
Proceedings of Machine Learning Research 260:–, 2024 ACML 2024

One-Shot Machine Unlearning with Mnemonic Code

Tomoya Yamashita tomoya.yamashita@ntt.com
NTT Social Informatics Laboratories

Masanori Yamada masanori.yamada@ntt.com
NTT Social Informatics Laboratories

Takashi Shibata t.shibata@ieee.org

NTT Communication Science Laboratories

Editors: Vu Nguyen and Hsuan-Tien Lin

Abstract

Ethical and privacy issues inherent in artificial intelligence (AI) applications have been a
growing concern with the rapid spread of deep learning. Machine unlearning (MU) is the
research area that addresses these issues by making a trained AI model forget about unde-
sirable training data. Unfortunately, most existing MU methods incur significant time and
computational costs for forgetting. Therefore, it is often difficult to apply these methods
to practical datasets and sophisticated architectures, e.g., ImageNet and Transformer. To
tackle this problem, we propose a lightweight and effective MU method. Our method iden-
tifies the model parameters sensitive to the forgetting targets and adds perturbation to such
model parameters. We identify the sensitive parameters by calculating the Fisher Informa-
tion Matrix (FIM). This approach does not require time-consuming additional training for
forgetting. In addition, we introduce class-specific random signals called mnemonic code
to reduce the cost of FIM calculation, which generally requires the entire training data and
incurs significant computational costs. In our method, we train the model with mnemonic
code; when forgetting, we use a small number of mnemonic codes to calculate the FIM and
get the effective perturbation for forgetting. Comprehensive experiments demonstrate that
our method is faster and better at forgetting than existing MU methods. Furthermore, we
show that our method can scale to more practical datasets and sophisticated architectures.

Keywords: Deep Learning, Machine Unlearning, Mnemonic Code

1. Introduction

Ethical and privacy issues inherent in AI applications have been a growing concern with
the rapid spread of deep learning. For example, if an AI model has undesirable informa-
tion from an ethical standpoint, this will be a barrier to applying the AI model in society.
Ethical perspectives are largely based on social conditions, and the definition of “undesir-
able information” may change over time. Also, there may be cases where users or public
organizations request the deletion of their information to the AI model that uses their data
for training. In such cases, AI models must be modified immediately to respond to social
changes and deletion requests.

MU is a research area responding to such demand (Nguyen et al., 2022). MU aims
to make a trained AI model forget about undesirable training data. When we obtain an
effective MU method, it will provide a stepping stone to solving the problems of ethics, data
leakage, and so on. Thus far, while various MU methods have been proposed, most of them

© 2024 T. Yamashita, M. Yamada & T. Shibata.

Yamashita Yamada Shibata

incur significant time and computational costs due to the additional training or the use of
large amounts of training data for forgetting. These methods often cannot apply to more
practical datasets and sophisticated architectures such as ImageNet, Transformer, and so
on. To make MU even more practical, a simple-yet-effective MU method is required.

To tackle this problem, we propose a one-shot MU method that does not incur sig-
nificant time and computational costs. In this paper, we focus on class removal, which
forgets about a particular class in the training data, e.g., scenarios like removing some-
one’s facial information from a face authentication AI system. In our method, we identify
the model parameters sensitive to each class by calculating the FIM. FIM is often used in
continual learning to avoid catastrophic forgetting (Kirkpatrick et al., 2017; Huszár, 2018;
Ritter et al., 2018). Then, we add the effective perturbation to the model parameters that
increase the loss of the forgetting class without accuracy degradation for the remaining
classes. In addition, we introduce class-specific random signals called mnemonic code to
reduce the cost of FIM calculation, which generally requires the entire training data and
incurs significant computational costs. Mnemonic code was first introduced to associate the
information of each class with fairly simple codes (Shibata et al., 2021). In our method,
when training a model, we prepare the mnemonic code per class and embed them in the
model by stochastically replacing the training data with the mnemonic codes. Then, in the
forgetting phase, we use a small amount of mnemonic codes to calculate the FIM and get
effective perturbation. Our method does not require additional training or large amounts
of training data, contributing to lightweight MU 1.

In the experiments, we use artificial and natural datasets to evaluate the forgetting
capability and the MU processing speed of our method. In addition, through FIM estimation
experiments, we confirm that mnemonic codes can approximate the Oracle FIM of the entire
training data precisely and largely contribute to one-shot effective forgetting. Also, we show
that our method works effectively for pre-trained models by applying a few steps of fine-
tuning using mnemonic codes. Furthermore, our lightweight method can scale to more
practical datasets and sophisticated architectures (e.g. ImageNet and Transformer). Our
contributions are as follows:

• We propose a lightweight and effective MU method that adds one-shot perturbation
to the model parameter. In addition, our method uses mnemonic codes to accelerate
the perturbation calculation.

• Experimental results demonstrate that our method outperforms existing MU methods
regarding the forgetting capability and the MU processing speed.

• We show that a few mnemonic codes could approximate the Oracle FIM of the entire
training data precisely and largely contribute to one-shot effective forgetting.

• We show that our method can work for pre-trained models and scale to more practical
datasets and recent sophisticated architectures.

1. The code is available on https://github.com/tomyamkum/OneShotMU-with-MNCode.

One-Shot Machine Unlearning with Mnemonic Code

2. Related Work

MU was first introduced by Cao and Yang (2015). The original MU in early date is defined
as removing the influence of the forgetting data points from the AI model so that the
resulting model is indistinguishable from the model trained on a dataset without them.
Since the concept of MU was first proposed, several types of unlearning requests have been
introduced, i.e., item removal, class removal, task removal, and so on (Nguyen et al., 2022).
This paper focuses on class removal, which is forgetting about a particular class in the
training data. MU approaches can be divided into two categories: exact unlearning and
approximate unlearning (Nguyen et al., 2022). Our method corresponds to approximate
unlearning. Here, we describe them and introduce existing research.

Exact unlearning. The exact unlearning approach can provide unlearning proof. A typical
approach to exact unlearning is re-training the model from scratch. While this approach
can forget the information thoroughly, it often requires significant time and computational
costs. Bourtoule et al. (2021) reduced the re-training cost for forgetting by subdividing the
model and training data called a shard. Yan et al. (2022) also reduced the re-training cost
by subdividing the model and the training data. They divided the training data by class
and utilized the one-class classifier to keep the impact of forgetting into one class, reducing
the accuracy degradation.

Approximate unlearning. The approximate unlearning approach estimates the contri-
bution of the data to the model parameters and processes the model parameters. Since this
approach does not re-train the model from scratch, it can save on forgetting costs.

Guo et al. (2020) formulated the MU problem setting called certified removal from
differential privacy and proposed a method that can be applied to linear models. They
also mentioned that their method can be applied to deep learning models by applying it
to the final linear layer. Golatkar et al. (2020a) proposed a MU method using FIM for
forgetting. Golatkar et al. (2020b) went on to propose a method that uses Neural Tangent
Kernel and FIM. Foster et al. (2024) proposes a MU method using FIM, and they reduce
the computational cost by reducing the number of FIM calculations. Tarun et al. (2023)
achieved forgetting by training on adversarial noise that has a high loss to the forgetting
classes. Chundawat et al. (2023) proposed a MU method that does not require training
data by using the adversarial noise of each class. Lin et al. (2023) realized unlearning
by transferring the knowledge of the remaining classes from the original model. During
training, they introduced an entanglement-reduced mask (ERM) to reduce the knowledge
entanglement in CNN models and effectively transfer knowledge in the forgetting phase.
Shibata et al. (2021) proposed Learning with Selective Forgetting: a novel framework in
which new tasks are learned while the previously learned target classes are forgotten through
selective continual learning.

These approximate unlearning approaches aim to make a model forget by modifying the
model parameters rather than re-training from scratch, and some studies aim to reduce time
and computational costs for forgetting. However, these methods require additional training
or a large amount of data for forgetting, making them difficult to apply to large practical
datasets and sophisticated architectures. In contrast, our method is a one-shot MU method
with mnemonic code that does not require additional training or a lot of training data,
making it extremely fast and lightweight.

Yamashita Yamada Shibata

Figure 1: Overview of our method. We train the deep learning model with mnemonic
codes in the training phase. The sensitive model parameters for each class are represented
by color. In the forgetting phase, the target class is forgotten by perturbating the model
parameters sensitive to that class.

3. Method

We propose a one-shot MU method with mnemonic code. An overview of our method is
shown in Fig. 1. In our method, we identify the model parameters sensitive to each class and
add effective perturbation that increases the loss of the forgetting class without accuracy
degradation for the remaining classes. We identify the sensitive parameters by calculating
the FIM. Furthermore, we introduce class-specific random signals called mnemonic code to
accelerate the FIM calculation. When training a model, we prepare the mnemonic code
per class and embed the codes in the model by stochastically replacing the training data
with them. In forgetting, we use a small amount of mnemonic codes to calculate the FIM
and get effective perturbation for forgetting. The following sections explain the mnemonic
code and our training procedure. Then, we explain how to identify the model parameters
sensitive to each class and how to obtain the effective perturbation for forgetting.

3.1. Proposal

Training with mnemonic code. Mnemonic code is a class-specific random signal intro-
duced in Shibata et al. (2021). Our method uses mnemonic code to accelerate the FIM cal-
culation in the forgetting procedure. When training a model, we prepare the mnemonic code
per class and stochastically replace the training data with the mnemonic codes. Mnemonic
codes have a class label, and the training data are replaced with the mnemonic codes of the
same class. We generate each mnemonic code from a normal distribution, as with Shibata
et al. (2021). The training algorithm is shown in Algorithm 1. We provide a theoretical
analysis of training with mnemonic codes ξ to derive the effective perturbation for forget-
ting. The data distribution used in training is as follows:

p(x) = tmixp
ξ(x) + (1− tmix)p

d(x), (1)

where pd(x) is the genuine data distribution and pξ(x) is the data distribution of mnemonic
codes. Here, tmix ∈ [0, 1] is the probability of replacing the training data, and in this paper,
we set tmix below 0.3. The setting of tmix is described in Sec. 4.2.

Forgetting procedure. We attempt to forget the target class based on the above data
distribution p(x). Specifically, we design the one-shot perturbation δ that increases the

One-Shot Machine Unlearning with Mnemonic Code

Algorithm 1 Training with mnemonic code

Input: dataset x ∼ pd(x), model parameter w, loss L
Parameter: mnemonic code replacing probability tmix,
learning rate lr
Output: trained model parameters

1: ξ ∼ N(0,1)
2: for e in epochs do
3: for i in datasize do
4: t ∼ U(0, 1)
5: if t < tmix then
6: x̃i = ξc
7: else
8: x̃i = xi

9: end if
10: end for
11: w = w − lr∇wL(x̃;w)
12: end for

loss of the forgetting class without accuracy degradation for the remaining classes. We first
analyze how the perturbation affects the loss of the forgetting class and then consider the
remaining classes.

LCF(w
∗ + δ)

≃ LCF(w
∗) +

1

2
δTFCFδ

= LCF(w
∗) +

1

2
δT{tmixF

ξ
CF + (1− tmix)F

d
CF}δ

≃ LCF(w
∗) +

1

2
{tmix

∑
i

f ξ
CF,i + (1− tmix)

∑
i

fd
CF,i}δ

2
i , (2)

where w∗ is the optimal parameter for the loss of the training data with mnemonic codes
p(x), LCF is the loss of the forgetting class CF, FCF is the FIM defined as follows,

FCF,i,j = Ex∼p(x)

[
∂LCF(x;w)

∂wi

∂LCF(x;w)

∂wj

]
, (3)

F ξ
CF and F d

CF are the FIMs calculated with the mnemonic codes ξ and the training data x

in CF, and f ξ
CF and fd

CF are the diagonal vectors of F ξ
CF and F d

CF . We call F d
CF as the Oracle

FIM which is calculated with the entire training data. In Eq. 2, as with Kirkpatrick et al.
(2017), Laplace’s approximation is applied in the first line, and the diagonal approximation
is applied in the last line 2. Equation 2 shows that the fluctuation of the loss due to the
perturbation ξ is determined by the linear sum of f ξ

CF and fd
CF . Our method seeks the

perturbation that increases the loss of the forgetting class. To design a lightweight MU

2. Laplace’s approximation is to approximate the function by a Gaussian distribution and assumes that the
first derivative of the approximated function is zero, i.e., ∇LCF(w

∗) = 0. We experimentally found that
these values are of the same order as the first derivative of the loss for the training dataset: ∇L(w∗),
which is generally assumed to be zero for trained models. We show the results in Appendix. B.

Yamashita Yamada Shibata

method, we aim to relax the restriction of using the entire training data to calculate the
FIM in Eq. 2. In our method, we introduce the following loss instead of LCF(w

∗ + δ):

L̃CF(w
∗ + δ) = LCF(w

∗) +
1

2

∑
i

f ξ
CF,iδ

2
i , (4)

which does not need the training data to calculate the FIM. The validity of using the
surrogate loss L̃CF instead of the loss LCF is assured by showing that the distance between

f ξ
CF and fd

CF is sufficiently small. The details of the validity are discussed in Sec. 4.3.

From Eq. 4, we can see that large perturbation for the model parameters with large
f ξ
CF cause the loss of the forgetting class CF to vary significantly. However, perturbating

the model parameters in accordance with Eq. 4 can significantly reduce the accuracy for
the remaining classes because we do not take into account the remaining classes. To avoid
accuracy degradation for the remaining classes, we consider the sensitivity of each model
parameter to the remaining classes, which can be derived in the same way as in Eq. 4.
Specifically, we devise a strategy for achieving MU to add large perturbation to the model
parameters such that the fCF ,i is large while the fCR ,i is small. We follow this strategy and
propose the perturbation amplitude ηi for the model parameter wi,

wi = wi ± αηlηi, (5)

ηi =
fCF ,i
fCR ,i

=

1
|#CF|

∑
j∈CF E

[(
∂Lj

∂wi

)2
]

1
|#CR|

∑
k∈CR E

[(
∂Lk
∂wi

)2
] , (6)

αηl = min

(
λ1,

λ2

maxηi∈ηl ηi

)
, (7)

where Lj and Lk are the losses of the mnemonic code of class j ∈ CF and class k ∈ CR,
|#C| is the size of the class set C. ηi is the perturbation amplitude added to the i-th
model parameter, which is designed as a fraction, with the sensitivity to the forgetting
class in the numerator and the sensitivity to the remaining classes in the denominator. If
the value of ηi is large, the i-th model parameter is sensitive to the forgetting class and
insensitive to the remaining classes. Therefore, Eq. 6 allows us to control the perturbation
amplitude by its sensitivity to the forgetting and remaining classes. Note that there are
two ways of adding positive and negative perturbation in Eq. 5. This is because the FIM
only indicates the sensitivity of model parameters, which indicates how much the loss of the
corresponding class changes when the model parameter changes. Therefore, ηi only indicates
the perturbation amplitude for forgetting and has redundancy of positive or negative. In
the forgetting phase, we add the amplitude ηi to the model parameters in positive and
negative ways. Then, we adopt the resulting model that effectively achieves forgetting by
measuring the error for the forgetting class and the accuracy for the remaining classes with
mnemonic code. An overview of the forgetting algorithm is shown in Algorithm 2.

Design of coefficient αηl. αηl is the coefficient in Eq. 5 and specified by the maximum

value of ηl and hyperparameters λ1 and λ2. η
l is the set of ηi in the layer l, i.e. ηi ∈ ηl. λ2

specifies the maximum perturbation amplitude for each layer. In other words, λ2 determines

One-Shot Machine Unlearning with Mnemonic Code

Algorithm 2 Forgetting with mnemonic code
Input: trained model parameter w, loss L, forget class set CF, remain class set CR, mnemonic codes
ξ, layers {l1, l2, · · · }
Parameter: λ1, λ2

Output: Forgotten parameters

1: fCF = 0
2: fCR = 0
3: for c in CF do
4: fCF

= fCF
+∇wL(ξc;w)

5: end for
6: for c in CR do
7: fCR = fCR +∇wL(ξc;w)
8: end for
9: fCF

= fCF
/|#CF|

10: fCR
= fCR

/|#CR|
11: η =

fCF

fCR

12: for l in layers do

13: αηl = min

(
λ1,

λ2

max
ηi∈ηl ηi

)
14: wl

1 = wl + αηlηl

15: wl
2 = wl − αηlηl

16: end for
17: if AR(w1) + EF(w1) > AR(w2) + EF(w2) then
18: return w1

19: else
20: return w2

21: end if

the perturbation amplitude to the model parameter, which is the most effective for forgetting
in each layer. λ1 is introduced to avoid zero divisions in Eq. 7. Because the denominator
of Eq. 7 is close to zero in layers where no parameters are sensitive to the forgetting class.
λ1 specifies the perturbation amplitude in such layers.

3.2. Preliminary experiment

The effect of mnemonic code on model accuracy. Our method stochastically replaces
the training data with the mnemonic codes when training the model. In this section, we
investigate the effects of mnemonic code on the model’s test accuracy. We train several
models by changing the probability of replacing the training data with the mnemonic codes
tmix ∈ [0, 1] and evaluate each model’s test accuracy. In the preliminary experiments,
we use a simple, fully connected network for MNIST and ResNet-18 (He et al., 2016) for
CIFAR10 (Krizhevsky and Hinton, 2009), CUB200-2011 (CUB) (Wah et al., 2011), and
Stanford Cars (STN) (Krause et al., 2013). The results are shown in Fig. 2. The results
show that mnemonic codes do not significantly degrade test accuracy on CIFAR10, CUB,
and STN, even if 80% of the training data is replaced with mnemonic codes. In the case

Yamashita Yamada Shibata

Figure 2: Test accuracy of models trained with mnemonic code. We evaluate the
test accuracy of the model when varying tmix: the probability of replacing the training data
with the mnemonic codes.

of MNIST, we find that as tmix increases, the model’s test accuracy decreases 3. However,
the setting of tmix in this paper is below 0.3, and we find that the accuracy degradation
for tmix ≤ 0.3 is minute. In fact, the test accuracy degradation of the model trained
with mnemonic codes (tmix ≤ 0.3) is less than 1%. These results show that training with
mnemonic codes does not cause significant accuracy degradation.

4. Experiments

We evaluate our method from three perspectives: comparison with baselines (Sec. 4.2), the
effect of mnemonic code (Sec. 4.3), and scalability (Sec. 4.4).

4.1. Common settings

We use two indicators to measure the performance of MU methods: i) the forgetting capa-
bility based on the test error for the forgetting class and the test accuracy for the remaining
classes, and ii) the processing time for forgetting. We will describe the experimental flow.
First, we train the deep learning model for 200 epochs. Then, we apply the MU method
to the trained model on a specific class and evaluate the method. In this paper, we set the
forgetting class CF to {0}. The detailed train settings are described in Appendix A, and the
evaluation for forgetting different classes is described in the supplemental material. As with
existing studies, we evaluate the forgetting capability by two metrics: AR and EF (Shibata
et al., 2021; Golatkar et al., 2020a,b; Tarun et al., 2023; Chundawat et al., 2023; Lin et al.,
2023). AR is the test accuracy for the remaining classes, and EF = 100 − AF is the test

3. We consider this is because the MNIST experiment uses a simple network, which was more strongly
affected by mnemonic codes than ResNet-18.

One-Shot Machine Unlearning with Mnemonic Code

Table 1: Comparison with related studies. We list the related MU methods and our
method. We assess them from three perspectives: Processing Time, Data-Free, and MU
Target. NR and NF are the numbers of the remaining and the forgetting data points. Nnew

is the number of the data points of the new task. E is the epochs of additional training
for forgetting, and S is the steps to create adversarial noise. M is the number of model
divisions. CR and CF are the numbers of the remaining and the forgetting classes.

Method Processing Time Data-Free MU Target
CertifiedRemoval (Guo et al., 2020) O(NR +NF) ✗ item
SISA (Bourtoule et al., 2021) O(E · NR

M) ✗ item
Arcane (Yan et al., 2022) O(E · NR

CR+CF
) ✗ item

FastMU (Tarun et al., 2023) O(S · CF + E · CF +NR) ✓ class
ZeroShotMU (Chundawat et al., 2023) O((S + E)(CF + CR)) ✓ class
LwSF (Shibata et al., 2021) O(E(Nnew + CR)) ✓ class/task
SFDN (Golatkar et al., 2020a) O(NR) ✗ class/item
NTK-F (Golatkar et al., 2020b) O(NR +NF) ✗ class/item
SSD (Foster et al., 2024) O(NR +NF) ✗ class/item
ERM-KTP (Lin et al., 2023) O(E ·NR) ✗ class
Ours O(CR + CF) ✓ class

Table 2: Comparison results in AR. We evaluate the baseline and our methods three
times and provide the mean and standard deviation. The highest values are shown in bold.

MNIST CIFAR10 CUB STN
FastMU 96.5 ±0.1 90.4 ±0.5 73.1 ±1.3 88.0 ±0.1
LwSF 43.7 ±9.6 65.4 ±16.6 68.2 ±3.5 80.1 ±6.7
SFDN 94.1 ±0.7 93.4 ±0.2 78.2 ±0.6 88.3 ±0.6
SSD 96.9 ±0.0 94.2 ±0.0 44.3 ±0.0 74.4 ±0.0
ERM-KTP - 92.7 ±0.4 42.8 ±3.2 75.6 ±4.0
Ours 95.9 ±0.1 94.4 ±0.1 79.3 ±0.7 91.7 ±0.3

error for the forgetting class, which AF is the test accuracy for the forgetting class. During
the forgetting phase, we measure the time for forgetting. The desired MU method is the
one that achieves high AR and EF in a short forgetting time.

Datasets and architectures. In our experiments, we prepare MNIST, CIFAR10, CUB,
STN, and ImageNet (Deng et al., 2009). To coincide the setting with Shibata et al. (2021),
we use 40 classes for CUB and 49 classes for STN. In the comparison experiments with
baselines, we use a simple, fully connected model for MNIST and ResNet-18 for CIFAR10,
CUB, and STN. In the scalability evaluation experiments, we use ResNet-18, ResNeXt-
50 (Xie et al., 2017), and Swin-Transformer (Liu et al., 2021) for ImageNet. Our experiments
are done on a server with AMD Ryzen 9 3950X 16 cores, 64 GB RAM, and RTX 3090 GPU.

4.2. Comparison with baselines

We compare our method and the existing baselines. For the hyperparameter set, we search
λ1 = [10−6, 10−5, · · · , 1.0] and λ2 = [10−1, 1.0, · · · , 105] and select the combination that
maximizes the sum of AR and EF. Also, we set the probability of replacing the training

Yamashita Yamada Shibata

Table 3: Comparison results in EF. We evaluate the baseline and our methods three
times and provide the mean and standard deviation. The highest values are shown in bold.

MNIST CIFAR10 CUB STN
FastMU 98.0 ±0.3 100 ±0.0 68.6 ±12.0 60.9 ±6.9
LwSF 94.4 ±1.7 100 ±0.0 93.1 ±7.0 98.2 ±1.8
SFDN 100 ±0.0 96.3 ±2.5 100 ±0.0 100 ±0.0
SSD 93.1 ±0.0 100 ±0.0 100 ±0.0 100 ±0.0
ERM-KTP - 100 ±0.0 100 ±0.0 100 ±0.0
Ours 100 ±0.0 100 ±0.0 100 ±0.0 100 ±0.0

data with the mnemonic codes tmix as 0.1 for MNIST, CUB, and STN, and 0.3 for CIFAR10.
The details of the hyperparameter setting are described in the supplemental material. We
select the baseline methods from those described in Sec. 2. To select the baseline methods,
we assess them from three perspectives: i) processing time, ii) the necessity for training
data, and iii) the forgetting target. Table 1 summarizes the existing MU methods and our
method. Our method can work quickly without the training data and target class removal.
We evaluate the processing time with the number of backpropagations. Table. 1 shows that
the processing time of our method depends only on the number of classes, while that of the
existing MU methods depends on the number of epochs and data points. This is because
they perform additional training or use large amounts of data for forgetting. The actual
time required for forgetting is compared in Fig 3. From Table. 1, we select FastMU, LwSF,
SFDN, SSD, and ERM-KTP as baseline methods. 4 While some need the training data for
forgetting, we confirmed they can work in a realistic time and target class removal.

The comparison results for Forgetting Capability. Table 2 and 3 show the comparison
results for the MU capability 5. We repeat the evaluation three times and take the average
of the results within the standard deviation error bars. The highest values in metrics AR and
EF are shown in bold. The tables show that our method achieves 100% EF while maintaining
high AR for all datasets. We can see that our method is superior to or competitive with the
baselines. Fig. 3 shows the comparison results for MU processing time. These results show
that our method works significantly faster than the baselines. This is because our method
can efficiently calculate the FIM for each class with mnemonic code and add effective one-
shot perturbation for forgetting, which does not need additional training. In addition, the
MU processing time for ResNet-18 trained on ImageNet is shown in Fig. 3. This result shows
that the MU processing time in FastMU is significantly increased for the large dataset. On
the other hand, our method works quickly for such a dataset. We also confirm that the
other baseline methods do not complete the MU process in a realistic time, which is omitted
from Fig. 3. Detailed scalability evaluations for our method are given in Sec. 4.4.

4.3. Effect of mnemonic code on forgetting

We investigate the effect of mnemonic code on the forgetting capability. To investigate that,
we prepare a baseline method that calculates the perturbation with the training data. We

4. We omit ZeroShotMU because it failed to reproduce the forgetting results for CIFAR10, CUB, and STN.
We use the code of https://github.com/ayushkumartarun/zero-shot-unlearning.

5. ERM-KTP targets CNNs, so we omit the result for MNIST.

One-Shot Machine Unlearning with Mnemonic Code

Figure 3: Comparison results in MU processing time. We measure the forgetting
time concerning our method and the baselines.

call this baseline as ours-w-data. In ours-w-data, we train the model without mnemonic
code. Then, in the forgetting phase, we obtain the FIM with a portion of the training
data and add perturbation to the model parameter by Eq. 5. The difference between our
method and ours-w-data is whether or not the mnemonic codes are used when training the
model and calculating the FIM. Therefore, we expect that the difference in the forgetting
capability comes from the contribution of mnemonic code. We measure AR and EF for the
two methods and evaluate their forgetting capabilities. In these experiments, we use MNIST
and CIFAR10. The results are shown in Fig. 4. From the results, we can clarify two things
in ours-w-data. First, the forgetting process works effectively when we use all the training
data. Second, while effective forgetting is possible with a small amount of training data in
MNIST, effective forgetting is difficult with a small amount of training data in CIFAR10.
We consider that this difference in datasets is due to the diversity of data contained in each
class. Specifically, a simple dataset such as MNIST has a low diversity of data in each class.
In contrast, a dataset such as CIFAR10 has diverse data in each class, and it will be difficult
to represent each class with a small amount of training data. We consider this difference in
datasets led to the difference in forgetting results in ours-w-data. Figure. 4 also shows the
results of our method with mnemonic codes as a reference value. Surprisingly, our method
can effectively forget with only one piece of mnemonic code per class.

We then conduct an experiment focusing on the FIM to reveal the cause of the difference
in the forgetting capability between our method and ours-w-data shown in Fig. 4. We define
the FIM calculated using all the training data as the Oracle FIM. As seen in Fig. 4, ours-
w-data works well with the Oracle FIM for both MNIST and CIFAR10. Also, the Oracle
FIM is often used in existing continual learning methods (Kirkpatrick et al., 2017; Huszár,
2018; Ritter et al., 2018). We evaluate the approximation error to the Oracle FIM of the
FIM calculated using the portion of training data and of the FIM using the mnemonic code.
When calculating the FIM approximation error, we calculate the L2 norm of the FIMs and
divide it by the number of elements in the FIM (the number of the model parameters).

Yamashita Yamada Shibata

(a) Forgetting capability on MNIST. (b) Forgetting capability on CIFAR10.

Figure 4: The forgetting capability of ours-w-data on MNIST and CIFAR10. Our
method with mnemonic code is also included for reference in dotted lines. The blue one
shows AR and the orange one shows EF

Table 4: Forgetting for ImageNet dataset. We perform fine-tuning using mnemonic
code on the pre-trained model and forget with our method. We show the forgetting capabil-
ity and processing time for the pre-trained, fine-tuned, and forgotten models, respectively.

Architecture AR ↑ EF ↑ Time [s] ↓

ResNet-18
Pretrained 69.8 12.0 -
Fine-tuned 67.5 12.0 882
After MU 67.5 100 8.66

ResNeXt-50
Pretrained 77.4 6.0 -
Fine-tuned 75.9 12.0 6923
After MU 75.9 100 21.0

Swin-Transformer
Pretrained 80.9 4.0 -
Fine-tuned 78.8 4.0 8488
After MU 75.3 92.0 28.6

The results are shown in Fig. 5. The results show that the smaller the number of
training data for calculating the FIM, the further away from the Oracle FIM. Furthermore,
we can see that the approximation error for the mnemonic code shown on the right side
of the graph is significantly low. This is a remarkable result since it shows that the FIM
obtained with only one mnemonic code is closer to the Oracle FIM than the FIM obtained
with 1,000 training data. The high forgetting performance with mnemonic codes can be
explained by the low approximation error of the FIM calculation. We consider that the
low approximation error with mnemonic code is because the mnemonic code is presented to
the deep learning model at a high rate of tmix during training, while each training data is
presented only one time per epoch. Furthermore, these results provide validity for replacing
the Oracle FIM used in Eq. 2 with the FIM calculated with mnemonic code, as in Eq. 4.

One-Shot Machine Unlearning with Mnemonic Code

(a) FIM approximation error on MNIST. (b) FIM approximation error on CIFAR10.

Figure 5: The FIM approximation error of ours-w-data on MNIST and CIFAR10.
Our method with mnemonic code is also included for reference.

4.4. Scalability

As shown in Fig. 3, our method works much faster than the baseline methods. This section
demonstrates that our lightweight method is scalable to large practical datasets and sophis-
ticated models. In the experiments, we prepare the pre-trained model and fine-tune it for a
few steps using mnemonic codes. Then, we apply our method to the fine-tuned model. We
evaluate the forgetting capability with AR and EF, and the processing time for fine-tuning
and MU processing. The dataset is ImageNet, consisting of 1,000 classes, and the architec-
ture is ResNet-18, ResNeXt-50, and Swin-Transformer. The number of fine-tuning steps is
2,000 for ResNet-18 and 10,000 for ResNeXt-50 and Swin-Transformer.

Table. 4 shows that our method works within one minute and improves EF without
significantly reducing AR. It was also found that fine-tuning with mnemonic codes takes
several hours. Therefore, if we fine-tune the pre-trained model with mnemonic codes in
advance, we can quickly perform the MU process when an unlearning request arises. The
results also show that our method can achieve effective forgetting for pre-trained models.
Note that Table. 4 shows that test accuracy slightly degrades due to fine-tuning using
mnemonic codes. We consider this because the number of classes in ImageNet is large,
and the patterns of randomly generated mnemonic codes are insufficient. Future work will
include obtaining mnemonic codes that maintain accuracy, even for large class datasets.

Limitation. We have found that multi-class forgetting is difficult with our method. Even
in existing methods, multi-class forgetting methods are mainly based on additional train-
ing (Tarun et al., 2023; Chundawat et al., 2023; Lin et al., 2023), and multiple classes are
difficult to forget with one-shot perturbation. Nevertheless, our method is valuable in that
its overwhelmingly faster processing speed and its high scalability will enable us to respond
rapidly to unlearning requests, as described in Sec. 1. Also, we did not fully evaluate
our method concerning privacy. However, we evaluate the robustness against membership
inference attacks and backdoor attacks in the supplemental material.

Yamashita Yamada Shibata

5. Future work and Conclusion

This paper proposes a one-shot MU method that achieves forgetting by adding perturbation
to the model parameter. Mnemonic code is used to reduce the processing time and the com-
putational costs. We experimentally showed that our method is lightweight and effective.
Also, we experimentally demonstrated the effectiveness of mnemonic code. Furthermore,
our method is scalable to more practical datasets and sophisticated architectures. In fu-
ture work, we will seek mnemonic codes that do not degrade accuracy even for large class
datasets. Also, we will seek a method that can forget multi-class effectively. In addition,
generative models such as text-to-image models and large-language-models are rapidly ad-
vancing as a new application, and the issue of copyright of the data contained in the training
data is surfacing (Carlini et al., 2021, 2023). Lightweight MU methods that can be applied
to such sophisticated AI models should be required in the near future. We believe this
paper will contribute to the practical MU research and new possibilities of lightweight MU.

References

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia,
Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In
2021 IEEE Symposium on Security and Privacy, pages 141–159. IEEE, 2021.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning.
In 2015 IEEE Symposium on Security and Privacy, pages 463–480. IEEE, 2015.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss,
Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Ex-
tracting training data from large language models. In 30th USENIX Security Symposium
(USENIX Security 21), pages 2633–2650, 2021.

Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian
Tramer, Borja Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from
diffusion models. In 32nd USENIX Security Symposium (USENIX Security 23), pages
5253–5270, 2023.

Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Zero-shot
machine unlearning. IEEE Transactions on Information Forensics and Security, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Jack Foster, Stefan Schoepf, and Alexandra Brintrup. Fast machine unlearning without
retraining through selective synaptic dampening. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pages 12043–12051, 2024.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless
net: Selective forgetting in deep networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9304–9312, 2020a.

One-Shot Machine Unlearning with Mnemonic Code

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Forgetting outside the box: Scrub-
bing deep networks of information accessible from input-output observations. In European
Conference on Computer Vision, pages 383–398. Springer, 2020b.

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data
removal from machine learning models. Proceedings of the 37th International Conference
on Machine Learning, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 770–778, 2016.

Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces in the
wild: A database for studying face recognition in unconstrained environments. Technical
Report 07-49, University of Massachusetts, Amherst, October 2007.

Ferenc Huszár. Note on the quadratic penalties in elastic weight consolidation. Proceedings
of the National Academy of Sciences, 115(11):E2496–E2497, 2018.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neural networks. Proceedings
of the national academy of sciences, 114(13):3521–3526, 2017.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for
fine-grained categorization. In 2013 IEEE International Conference on Computer Vision
Workshops, pages 554–561, 2013.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical Report 0, University of Toronto, Toronto, Ontario, 2009. URL https://www.

cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor learning: A survey. IEEE
Transactions on Neural Networks and Learning Systems, 2022.

Shen Lin, Xiaoyu Zhang, Chenyang Chen, Xiaofeng Chen, and Willy Susilo. Erm-
ktp: Knowledge-level machine unlearning via knowledge transfer. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 20147–
20155, 2023.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows.
In Proceedings of the IEEE/CVF international conference on computer vision, pages
10012–10022, 2021.

Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le Nguyen, Alan Wee-Chung Liew, Hongzhi
Yin, and Quoc Viet Hung Nguyen. A survey of machine unlearning. arXiv preprint
arXiv:2209.02299, 2022.

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

Yamashita Yamada Shibata

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision. In International Conference
on Machine Learning, pages 8748–8763. PMLR, 2021.

Hippolyt Ritter, Aleksandar Botev, and David Barber. Online structured laplace approx-
imations for overcoming catastrophic forgetting. Proceedings of the 32nd International
Conference on Neural Information Processing Systems, 31, 2018.

Takashi Shibata, Go Irie, Daiki Ikami, and Yu Mitsuzumi. Learning with selective forget-
ting. In Proceedings of the 30th International Joint Conference on Artificial Intelligence,
volume 2, page 6, 2021.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership infer-
ence attacks against machine learning models. In 2017 IEEE symposium on security and
privacy (SP), pages 3–18. IEEE, 2017.

Ayush K Tarun, Vikram S Chundawat, Murari Mandal, and Mohan Kankanhalli. Fast
yet effective machine unlearning. IEEE Transactions on Neural Networks and Learning
Systems, 2023.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The
Caltech-UCSD Birds-200-2011 Dataset. California Institute of Technology, 7 2011.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1492–1500, 2017.

Haonan Yan, Xiaoguang Li, Ziyao Guo, Hui Li, Fenghua Li, and Xiaodong Lin. Arcane:
An efficient architecture for exact machine unlearning. In Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence, (IJCAI-22), pages 4006–4013,
2022.

Appendix A. Experimental Setting

We describe the experimental settings. We use the SGD optimizer for all datasets and
train each model for 200 epochs. The learning rate is set to 0.01, and weight decay is set
to 5 × 10−4. We use a cosine scheduler for CIFAR10, CUB, and STN. The batch size is
128 for MNIST and CIFAR10 and 32 for CUB and STN. In fine-tuning with mnemonic
code for ImageNet, the learning rate is set to 0.001, weight decay is 5 × 10−4, and the
batch size is 64. For the hyperparameter set, we search λ1 = [10−6, 10−5, · · · , 1.0] and
λ2 = [10−1, 1.0, · · · , 105] and select the combination that maximizes the sum of AR and EF.
We use (λ1, λ2) = (10−3, 10.0) for MNIST, (λ1, λ2) = (10−5, 104) for CIFAR10, (λ1, λ2) =
(10−4, 1.0) for CUB, and (λ1, λ2) = (10−4, 100.0) for STN. Here, we show the results of the
hyperparameter search. We evaluate the forgetting capability by fixing one of λ1 and λ2 to
the above values while changing the other. The results are shown on Fig. 6, 7, 8, and 9.

One-Shot Machine Unlearning with Mnemonic Code

(a) λ1 search. (b) λ2 search.

Figure 6: Hyperparameter search on MNIST.

(a) λ1 search. (b) λ2 search.

Figure 7: Hyperparameter search on CIFAR10.

These results show a tradeoff between EF improving while AR decreasing as λ1 increased.
On the other hand, as λ2 is increased, EF improves while AR does not significantly decrease.

Then, we consider the setting of tmix, the probability of replacing the training data
with mnemonic codes. We search tmix = [0.1, 0.3, 0.5, 0.8] and select the best value that
maximizes the forgetting capability. The results are shown in Table 5. The results show
that EF achieves 100% for all cases. When tmix = 0.1, the sum of EF and AR is maximum
in MNIST, CUB, and STN, and when tmix = 0.3, the sum of EF and AR is maximum in
CIFAR10. Furthermore, we evaluate the approximation errors to the Oracle FIM of the
FIM obtained with the mnemonic codes when changing tmix, shown in Fig. 10. The results
show that the approximation error is minimum when tmix = 0.1 in MNIST and CUB, and
the error is minimum when tmix = 0.3 in CIFAR10. In STN, the approximation errors
are almost the same when tmix is 0.1, 0.3 and 0.5. These results are consistent with the
evaluation results of the forgetting capability when tmix is changed. It also shows that there

Yamashita Yamada Shibata

(a) λ1 search. (b) λ2 search.

Figure 8: Hyperparameter search on CUB.

(a) λ1 search. (b) λ2 search.

Figure 9: Hyperparameter search on STN.

is no significant difference in forgetting capability when tmix is 0.1 and 0.3. Therefore, these
results lead to the conclusion that setting tmix below 0.3 is reasonable in our method.

When conducting our experiments in the main paper, we performed the hyperparameter
search described above to set up λ1, λ2, and tmix. It should be noted that because our
method works significantly fast, we can perform such hyperparameter searches quickly.

Appendix B. Validity of Laplace’s approximation

We investigate the validity of the assumptions of the Laplace approximation, ∇LCF(w
∗) = 0

and ∇LCR(w
∗) = 0, applied in Eq. 2. In general, ∇L(w∗) = 0 is valid for trained models.

Thus, if |∇LCF(w
∗)| and |∇LCR(w

∗)| are close enough to |∇L(w∗)|, then we can verify
the assumptions of the Laplace approximation. In the experiments, we train ResNet-18 on
CIFAR10 with mnemonic codes and investigate the magnitude of loss gradient, |∇L(w∗)|,

One-Shot Machine Unlearning with Mnemonic Code

Table 5: Forgetting capability on various tmix. The table shows the forgetting capability
of our method with different tmix. It shows that the forgetting capability is high at tmix of
0.1 or 0.3. It also shows that there is no significant difference in forgetting capability when
tmix is below 0.3.

MNIST CIFAR10 CUB STN
tmix AR ↑ EF ↑ AR ↑ EF ↑ AR ↑ EF ↑ AR ↑ EF ↑
0.1 95.9 100 94.2 100 79.3 100 91.7 100
0.3 95.4 100 94.4 100 77.5 100 89.3 100
0.5 94.2 100 94.3 100 75.3 100 90.3 100
0.8 91.1 100 68.2 100 68.2 100 90.2 100

(a) Result on MNIST. (b) Result on CIFAR10.

(c) Result on CUB. (d) Result on STN.

Figure 10: FIM approximation with various tmix.

|∇LCF(w
∗)|, and |∇LCR(w

∗)| in each layer. The results are shown in Table. 6. These results
indicate that |∇LCF(w

∗)| and |∇LCR(w
∗)| are extremely small, about 10−5. In addition,

|∇LCF(w
∗)| and |∇LCR(w

∗)| are of almost same order of |∇L(w∗)| in all layers. From these
perspectives, we consider that the assumption ∇LCF(w

∗) = 0 and ∇LCR(w
∗) = 0 are valid.

Yamashita Yamada Shibata

Table 6: The loss gradient magnitude in each layer.

Loss gradient magnitude layer1 layer2 layer3 layer4 layer5
|∇L(w∗)| 6.9× 10−6 5.6× 10−6 7.4× 10−6 9.2× 10−6 1.6× 10−5

|∇LCF(w
∗)| 3.6× 10−5 3.0× 10−5 1.8× 10−5 1.2× 10−5 1.4× 10−5

|∇LCR(w
∗)| 1.3× 10−5 9.9× 10−6 8.1× 10−6 7.6× 10−6 9.4× 10−6

Appendix C. Additional experiments

C.1. Evaluation on membership inference attack

Membership inference attack (MIA) is one of the AI security attacks that are of concern
from a privacy perspective (Shokri et al., 2017). In this attack, individual data is inferred
to be included in the training data of the trained model. Typically, the attacker inputs
data into the model and observes the output loss. Then, the value of the loss is used to
determine if the input data is included in the training data. Here, we investigate whether
our method is robust to MIA. Specifically, we apply our method to the trained model and
compare the loss distribution of training data in CF with the loss distribution of test data
in CF. We train ResNet-18 on CIFAR10 with mnemonic codes and apply our forgetting
method to the model. The settings of the hyperparameters are consistent with the main
paper. The results are shown in Fig. 11a and 11b. Figure. 11a shows the result of the loss
distribution of the trained model, and Fig. 11b shows the result of the forgotten model.
These results show that the loss distribution of the training data and the loss distribution
of the test data overlap significantly in the forgotten model and are robust to MIA. In fact,
we confirm that the AUC for the naive MIA using these loss distributions is 0.49, describing
that it is difficult to separate training data from test data on the forgotten model.

We then investigate whether the loss distribution of the forgotten class is sufficiently
close to the loss distribution of the class that was not used for training. If there is a large
discrepancy between the two loss distributions, we consider that an attacker may be able
to identify the forgotten class from the loss distributions. In this experiment, we train
ResNet-18 without class 0. Then, we forget the model about class 1 and investigate the
loss distribution of class 0 and class 1. Therefore, the data in class 0 are unused, and the
data in class 1 are forgotten. The result is shown in Fig. 12a. This result shows the loss
distribution of the unused, forgotten, and remaining data. The result shows that the loss
distributions of unused and forgotten data roughly overlap but diverge slightly.

We suspect that the class difference between Class 0 and Class 1 may contribute to the
discrepancy between the loss distributions, and we will conduct further experiments. We
proceed to conduct an experiment to see how the class difference affects the difference in
the loss distributions. We train ResNet-18 without class 0 and class 1 and investigate the
loss distributions of the two classes. The result is shown in Fig. 12b. This result shows that
the loss distribution of class 0 and that of class 1 diverge slightly. Therefore, we believe the
above hypothesis is correct. From these results, we show that our method does not make
the model vulnerable to MIA.

One-Shot Machine Unlearning with Mnemonic Code

(a) Before forgetting. (b) After forgetting.

Figure 11: Loss distribution on the models before and after our forgetting.

(a) The model forgotten with our method. (b) The model trained without class 0 and 1.

Figure 12: Loss distributions on some AI models.

C.2. The meaning of EF = 100 in class forgetting

We confirmed by experiments in the main paper that our method can achieve EF = 100. In
this section, we will see how an AI model with EF = 100 behaves concerning MNIST and
CIFAR10. In the experiment, we prepared a model that forget class 0 with our method and
an Oracle model trained without the data of class 0. We then input test data to those AI
models and examine the rate at which they output class 0. As a result of the experiment,
we confirmed that these AI models do not output class 0 for any given test data. Therefore,
from the results, we can confirm that both forgotten models by our method and the Oracle
models have similar behavior in that they do not output the target class.

Yamashita Yamada Shibata

Figure 13: Test accuracy for images mixed with mnemonic code.

C.3. Evaluation on backdoor attack

We investigate whether our method makes the model vulnerable to backdoor attacks. Back-
door attacks indicate that an attacker has planted a backdoor in the AI model (Li et al.,
2022). The attack technique is such that the model makes accurate predictions for general
input data and incorrect predictions when the attacker uses a specific pattern (backdoor
trigger). In our method, when training the model, we present the mnemonic codes to the
model at a high rate of tmix. We investigate whether the mnemonic code in our method
can act as a backdoor trigger. In the experiment, we train ResNet-18 on CIFAR10 using
mnemonic codes with tmix = 0.3. Then, we evaluate test accuracy using test images mixed
with class 0 mnemonic code. If our method makes the model vulnerable to backdoor at-
tacks, the model’s output on the test data with the mnemonic code will be drawn to class
0, and we should see accuracy degradation. The mixing ratio of mnemonic codes is set to
[0%, 10%, 30%, 50%, 80%, 100%]. When the mixing ratio is set to 0%, the accuracy is for
test images without the mnemonic code, and if 100%, the test image is a complete class 0
mnemonic code.

The evaluation results are shown in Fig. 13. These results show that the test accuracy
is not significantly degraded for test images mixed with mnemonic code at a ratio of 10%.
In fact, the test accuracy is 94.3% when the ratio of mnemonic code is 0% and 94.2% when
the ratio is 10%. In addition, test images with the mnemonic code mixed at different ratios
are shown in Fig. 14. These images confirm that images mixed with the mnemonic code of
30% or higher ratio are difficult for the human eye to discriminate. These results confirm
that mnemonic code does not work as a backdoor trigger in our method.

C.4. Evaluation on face information

Here, we conduct the evaluation experiments on face information. We use Labeled Faces in
the Wild (LFW) (Huang et al., 2007), a dataset used for benchmarking unconstrained face

One-Shot Machine Unlearning with Mnemonic Code

(a) 0% code. (b) 10% code. (c) 30% code.

(d) 50% code. (e) 80% code. (f) 100% code.

Figure 14: Images with mnemonic code at various densities.

Table 7: Forgetting capability for face information.

Forgetting capability AR ↑ EF ↑
Before Forget 76.3 22.2
After Forget 76.2 100

verification performance. We created a 100-class discriminative model by training ResNet-
18 on this dataset and performed class 0 forgetting with our method and investigate the
forgetting capability before and after our forgetting process. tmix is set to 0.1. The results
are shown in Table 7. It shows that our method achieves 100% EF and does not damage
AR significantly. It demonstrates our method is effective for face information.

C.5. Forgetting other classes

We evaluate the forgetting capability of our method on classes other than 0. As with the
main paper, we use a simple, fully connected model for MNIST and ResNet-18 for CIFAR10,
CUB, and STN. We evaluate AR and EF for forgetting capability. In this experiment, we
forget classes 1 to 9. The results are shown in Table 8.

Table 8 shows almost no difference in forgetting capability among classes. Thus, it
indicates that our method can calculate the effective perturbation for forgetting and work
effectively regardless of which class of the forgetting target.

C.6. Evaluation on the model with CLIP

We evaluate our method to the model with CLIP-style loss (Radford et al., 2021). CLIP-
style loss uses CLIP text encodings of the class names as labels. In such models, classes

Yamashita Yamada Shibata

Table 8: Forgetting other classes. The table shows the results of applying our method
to classes 1 to 9.

MNIST CIFAR10 CUB STN
Forget class AR ↑ EF ↑ AR ↑ EF ↑ AR ↑ EF ↑ AR ↑ EF ↑
1 95.4 100 93.5 100 78.0 100 90.7 100
2 95.4 100 94.4 100 78.9 100 90.6 100
3 95.6 100 95.4 100 77.3 100 90.3 100
4 96.0 100 93.9 100 77.6 100 89.5 100
5 96.0 100 95.0 99.8 78.1 100 89.7 100
6 95.4 100 94.3 100 77.9 100 90.1 100
7 96.1 100 91.2 100 78.4 100 90.7 100
8 95.6 100 93.6 100 79.2 100 89.8 100
9 96.3 100 93.6 100 77.7 100 90.9 100

Table 9: Forgetting capability to the model with CLIP-style loss.

Forgetting capability AR ↑ EF ↑
Before Forget 93.8 5.5
After Forget 94.3 100

are represented in the text encoding space, so the number of classes is virtually infinite.
Therefore, class forgetting cannot be simplified for such models by cutting the edge in the
final linear layer, because they have an infinite number of classes and it is difficult to find the
edge corresponding to the forgetting target class. In this experiment, we train ResNet18
on CIFAR10 using CLIP-style loss instead of cross-entropy loss. We then evaluate the
forgetting capability of our method by forgetting the class “airplane”. The result is shown
in Table. 9. It shows that our method achieves 100% EF and does not damage AR. It
demonstrates our method is effective for the model with CLIP-style loss. Furthermore, this
result also shows that our method is not a process that only cuts off the edge corresponding
to the forgetting target class in the final linear layer.

	Introduction
	Related Work
	Method
	Proposal
	Preliminary experiment

	Experiments
	Common settings
	Comparison with baselines
	Effect of mnemonic code on forgetting
	Scalability

	Future work and Conclusion
	Experimental Setting
	Validity of Laplace's approximation
	Additional experiments
	Evaluation on membership inference attack
	The meaning of EF=100 in class forgetting
	Evaluation on backdoor attack
	Evaluation on face information
	Forgetting other classes
	Evaluation on the model with CLIP

