|, |d('(✓, X),'(✓, G(X, e)))� d(f(X), f(G(X, e)))|kL1

(67)
 E [max{L` k'(✓, X)� f(X)k

1
, Ld k'(✓, X)� f(X)k

1
}] (68)

= max{L`, Ld} · E k'(✓, X)� f(X)k
1

. (69)

where (�) and (4) both follow from Jensen’s inequality, and the final inequality follows from our
Lipschitzness assumptions on ` and d. For simplicity, let c = max{L`, Ld}. Now returning to (56),

27

we can combine (63) and (69) to obtain

D
?
✏ (�)  max

�2B(Eall)
min
✓2H

f2F

⇤(f,�) + c(1 + k�kL1) · E k'(✓, X)� f(X)k
1

(70)

= max
�2B(Eall)

min
f2F

⇤(f,�) + c(1 + k�kL1) ·min
✓2H

E k'(✓, X)� f(X)k
1

(71)

 max
�2B(Eall)

min
f2F

⇤(f,�) + c✏(1 + k�kL1). (72)

Now let D?
pert(�) denote the optimal value of the above problem; that is,

D
?
pert(�) , max

�2B(Eall)
min
f2F

⇤(f,�) + c✏(1 + k�kL1) (73)

= max
�2B(Eall)

min
f2F

R(f) + ce+

Z

Eall

[Le(f)� � + c✏] d�(e) (74)

Step 3. In the final step, we prove the theorem. We begin with the perhaps unintuitive fact that
the perturbed problem defined above is the dual problem to a perturbed version of the optimization
problem in (3). More specifically, the perturbed problem in (74) is the dual of

P
?
pert(�) ,minimize

f2F

R(f) + c✏ (75)

subject to Le(f)  � � c✏ 8e 2 Eall. (76)

Note that as this primal perturbed optimization problem is convex since (3) is convex, and by
assumption strong duality also holds for this perturbed problem. Let (f?

pert,�
?
pert) be primal-dual

optimal for the perturbed problems we have defined above. The following saddle-point relation is
evident from the fact that strong duality holds:

⇤(f?
pert,�

0) + c✏ (1 + k�0kL1)  D
?
pert(�) = P

?
pert(�)  ⇤(f 0

,�
?
pert) + c✏

⇣
1 +

���?
pert

��
L1

⌘
(77)

where the inequalities hold for all f 0 2 F and for all �0 2 B(Eall). Using this result for the choice of
f
0 = f

?, where we recall that f? is defined in (50) as the primal optimal solution to (3), it follows
from (72) that

D
?
✏ (�)  D

?
pert(�)  ⇤(f?

,�
?
pert) + c✏

⇣
1 +

���?
pert

��
L1

⌘
(78)

Now, recalling the original saddle-point relation in (72), it holds that ⇤(f?
,�

?
pert)  ⇤(f?

,�
?). Using

this fact along with (78) yields the following result:

D
?
✏ (�)  ⇤(f?

,�
?) + c✏

⇣
1 +

���?
pert

��
L1

⌘
= P

?(�) + c✏

⇣
1 +

���?
pert

��
L1

⌘
(79)

This completes the proof.

C.4 Characterizing the empirical gap (used in Theorem 5.3)

Proposition C.2 (Empirical gap). Assume ` and d are non-negative and bounded in [�B,B] and let
dVC denote the VC-dimension of the hypothesis class A✏. Then it holds with probability 1� � over
the N samples from each domain that

|D?
✏ (�)�D

?
✏,N,Etrain

(�)|  2B

s
1

N


1 + log

✓
4(2N)dVC

�

◆�
(80)

Proof. In this proof, we use a similar approach as in [142, Prop. 2] to derive the generalization
bound. Notably, we extend the ideas given in this proof to accommodate two problems with different
constraints, wherein the constraints of one problem are a strict subset of the other problem.

To begin, let (✓?✏ ,�?
✏) and (✓?✏,N,Etrain

,�
?
✏,N,Etrain

) be primal-dual optimal pairs for (4) and (6) that
achieve D

?
✏ (�) and D

?
✏,N,Etrain

(�) respectively; that is,

(✓?✏ ,�
?
✏) 2 argmax

�2P(Eall)
min
✓2H

R('(✓, ·)) +
Z

Eall

[Le('(✓, ·))� �] d�(e). (81)

28

and

(✓?✏,N,Etrain
,�

?
✏,N,Etrain

) 2 argmax
�(e)�0, e2Etrain

min
✓2H

R̂('(✓, ·)) + 1

|Etrain|
X

e2Etrain

h
L̂e('(✓, ·))� �

i
�(e) (82)

are satisfied. Due to the optimality of these primal-dual pairs, both primal-dual pairs satisfy the KKT
conditions [148]. In particular, the complementary slackness condition implies that

Z

Eall

[Le('(✓?✏ , ·))� �] d�?
✏ (e) = 0 (83)

and that
1

|Etrain|
X

e2Etrain

h
L̂e('(✓?✏,N,Etrain

, ·))� �

i
�
?
✏,N,Etrain

(e) = 0. (84)

Thus, as (83) indicates that the second term in the objective of (81) is zero, we can recharacterize the
optimal value D

?
✏ (�) via

D
?
✏ (�) = R('(✓?✏ , ·)) = EP(X,Y) `('(✓

?
✏ , X), Y) (85)

and similarly from (84), can recharacterize the optimal value D
?
✏,N,Etrain

(�) as

D
?
✏,N,Etrain

(�) = R̂('(✓?✏,N,Etrain
, ·)) = 1

N

NX

i=1

`('(✓?✏,N,Etrain
, xi), yi). (86)

Ultimately, our goal is to bound the gap between |D?
✏ (�)�D

?
✏,N,Etrain

(�)|. Combining (85) and (86),
we see that this gap can be characterized in the following way

|D?
✏ (�)�D

?
✏,N,Etrain

(�)| = |R('(✓?✏ , ·))� R̂('(✓?✏,N,Etrain
, ·))|. (87)

Now due to the optimality of the primal-optimal variables ✓?✏ and ✓
?
✏,N,Etrain

, observe that

R('(✓?✏ , ·))� R̂('(✓?✏ , ·)) (88)

 R('(✓?✏ , ·))� R̂('(✓?✏,N,Etrain
, ·)) (89)

 R('(✓?✏,N,Etrain
, ·))� R̂('(✓?✏,N,Etrain

, ·)) (90)

which, when combined with (87), implies that

|D?
✏ (�)�D

?
✏,N,Etrain

(�)| (91)

 max
n���R('(✓?✏ , ·))� R̂('(✓?✏ , ·))

��� ,
���R('(✓?✏,N,Etrain

, ·))� R̂('(✓?✏,N,Etrain
, ·))

���
o
. (92)

To wrap up the proof, we simply leverage the classical VC-dimension bounds for both of the terms in
(92). That is, following [43], it holds for all ✓ that with probability 1� �,

|R('(✓, ·))� R̂('(✓), ·)|  2B

s
1

N


1 + log

✓
4(2N)dVC

�

◆�
. (93)

As the bound in (93) holds 8✓ 2 H, in particular it holds for ✓?✏ and ✓
?
✏,N,Etrain

. This directly implies
the bound in (80).

C.5 Proof of Theorem 5.3

The Theorem 5.3. Let ✏ > 0 be given, and let ' be an ✏-parameterization of F . Let Assumption C.1
hold, and further assume that ` and d are [0, B]-bounded and that d(P,T) = 0 if and only if P = T
almost surely, and that P ?(�) is L-Lipschitz. Then assuming that A✏ has finite VC-dimension, it
holds with probability 1� � over the N samples from P that

|P ? �D
?
✏,N,Etrain

(�)|  L� + (L` + 2Ld)✏+O
⇣p

log(N)/N
⌘

(94)

29

Proof. The proof of this theorem is a simple consequence of the triangle inequality. Indeed, by
combining Remark B.2, Proposition 5.2, and Proposition C.2, we find that

|P ? �D
?
✏,N,Etrain

(�)| (95)
= |P ? + P

?(�)� P
?(�) +D

?
✏ (�)�D

?
✏ (�)�D

?
✏,N,Etrain

(�)| (96)
 |P ? � P

?(�)|+ |P ?(�)�D
?
✏ (�)|+ |D?(�)�D

?
✏,N,Etrain

(�)| (97)

 L� + ✏k

⇣
1 +

���?
pert

��
L1

⌘
+ 2B

s
1

N


1 + log

✓
4(2N)dVC

�

◆�
. (98)

This completes the proof.

C.6 Proof of Theorem 6.1

Theorem 6.1. Assume that ` and d are [0, B]-bounded, convex, and M -Lipschitz continuous
(i.e. M = max{L`, Ld}. Further, assume that H has finite VC-dimension dVC and that for each
✓1, ✓2 2 H and for each � 2 [0, 1], there exists a parameter ✓ 2 H and a constant ⌫ > 0 such that

EP(X,Y) |�'(✓1, X) + (1� �)'(✓2, X)� '(✓, X)|  ⌫. (99)

Finally, assume that there exists a parameter ✓ 2 H such that '(✓, ·) is strictly feasible for (3), i.e.
that

Le('(✓, ·))  � �M⌫ 8e 2 Eall (100)

where ⌫ is the constant from (99). Then it follows that the primal-dual pair (✓(T)
,�

(T)) obtained
after running the alternating primal-dual iteration in (8) and (9) for T steps with step size ⌘, where

T ,
⇠
k�?k
2⌘M⌫

⇡
+ 1 and ⌘  2M⌫

|Etrain|B2
(101)

satisfies

|P ? � ⇤̂(✓(T)
, µ

(T))|  ⇢+M⌫ + L� +O(
p
log(N)/N) (102)

where k�?k is the optimal dual variable for (4).

Proof. Observe that by the triangle inequality, we have

|P ? � ⇤̂(✓(T)
, µ

(T))| = |P ? � P
?(�) + P

?(�)� ⇤̂(✓(T)
, µ

(T))| (103)

 |P ? � P
?(�)|+ |P ?(�)� ⇤̂(✓(T)

, µ
(T))| (104)

 L� + |P ?(�)� ⇤̂(✓(T)
, µ

(T))| (105)

where the last step follows from Remark B.2. Then, from [152, Theorem 2], it directly follows that

|P ?(�)� ⇤̂(✓(T)
, µ

(T))|  ⇢+M⌫ +O
p
log(N)/N. (106)

Combining this with (105) completes the proof.

30

Algorithm 2 ERM with model-based data augmentation (MBDA)
1: Hyperparameters: Step size ⌘ > 0
2: repeat
3: for minibatch {(xj , yj)}mj=1 in training dataset do
4: x̃j GENERATEIMAGE(xj) 8j 2 [m] . Generate model-based images
5: loss(✓) (1/m)

Pm
j=1[` (xj , yj ;'(✓, ·)) + `(x̃j , yj ;'(✓, ·))]

6: ✓ ✓ � ⌘r✓loss(✓)
7: end for
8: until convergence

Algorithm 3 MBDG with data augmentation (MBDG-DA)
1: Hyperparameters: Primal step size ⌘p > 0, dual step size ⌘d � 0, margin � > 0
2: repeat
3: for minibatch {(xj , yj)}mj=1 in training dataset do
4: x̃j GENERATEIMAGE(xj) 8j 2 [m] . Generate images for constraints
5: xj GENERATEIMAGE(xj) 8j 2 [m] . Generate images for objective
6: loss(✓) (1/m)

Pm
j=1[` (xj , yj ;'(✓, ·)) + `(xj , yj ;'(✓, ·)) + `(x̃j , yj ;'(✓, ·))]

7: distReg(✓) (1/m)
Pm

j=1 d('(✓, xj),'(✓, x̃j))
8: ✓ ✓ � ⌘pr✓[loss(✓) + � · distReg(✓)]
9: � [�+ ⌘d (distReg(✓)� �)]+

10: end for
11: until convergence

D Algorithmic variants for MBDG

In Section 7, we considered several algorithmic variants of MBDG. Each variant offers a natural point
of comparison to the MBDG algorithm, and for completeness, in this section we fully characterize
these variants.

D.1 Data augmentation

In Section 7, we did an ablation study concerning various data-augmentation alternatives to MBDG.
In particular, in the experiments performed on ColoredMNIST, we compared results obtained with
MBDG to two algorithms we called MBDA and MBDG-DA. For clarity, in what follows we describe
each of them in more detail.

MBDA. In the MDBA variant, we train using ERM with data augmentation through the learned
domain transformation model G(x, e). This procedure is summarized in Algorithm 2. Notice that in
this algorithm, we do not consider the constraints engendered by the assumption of G-invariance.
Rather, we simply seek to use follow the recent empirical evidence that suggests that ERM with proper
tuning and data augmentation yields state-of-the-art performance in domain generalization [46]. Note
that in Table 1, the MBDA algorithm improves significantly over the baselines, but that it lags
more than 20 percentage points behind results obtained using MBDG. This highlights the utility of
enforcing constraints rather than performing data augmentation on the training objective.

MBDG-DA. In the MBDG-DA variant, we follow a similar procedure to the MBDG algorithm.
The only modification is that we perform data augmentation through the learned model G(x, e) on the
training objective in addition to enforcing the G-invariance constraints. This procedure is summarized
in Algorithm 3. As shown in Table 1, this procedure performs rather well on ColoredMNIST,
beating all baselines by nearly 20 percentage points. However, this algorithm still does not reach the
performance level of MBDG when the -90% domain is taken to be the test domain.

31

Algorithm 4 Regularized MBDG (MBDG-Reg)
1: Hyperparameters: Step size ⌘ > 0, weight w > 0
2: repeat
3: for minibatch {(xj , yj)}mj=1 in training dataset do
4: x̃j GENERATEIMAGE(xj) 8j 2 [m] . Generate model-based images
5: loss(✓) (1/m)

Pm
j=1[` (xj , yj ;'(✓, ·)) + `(x̃j , yj ;'(✓, ·))]

6: distReg(✓) (1/m)
Pm

j=1 d('(✓, xj),'(✓, x̃j))
7: ✓ ✓ � ⌘r✓[loss(✓) + w · distReg(✓)]
8: end for
9: until convergence

D.2 Regularization

In Section 7, we also compared the performance of MBDG to a regularized version of MBDG. In
this regularized version, we sought to solve (32) using the algorithm described in Algorithm 4. In
particular, in this algorithm we fix the weight w > 0 as a hyperparameter, and we perform SGD on
the regularized loss function loss(✓) + w · distReg(✓). Note that while this method performs well
in practice (see Table 1), it is generally not possible to provide generalization guarantees for the
regularized version of the problem.

32

Table 4: DomainBed hyperparameters for MBDG and its variants. We record the additional
hyperparameters and their selection criteria for MBDG and its variants. Each of these hyperparameters
was selected via randomly in the ranges defined in the third column in the DomainBed package.

Algorithm Hyperparameter Randomness Default

MBDG Dual step size ⌘d Unif(0.001, 0.1) 0.05
Constraint margin � Unif(0.0001, 0.01) 0.025

MBDG-DA Dual step size ⌘d Unif(0.001, 0.1) 0.05
Constraint margin � Unif(0.0001, 0.01) 0.025

MBDG-Reg Weight w Unif(0.5, 10.0) 1.0

E Additional experiments and experimental details

In this appendix, we record further experimental details beyond the results presented in Section
7. The experiments performed on ColoredMNIST, PACS, and VLCS were all performed using the
DomainBed package4. All of the default hyperparameters (e.g. learning rate, weight decay, etc.)
were left unchanged from the standard DomainBed implementation. In Table 4, we record the
additional hyperparameters used for MBDG and its variants as well as the random criteria by
which hyperparameters were generated. For each of these DomainBed datasets, model-selection
was performed via hold-one-out cross-validation, and the baseline accuracies were taken from
commit 7df6f06 of the DomainBed repository. The experiments on the WILDS datasets used the
hyperparameters recorded by the authors of [20]; these hyperparameters are recorded in Sections E.1
and E.2. Throughout the experiments, we use the KL-divergence as the distance metric d.

E.1 Camelyon17-WILDS

For the Camelyon17-WILDS dataset, we used the out-of-distribution validation set provided in the
Camelyon17-WILDS dataset to tune the hyperparameters for each classifier. This validation set
contains images from a hospital that is not represented in any of the training domains or the test
domain. Following [20], we used the DenseNet-121 architecture [45] and the Adam optimizer [153]
with a batch size of 200. We also used the same hyperparameter sweep as was described in Appendix
B.4 of [20]. In particular, when training using our algorithm, we used the the following grid for the
(primal) learning rate: ⌘p 2 {0.01, 0.001, 0.0001}. Because we use the same hyperparameter sweep,
architecture, and optimizer, we report the classification accuracies recorded in Table 9 of [20] to
provide a fair comparison to past work. After selecting the hyperparameters based on the accuracy
on the validation set, we trained classifiers using MBDG for 10 independent runs and reported the
average accuracy and standard deviation across these trials in Table 2.

In Section 7, we performed an ablation study on Camelyon17-WILDS wherein the model G was
replaced by standard data augmentation transforms. For completeness, we describe each of the
methods used in this plot below. For each method, invariance was enforced between a clean images
drawn from the training domains and corresponding data that was varied according to a particular
fixed transformation.

CJ (Color Jitter). The PIL color transformation5. See Figure 8 for samples.

B+C (Brightness and contrast). PIL Brightness
6 and Contrast

7 transformations. See Figure 9
for samples.

RA (RandAugment). We use the data augmentation technique RandAugment [145], which ran-
domly samples random transformations to be applied at training time. In particular, the fol-

4https://github.com/facebookresearch/DomainBed
5https://pillow.readthedocs.io/en/stable/reference/ImageEnhance.html#PIL.

ImageEnhance.Color
6https://pillow.readthedocs.io/en/stable/reference/ImageEnhance.html#PIL.

ImageEnhance.Brightness
7https://pillow.readthedocs.io/en/stable/reference/ImageEnhance.html#PIL.

ImageEnhance.Contrast

33

https://github.com/facebookresearch/DomainBed
https://pillow.readthedocs.io/en/stable/reference/ImageEnhance.html%23PIL.ImageEnhance.Color
https://pillow.readthedocs.io/en/stable/reference/ImageEnhance.html%23PIL.ImageEnhance.Color
https://pillow.readthedocs.io/en/stable/reference/ImageEnhance.html%23PIL.ImageEnhance.Brightness
https://pillow.readthedocs.io/en/stable/reference/ImageEnhance.html%23PIL.ImageEnhance.Brightness
https://pillow.readthedocs.io/en/stable/reference/ImageEnhance.html%23PIL.ImageEnhance.Contrast
https://pillow.readthedocs.io/en/stable/reference/ImageEnhance.html%23PIL.ImageEnhance.Contrast

(a) Training images. (b) Corresponding images after augmentations.

Figure 8: Samples before and after CJ transformations.

(a) Training images. (b) Corresponding images after augmentations.

Figure 9: Samples before and after B+C transformations.

lowing transformations are randomly sampled: AutoContrast, Equalize, Invert, Rotate,
Posterize, Solarize, SolarizeAdd, Color, Constrast, Brightness, Sharpness, ShearX,
ShearY, CutoutAbs, TranslateXabs, and TranslateYabs. We used an open-source implementa-
tion of RandAugment for this experiment8. See Figure 10 for samples.

RA-Geom (RandAugment with geometric transformations). We use the RandAugment scheme
with a subset of the transformations mentioned in the previous paragraph. In particular, we use the
following geometric transformations: Rotate, ShearX, ShearY, CutoutAbs, TranslateXabs, and
TranslateYabs. See Figure 11 for samples.

RA-Color (RandAugment with color-based transformations). We use the RandAugment scheme
with a subset of transformations mentioned in the RandAugment paragraph. In particular, we
use the following color-based transformations: AutoContrast, Equalize, Invert, Posterize,
Solarize, SolarizeAdd, Color, Constrast, Brightness, Sharpness. See Figure 12 for sam-
ples.

MUNIT. We use an MUNIT model trained on the images from the training datasets; this is the
procedure advocated for in the main text, i.e. in the GENERATEIMAGE(x) procedure. See Figure 13
for samples.

E.2 FMoW-WILDS

As with the Camelyon17-WILDS dataset, to facilitate a fair comparison, we again use the out-of-
distribution validation set provided in [20]. While the authors report the architecture, optimizer, and
final hyperparameter choices used for the FMoW-WILDS dataset, they not report the grid used for
hyperparameter search. For this reason, we rerun all baselines along with our algorithm over a grid of
hyperparameters using the same architecture and optimizer as in [20]. In particular, we follow [20] by
training a DenseNet-121 with the Adam optimizer with a batch size of 64. We selected the (primal)
learning rate from ⌘p 2 {0.05, 0.01, 0.005, 0.001}. We selected the trade-off parameter �IRM for
IRM from the grid �IRM 2 {0.1, 0.5, 1.0, 10.0}. As before, the results in Table 2 list the average
accuracy and standard deviation over ten independent runs attained by our algorithm as well as ERM,
IRM, and ARM.

8https://github.com/ildoonet/pytorch-randaugment

34

https://github.com/ildoonet/pytorch-randaugment

(a) Training images. (b) Corresponding images after augmentations.

Figure 10: Samples before and after RandAugment transformations.

(a) Training images. (b) Corresponding images after augmentations.

Figure 11: Samples before and after RA-Geom transformations.

E.3 PACS

In Table 3, we provide a full set of results for the PACS dataset. Note that our result of 85.6%
(averaged across the domains) is the best known result on PACS. In particular, this result is nearly two
percentage points higher than any of the baselines, which represents a significant advancement in the
state-of-the-art for this benchmark. In large part, this result is due to significant improvements on
the “Sketch” (S) subset, wherein MBDG improves by nearly seven percentage points over all other
baselines.

Table 5: Full results for PACS. In this table, we present results for all baselines on the PACS dataset.

Algorithm A C P S Avg
ERM 83.2 ± 1.3 76.8 ± 1.7 97.2 ± 0.3 74.8 ± 1.3 83.0
IRM 81.7 ± 2.4 77.0 ± 1.3 96.3 ± 0.2 71.1 ± 2.2 81.5
GroupDRO 84.4 ± 0.7 77.3 ± 0.8 96.8 ± 0.8 75.6 ± 1.4 83.5
Mixup 85.2 ± 1.9 77.0 ± 1.7 96.8 ± 0.8 73.9 ± 1.6 83.2
MLDG 81.4 ± 3.6 77.9 ± 2.3 96.2 ± 0.3 76.1 ± 2.1 82.9
CORAL 80.5 ± 2.8 74.5 ± 0.4 96.8 ± 0.3 78.6 ± 1.4 82.6
MMD 84.9 ± 1.7 75.1 ± 2.0 96.1 ± 0.9 76.5 ± 1.5 83.2
DANN 84.3 ± 2.8 72.4 ± 2.8 96.5 ± 0.8 70.8 ± 1.3 81.0
CDANN 78.3 ± 2.8 73.8 ± 1.6 96.4 ± 0.5 66.8 ± 5.5 78.8
MTL 85.6 ± 1.5 78.9 ± 0.6 97.1 ± 0.3 73.1 ± 2.7 83.7
SagNet 81.1 ± 1.9 75.4 ± 1.3 95.7 ± 0.9 77.2 ± 0.6 82.3
ARM 85.9 ± 0.3 73.3 ± 1.9 95.6 ± 0.4 72.1 ± 2.4 81.7
VREx 81.6 ± 4.0 74.1 ± 0.3 96.9 ± 0.4 72.8 ± 2.1 81.3
RSC 83.7 ± 1.7 82.9 ± 1.1 95.6 ± 0.7 68.1 ± 1.5 82.6

MBDG 80.6 ± 1.1 79.3 ± 0.2 97.0 ± 0.4 85.2 ± 0.2 85.6

35

(a) Training images. (b) Corresponding images after augmentations.

Figure 12: Samples before and after RA-Color transformations.

(a) Training images. (b) Corresponding images after augmentations.

Figure 13: Samples before and after (learned) MUNIT transformations.

E.4 VLCS

In Table 6, we provide a full set of results for the VLCS dataset. As shown in this Table, MBDG offers
competitive performance to other state-of-the-art method. Indeed, MBDG achieves the best results
on the “LabelMe” (L) subset by nearly two percentage points.

Table 6: Full results for VLCS. In this table, we present results for all baselines on the VLCS dataset.

Algorithm C L S V Avg
ERM 98.0 ± 0.4 62.6 ± 0.9 70.8 ± 1.9 77.5 ± 1.9 77.2
IRM 98.6 ± 0.3 66.0 ± 1.1 69.3 ± 0.9 71.5 ± 1.9 76.3
GroupDRO 98.1 ± 0.3 66.4 ± 0.9 71.0 ± 0.3 76.1 ± 1.4 77.9
Mixup 98.4 ± 0.3 63.4 ± 0.7 72.9 ± 0.8 76.1 ± 1.2 77.7
MLDG 98.5 ± 0.3 61.7 ± 1.2 73.6 ± 1.8 75.0 ± 0.8 77.2
CORAL 96.9 ± 0.9 65.7 ± 1.2 73.3 ± 0.7 78.7 ± 0.8 78.7
MMD 98.3 ± 0.1 65.6 ± 0.7 69.7 ± 1.0 75.7 ± 0.9 77.3
DANN 97.3 ± 1.3 63.7 ± 1.3 72.6 ± 1.4 74.2 ± 1.7 76.9
CDANN 97.6 ± 0.6 63.4 ± 0.8 70.5 ± 1.4 78.6 ± 0.5 77.5
MTL 97.6 ± 0.6 60.6 ± 1.3 71.0 ± 1.2 77.2 ± 0.7 76.6
SagNet 97.3 ± 0.4 61.6 ± 0.8 73.4 ± 1.9 77.6 ± 0.4 77.5
ARM 97.2 ± 0.5 62.7 ± 1.5 70.6 ± 0.6 75.8 ± 0.9 76.6
VREx 96.9 ± 0.3 64.8 ± 2.0 69.7 ± 1.8 75.5 ± 1.7 76.7
RSC 97.5 ± 0.6 63.1 ± 1.2 73.0 ± 1.3 76.2 ± 0.5 77.5

MBDG 98.3 ± 1.2 68.1 ± 0.5 68.8 ± 1.1 76.3 ± 1.3 77.9

36

Figure 14: Multi-modal image-to-image translation networks. In this paper, we parameterize
domain transformation models via multi-modal image-to-image translation networks, which can be
trained to map images from one domain so that they resemble images from different domains.

F Learning domain transformation models from data

Regarding challenge (C4), critical to our approach is having access to the underlying domain
transformation model G(x, e). For the vast majority of settings, the underlying function G(x, e)
is not known a priori and cannot be represented by a simple expression. For example, obtaining a
closed-form expression for a model that captures the variation in coloration, brightness, and contrast
in the medical imaging dataset shown in Figure 1 would be challenging.

F.1 Multimodal image-to-image translation networks

To address this challenge, we argue that a realistic approximation of the underlying domain transfor-
mation model can be learned from the instances drawn from the training datasets De for e 2 Etrain. In
this paper, to learn domain transformation models, we train multimodal image-to-image translation
networks (MIITNs) on the instances drawn from the training domains. MIITNs are designed to
transform samples from one dataset so that they resemble a diverse collection of images from another
dataset. That is, the constraints used to train these models enforce that a diverse array of samples is
outputted for each input image. This feature precludes the possibility of learning trivial maps between
domains, such as the identity transformation.

As illustrated in Figure 14, these architectures generally consist of two components: a disentangled
representation [154] and a generative model. The role of the disentangled representation is to recover
a sample x generated according to X from a instance x

e observed in a particular domain e 2 Eall.
In other words, for a fixed instance x

e = G(x, e), the disentangled representation is designed to
disentangle x from e via (x, e) = H(xe). On the other hand, the role of the generative is to map
each instance x ⇠ X to a realization in a new environment e0. Thus, given x and e at the output
of the disentangled representation, we generate an instance from a new domain by replacing the
environmental code e with a different environmental parameter e0 2 Eall to produce the instance
x
e0 = G(x, e0). In this way, MIITNs are a natural framework for learning domain transformation

models, as they facilitate 1) recovering samples from X via the disentangled representation, and 2)
generating instances from new domains in a multimodal fashion.

Samples from learned domain transformation models. In each of the experiments in Section
7, we use the MUNIT architecture introduced in [102] to parameterize MIITNs. As shown in Table
7 and in Appendix G, models trained using the MUNIT architecture learn accurate and diverse
transformations of the training data, which often generalize to generate images from new domains.
Notice that in this table, while the generated samples still retain the characteristic features of the
input image (e.g. in the top row, the cell patterns are the same across the generated samples), there is
clear variation between the generated samples. Although these learned models cannot be expected
to capture the full range of inter-domain generalization in the unseen test domains Eall\Etrain, in
our experiments, we show that these learned models are sufficient to significantly advance the
state-of-the-art on several domain generalization benchmarks.

37

Table 7: We show samples from domain transformation models trained on images from the training
datasets De for e 2 Etrain using the MUNIT architecture for the Camelyon17-WILDS, FMOW-WILDS,
and PACS datasets.

Dataset Original Samples from learned domain transformation models G(x, e)

ColoredMNIST

Camelyon17-

WILDS

FMoW-

WILDS

PACS

G Further discussion of domain transformation models

In some applications, domain transformation models in the spirit of Assumption 4.1 are known
a priori. To illustrate this, consider the classic domain generalization task in which the domains
correspond to different fixed rotations of the data [155, 57]. In this setting, the underlying generative
model is given by

G(x, e) := R(e)x for e 2 [0, 2⇡) (107)

where R(e) is a one-dimensional rotation matrix parameterized by an angle e. In this way, each
angle e is identified with a different domain in Eall. However, unlike in this simple example, for the
vast majority of settings encountered in practice, the underlying domain transformation model is
not known a priori and cannot be represented by concise mathematical expressions. For example,
obtaining a closed-form expression for a generative model that captures the variation in coloration,
brightness, and contrast in the Camelyon17-WILDS cancer cell dataset shown in Figure 1a would be
very challenging.

In this appendix, we provide an extensive discussion concerning the means by which we used
unlabeled data to learn domain transformation models using instances drawn from the training
domains Etrain. In particular, we argue that it is not necessary to have access to the true underlying
domain transformation model G to achieve state-of-the-art results in domain generalization. We then
give further details concerning how we used the MUNIT architecture to train domain transformation
models for ColoredMNIST, Camelyon17-WILDS, FMoW-WILDS, PACS, and VLCS. Finally, we show
further samples from these learned domain transformation models to demonstrate that high-quality
samples can be obtained on this diverse array of datasets.

G.1 Is it necessary to learn a perfect domain transformation model?

We emphasize that while our theoretical results rely on having access to the underlying domain
transformation model, our algorithm and empirical results do not rely on having access to the true G.
Indeed, although we did not have access to the true model in any of the experiments in Section 7, our
empirical results show that we were able to achieve state-of-the-art results on several datasets.

38

Figure 15: Multimodal Camelyon17-WILDS samples. Images from Camelyon17-WILDS (left) and
images generated by sampling different style codes e ⇠ N (0, I) (right).

Figure 16: Multimodal FMoW-WILDS samples. Images from FMoW-WILDS (left) and images gener-
ated by sampling different style codes e ⇠ N (0, I) (right).

G.2 Learning domain transformation models with MUNIT

In practice, to learn a domain transformation model, a number of methods from the deep generative
modeling literature have been recently been proposed [102, 156, 157]. In particular, throughout the
remainder of this paper we will use the MUNIT architecture introduced in [102] to parameterize
learned domain transformation models. This architecture comprises two GANs and two autoencoding
networks. In particular, the MUNIT architecture – along with many related works in the image-
to-image translation literature – was designed to map images between two datasets A and B. In
this paper, rather than separating data we simply use DX for both A and B, meaning that we train
MUNIT to map the training data back to itself. In this way, since DX contains data from different
domains e 2 Etrain, the architecture is exposed to different environments during training, and thus
seeks to map data between domains.

G.3 On the utility of multi-modal image-to-image translation networks.

In this paper, we chose the MUNIT framework because it is designed to learn a multimodal transfor-
mation that maps an image x to a family of images with different levels of variation. Unlike methods
that seek deterministic mappings, e.g. CycleGAN and its variants [101], this method will learn to
generate diverse images, which allows us to more effectively enforce invariance over a wider class
of images. In Figures 15, 16, and 17, we plot samples generated by sampling different style codes
e ⇠ N (0, I) for MUNIT. Note that while the results for Camelyon17-WILDS and FMoW-WILDS are
sampled using the model G(x, e), the samples from PACS are all sampled from different models.

39

Figure 17: Multimodal PACS samples. Images from PACS (left) and images generated by sampling
different style codes e ⇠ N (0, I) (right).

40

	Introduction
	Related work
	Domain generalization
	Model-based domain generalization
	Data-dependent duality gap for MBDG
	MBDG: A principled algorithm for domain generalization
	Experiments
	ColoredMNIST
	Camelyon17-WILDS and FMoW-WILDS
	PACS

	Acknowledgements and disclosure of funding
	A causal interpretation of MBDG
	Further theoretical results and discussion
	On the optimality of relaxation of Problem Lg in Lg
	The case when Lg

	The case when Lg
	Relationship to constrained PAC learning
	Regularization vs. dual ascent

	Omitted proofs
	Proof of Proposition 4.3
	Proof of Proposition 4.5
	Proof of Proposition 5.2
	Characterizing the empirical gap (used in Theorem 5.3)
	Proof of Theorem 5.3
	Proof of Theorem 6.1

	Algorithmic variants for MBDG
	Data augmentation
	Regularization

	Additional experiments and experimental details
	Camelyon17-WILDS
	FMoW-WILDS
	PACS
	VLCS

	Learning domain transformation models from data
	Multimodal image-to-image translation networks

	Further discussion of domain transformation models
	Is it necessary to learn a perfect domain transformation model?
	Learning domain transformation models with MUNIT
	On the utility of multi-modal image-to-image translation networks.

