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ABSTRACT

We investigate the problem of designing differentially private (DP), revenue-
maximizing single item auction. Specifically, we consider broadly applicable
settings in mechanism design where agents’ valuation distributions are indepen-
dent, non-identical, and can be either bounded or unbounded. Our goal is to design
such auctions with pure, i.e., (ϵ, 0) privacy in polynomial time.
In this paper, we propose two computationally efficient auction learning framework
that achieves pure privacy under bounded and unbounded distribution settings.
These frameworks reduces the problem of privately releasing a revenue-maximizing
auction to the private estimation of pre-specified quantiles. Our solutions increase
the running time by polylog factors compared to the non-private version. As an
application, we show how to extend our results to the multi-round online auction
setting with non-myopic bidders. To our best knowledge, this paper is the first to
efficiently deliver a Myerson auction with pure privacy and near-optimal revenue,
and the first to provide such auctions for unbounded distributions.

1 INTRODUCTION

Though prior-dependent auctions, which adjust parameters based on samples of value distributions,
often yield better revenue than prior-independent auctions, they risk leaking information about the
bids they were trained upon. To address this issue, differential privacy (DP) offers a promising
solution (Dwork, 2006; 2008; McSherry and Talwar, 2007; Pai and Roth, 2013), ensuring that a single
data point minimally affects the algorithm’s output, thus preventing inference of a specific data point.

We study the problem of learning a single-item auction with near-optimal revenue from samples of
independent and non-identical value distributions. In this context, the optimal auction (i.e., Myerson’s
auction (Myerson, 1979)), which relies on value distributions (i.e., prior-dependent), achieves optimal
revenue. However, releasing the learned Myerson’s auction raises privacy concerns, as the output
mechanism may inadvertently reveal sensitive information about the distributions. To provably
mitigate this risk, our goal is to integrate pure DP into the learning process of such auction.

Pure Differential Privacy. Given two datasets that differ in one data point, i.e., D, D′, we say an
algorithm A satisfies (ϵ, δ)-approximate DP if for any given output s: Pr[A(D) = s] ≤ eϵ[A(D′) =
s] + δ. We say A satisfies pure DP if δ = 0. Pure DP allows no slack in privacy protection, and
hence is more challenging to achieve than approximate DP. Previous attempts (McSherry and Talwar,
2007; Nissim et al., 2012) to integrate DP with prior-dependent auctions have been computationally
inefficient or guaranteed approximate rather than pure DP. To our knowledge, no algorithm guarantees
pure DP for Myerson’s auction in polynomial time.

Efficiency. Incorporating DP into the mechanism often sacrifices efficiency, as achieving privacy
guarantees typically incurs additional computational overhead (e.g., random noise addition or extra
sampling procedure). This issue has been observed in similar contexts, such as online learning (Jain
et al., 2012), federated learning (Zhang et al., 2023) and deep learning (Abadi et al., 2016). In our
context, to achieve pure DP, implementing exponential mechanism (McSherry and Talwar, 2007) over
all possible mechanisms would incur exponential time (See Appendix D). To obtain pure DP more
efficiently, we apply recent advances (Durfee, 2023; Kaplan et al., 2022) in private quantile estimation.
Our algorithm’s running time increases by only polylog factors compared to the non-private version.
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Notations We use MA to denote the optimal mechanism of distribution A, and we use Rev(M,A)
to denote the revenue of deploying mechanism M to distribution A. We restricted ourselves to
single item auctions; hence, MA denotes the Myerson auction fitted on distribution A, and we denote
OPT(A) := Rev(MA, A) as the optimal revenue one could get from a distribution A. We use 1k to
denote a k-dimensional vector with all entries equal to 1. We use Õ and Θ̃ to hide polylog factors.

1.1 RESULTS

Formally, we define the problem of learning a near-optimal auction with a pure DP:

Problem 1.1 (Optimal Auction with (ϵp, 0)-DP). Given n samples of k-dimensional distribution D,
the goal is to learn a single item auction M with (ϵp, 0)-DP, whose expected revenue on D is close to
the optimal revenue, i.e., with prob. 1− δ1, |E[Rev(M,D)− OPT(D)]| ≤ ϵ for some small ϵ.

Insight. To address this problem, we leverage the insight that, the expected optimal revenue from
value distribution is insensitive to small statistical shifts and discretization in the quantile and value
space. Additionally, we observe that the accuracy of the points returned by private quantile estimation
(QE), assuming the data points follow a distribution, directly correlates with the statistical distance
between the distribution formed by the returned points and the true distribution. Thus, we can reduce
private Myerson fitting from samples to private quantile estimation of pre-specified quantiles.

Achieving pure DP while maintaining meaningful revenue guarantees is challenging. A crucial aspect
is to ensure that the values (hence distribution) returned by DP Quantile Estimation (QE) possess
meaningful and provable accuracy guarantees. To obtain such accuracy, our algorithm (Alg. 1) first
additively discretize the empirical distribution in the value space to distribution D̂ϵ, then estimate the
pre-specificed quantiles with DPQE. We improved the accuracy bound of DPQE (DPQUANT,Kaplan
et al. (2022)) to accommodate cases with duplicate values. This improved bound allows us to upper
bound the statistical distance between the output distribution and D̂ϵ, thus upper bounding the revenue
loss incurred from fitting a Myerson on the output distribution.

Theorem 1.2 briefly presents the near-optimal revenue of our proposed mechanism. The final privacy
parameter has a dependency on k since the output of mechanism M is of dimension 2k. We present
complete details in Section 3 and the complete theorem statement in Theorems 3.2 and 3.3.

Theorem 1.2 (Revenue Guarantee of Private Myerson, Bounded). Given n = Θ̃(ϵ−2) samples V̂ of
the joint distribution D ∈ [0, h]k, there exist a mechanism M that is 2kϵp differentially private with
running time Θ̃(kn) and takes Θ̃(1) pass of the distribution. With probability 1− δ, this mechanism
M satisfies:|E[Rev(M,D)− OPT(D))]| ≤ Õ((ϵ+ ϵ2/ϵp)kh).

The prior algorithm does not work for unbounded distributions. Our second algorithm (Alg. 9)
addresses the case for η-strongly regular value distributions by efficiently truncating them to bounded
distributions with small expected revenue loss. This approach enables the application of our previous
mechanism (Alg. 1) designed for the bounded distribution case. Since the truncation point is a
function of the optimal revenue, we develop Alg. 7 to approximate this point by achieving a Θ̃(k)-
approximation of the optimal revenue, where k denotes the dimension of the product distribution.

Theorem 1.3 outlines the accuracy of our proposed mechanism for certain parameter settings. Since
this truncation point depends adaptively on the desired accuracy, the revenue gap exceeds that for the
bounded case, and the tradeoff between privacy and revenue are more pronounced. We present more
details in Section 4, and the complete theorem statement is in Theorems 4.1 and I.13.

Theorem 1.3 (Revenue Guarantee of Private Myerson, Unbounded). Given n = Θ̃(ϵ−2) samples V̂ of
η-strongly regular joint distribution D ∈ Rk, there exist a mechanism M for unbounded distribution
that is 2kϵp differentially private with running time Θ̃(kn) and takes O(n) passes. With probability
1− δ, this mechanism M satisfies: |E[Rev(M,D)− Rev(MD,D)]| ≤ Õ(k2

√
ϵ+ k2ϵ1.5/ϵp).

1This failure probability δ is inevitable due to the inherent uncertainty in learning from a finite sample set,
see Chapter 1 Kearns and Vazirani (1994)
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Application: Online auction with nonmyopic bidders. We now describe how our mechanisms
incentivize truthful bidding from nonmyopic bidders under practical online auction settings.2 In the
online setting, auctions are deployed iteratively and later auctions are informed by previous bids.
Since future auctions can be affected by earlier bids, nonmyopic bidders may strategically bid in
earlier rounds to increase winning chances and/or secure lower prices, increasing their utility.

To prevent from strategic bidding, we integrate our previous solutions (Alg. 1, Alg. 9) with a
commitment mechanism. Our DP Myerson naturally upper bound the utility gain (of future rounds)
by definition, in that the change of one bid affect the outcome’s probability by privacy parameter
ϵp. Our algorithm operates in two stages. In the first stage, it employs a commitment mechanism
that penalizes strategic bids. In the second stage, the algorithm fits a DP Myerson auction from the
collected bids and generates revenue in the remaining rounds. This approach ensures that strategic
bids only lies in a small neighbor of the true value; otherwise, the bidder’s utility becomes negative.

We present the regret (i.e., the time-averaged revenue of the proposed mechanism compared to the
optimal one) of our proposed mechanism (Alg. 3) in Theorem 1.4, which shows the accuracy of our
algorithm in terms of regret. We defer readers to Section 5 and Theorem 5.4 for further details.
Theorem 1.4 (Revenue Guarantee of Online Mechanism). Given ϵ ∈ [0, 1/4], under the online
auction setting described in Section 5.1), there exists an algorithm (Alg. 3) run with parameter T =

Θ̃(ϵ−2) that, with probability 1− δ, achieves diminishing regret, i.e., REGRET = Õ[(ϵ+
√
ηϵ)kh],

where η is a constant specific to bidders’ utility model.

1.2 PRIOR WORK

DP Mechanism Design. Emerging from McSherry and Talwar (2007), there has been interest in
delivering mechanisms with DP guarantees (Nissim et al., 2012; Huang et al., 2018a; Zhang and
Zhong, 2022; Huh and Kandasamy, 2024). These mechanism are either no longer optimal in our
setting, or doen’t generalize to unbounded distribution setting.

Online Learning in Repeated Auction. Regarding the single item online auction setting, Kanoria
and Nazerzadeh (2014); Huang et al. (2018a) established near-optimal solutions when bidders’ utility
is discounted and valuations are i.i.d.. Deng et al. (2020); Abernethy et al. (2019) introduced specific
incentive metrics to quantify bidders’ willingness to bid other than their true values and developed
mechanisms that minimize incentives for strategic bidding under these metrics in large markets.

For a detailed, complete list of related work topics, please see Appendix C.

1.3 CONTRIBUTIONS

Revenue Maximizing Auctions with Pure Privacy Guarantee. Our work is the first to develop a
mechanism with pure DP that obtains near optimal revenue for single item auction with independent
and non-identical bidders, and for both bounded and unbounded η-strongly regular distributions. For
bounded distributions, our mechanism achieves optimal time complexity within polylog factors.

Application to Online Auction Setting. We apply our mechanism into the online auction setting
with nonmyopic, independent and non-identical bidders. Combined with our designed commitment
strategy, the integrated solution restricts the bids to a small neighbor around the corresponding value.
Consequently, these approximately truthful bids enables our solution to generate revenue guarantee
that converges to the optimal revenue over time, for time-discounted, or large market bidders. We
generalize the i.i.d bidder setting in Huang et al. (2018a) and solve the open problem they proposed.

Extended Analysis of Private Quantile Algorithm. We extend the analysis of the quantile estimation
oracles employed in this paper. For quantile estimation on bounded datasets (Kaplan et al., 2022), the
paper assumes that all data points are distinct and derive accuracy bounds dependent on the dataset’s
range. We generalize their analysis to accommodate cases where multiple data points may share
identical values. Additionally, for quantile estimation of unbounded distributions (Durfee, 2023), we
provide theoretical accuracy guarantees, complementing the paper’s focus on empirical performance.

2In practice, recognizable non-i.i.d. value distributions are common, e.g., Meta Ad platform (met) requires
that each advertiser selects one of six objectives, corresponding to different distributions based on the industry or
advertisement topic.
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2 PRELIMINARIES

In this section, we outline the preliminaries on mechanism design, differential privacy, and quantile
estimation. Additional information can be found in Appendix E.

2.1 MECHANISM DESIGN BASICS

We now formally define the allocation rule and payment rule of a single item auction.
Definition 2.1 (Allocation Rule and Payment Rule). Given k bidders with bid b := (b1, . . . , bk), a
single-item auction M consists of an allocation rule as x(b) := (x1(b), . . . , xk(b)) ∈ [0, 1]k and
a payment rule as p(b) := (p1(b), . . . , pk(b)) ∈ [0, 1]k, where xj denotes the probability that the
j-th bidder gets the item, and pj denotes her payment.

Under truthful sample access, the Myerson’s auction maximizes the expected revenue.
Definition 2.2 (Myerson’s Single Item Auction (Myerson, 1981)). For a discrete product distribution
D = D1× . . . × Dk (Elkind, 2007), the virtual value for Dj at value vji with support Vj =

{vj1, . . . , vjn} is ϕj(v
j
i ) = vji − (vji+1 − vji )

1−Fj(v
j
i )

fj(v
j
i )

, where vji s are ordered in increasing order of i,

fj(v
j
i ) = P[vj = vji ], and Fj(v

j
i ) =

∑i
k=1 f(v

j
k).

We say the product distribution D is η-strongly regular if for all j, ϕj(vi)− ϕj(vj) ≥ η(vi − vj) for
every vi > vj ∈ V and η > 0.

For these distributions D with nondecreasing virtual value, Myerson’s allocation rule xi(vi) =
1{ϕi(vi) ≥ max(0,maxj ̸=i ϕj(vj))}, where 1{·} denotes the indicator function. The payment rule
pi(vi) = 1{ϕi(vi) ≥ max(0,maxj ̸=i ϕj(vj))}ϕ−1

i (max(0,maxj ̸=i ϕj(vj))). 3

2.2 DIFFERENTIAL PRIVACY BASICS

We present the definition of pure DP and approximate DP below.
Definition 2.3 (Differential privacy). An algorithm A : Rn

+ → R is (ϵ, δ)-approximate DP if for
neighboring dataset V, V ′ ∈ Rn

+ that differs in only one data point, and any possible output O, we
have: Pr[A(V ) = O] ≤ exp (ϵ) Pr[A(V ′) = O] + δ. We say it satisfies pure DP for δ = 0.

A key property we leverage from differential privacy is its immunity to post-processing. Post-
processing refers to any computation or transformation applied to the output of a DP algorithm after
the data has been privatized. In our context, Myerson’s auction can be seen as a post-processing step.
Therefore, applying Myerson’s auction to a differentially private release of the empirical distribution
preserves the original privacy guarantees of the input distribution.
Lemma 2.4 (Immunity to Post-Processing). Let A : Rn

+ → R be an (ϵ, δ)-DP algorithm, and let
f : R→ R be a random function. Then, f ◦ A : Rn

+ → R is also (ϵ, δ)-DP.

2.3 QUANTILE ESTIMATION

Quantile estimation (QE) is used for estimating a value of specified quantiles from samples. Given
samples from a distribution, an accurate QE from samples directly translates to an accurate CDF
estimation of the underlying distribution. Below, we formally introduce the definition of QE.
Definition 2.5 (Quantile Estimation). Given a range of the data as H , a dataset X ⊆ Hn containing
n points from range H , and a set of m quantiles 0 ≤ q1, . . . , qm < 1, identify quantile estimations
v1, . . . vm such that for every j ∈ [m], |{x ∈ X|x ≤ vj}| ≈ qj · n. 4

We now present the definition of statistical dominance and KS-distance below.
Definition 2.6 (Stochastic Dominance and KS-Distance). Given distribution D and D′, we denote
the CDF of them as FD, FD′ , respectively. Distribution D stochastically dominates distribution D′

(denoted as D ⪰ D′) if: (1) For any outcome x, FD(x) ≤ FD′(x). (2) For some x, FD(x) < FD′(x).
The KS distance between D and D′ is dks(D,D′) = supx∈R |FD(x) − FD′(x)|.

3We define the virtual value inverse ϕ−1
i (ϕ) as argminv∈V ϕi(v) ≥ ϕ.

4More formally, vj ∈ X is the minimum value such that this quantity exceeds qjn.
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3 PRIVATE MYERSON’S AUCTION FOR BOUNDED DISTRIBUTIONS

In this section, we introduce the algorithm for fitting a Myerson’s auction with a pure privacy
guarantee. To ensure pure privacy, since DP is immune to postprocessing, it is sufficient to input
a private distribution estimated from samples to the Myerson. The challenge lies in finding such
distributions that still yield near-optimal revenue.

Our approach leverages private quantile estimation (QE) over samples to achieve the desired guarantee.
However, the standard guarantees of DPQE collapse when the dataset contains points that are
extremely close. This is a critical issue in our setting, as increasing the sample size n from continuous
value distributions inherently causes the minimum distance between samples to approach zero. To
address this, we introduce additional discretization steps to prevent non-identical points from being
too close together, and we develop new DPQE guarantees specifically tailored to handle samples with
identical values.

3.1 PRIVATE MYERSON FOR BOUNDED DISTRIBUTIONS

Next, we present DPMYER algorithm (Alg. 1). The algorithm first value-discretize the samples of the
distribution additively by ϵa, then quantile-discretize these samples by ϵq with pure privacy guarantee.
Specifically, the quantile discretization estimates the values of the quantile set [ϵq, 2ϵq, . . . , 1] with
pure privacy. Next, DPMYER use the estimated quantile values and the quantile set to construct a
distribution, then perturb it to a final distribution that is stochastically dominated by the ground truth.
Finally, the final distribution is then used to implement Myerson’s mechanism.

Algorithm 1 DP Myerson, Bounded Distribution DPMYER(V, ϵq, ϵa, h, ϵp)

Input: n samples V ∈ Rk×n
+ , discretization parameter ϵq , ϵa, upper bound h, privacy parameter ϵp

1: Discretize all values into multiples of ϵa; let the resulting samples be V̂ .
2: Prepare the quantile to be estimated: Q← {ϵq, 2ϵq, . . . , . . . , ⌊(1/ϵq)⌋ · ϵq, 1}.
3: For each dimension i ∈ [k], decide the prices Ŝ[i,:] ← QESTIMATE(Q,V[i,:], ϵp).
4: ▷ Estimate the quantiles by DPQUANT (Alg. 4)
5: Construct distribution D̃ based on Ŝ, treating the valuations in Ŝ as if each has probability ϵq .
6: For each i ∈ [k], shift the top ϵq quantile of D̃i to the bottom, fit Myerson on this distribution.

3.2 REVENUE OPTIMALITY AND RUNNING TIME

Next, we show the revenue optimality and the efficiency of our algorithm. To upper bound the reveue
loss, we derive the revenue shift theorem, which upper bounds the revenue difference between two
distributions by a linear function of their statistical distance.
Theorem 3.1 (Revenue Shift Theorem). Given two product distribution D ⪰ D′ whose valuations
are bounded by h, with dks(Di,D

′
i) ≤ αi for any bidder i, the optimal revenue of these distribution

satisfies: 0 ≤ E[Rev(MD,D)− Rev(MD′ ,D′)] ≤ (
∑

i∈[k] αi)h.

We apply this theorem to upper bound the revenue loss between 1) the quantile-discretized distribution
and its pre-quantized counterpart, and 2) the distribution obtained from private quantile estimation
and that from the groundtruth quantile estimation. The first one is evident, while the second arises
from DPQUANTILE’s ability to control the KS-distance between the estimation and the ground truth.

We now present the accuracy guarantee of the private Myerson algorithm. Provided the privacy
parameter is not too small (i.e, ϵp = Ω(ϵ−1)), our guarantee implies that the optimal revenue of the
distribution does not exceed the revenue of our algorithm on its samples by more than Θ̃(ϵkh).

Theorem 3.2 (Revenue Guarantee of Private Myerson (Alg. 1)). Given n samples V̂ ∈ [0, h]k×n

of the joint distribution D, DPMYER (Alg. 1) is (2kϵp, 0)-DP, and the expected revenue of this
mechanism is close to the optimal revenue of distribution D, i.e., with probability 1− δ:

|E[Rev(MDPMYER,D)− OPT(D)]| ≤ Õ((ϵ+ ϵ2/ϵp)kh).

under parameter ϵa = ϵq = ϵ and n = Θ̃(ϵ−2), where we hide the polylog factors in Θ̃ and Õ .
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Proof Sketch. We begin by deriving the privacy guarantee of our algorithm. Next, we establish
an upper bound on the distance between the private distribution D̂p and the additively discretized
distribution D̂ϵ. This enables us to apply the revenue shift theorem (Thm.3.1) to upper bound the
revenue loss from private quantile estimation. By aggregating this loss with the revenue loss due to
value discretization, we arrive at the final result. In this proof sketch, we omit the polylog factors that
depends on k, n, δ, ϵa, ϵp, ϵq for a clear presentation. Further details are provided in Appendix H.2.

Privacy Guarantee. We know that the quantile estimates from DPQE is (ϵp, 0) private (Lem. H.2).
Since DP is immune to post-processing (Lem. E.4), and that the output of allocation and payment
combination is 2k dimensional, by composition theorem (Lem. E.5), our algorithm is (2kϵp, 0)-DP.

Upper Bounding the Statistical Distance The distribution D̂p is obtained by changing from
distribution D through distribution D̂, the distribution D̂ϵ and D̂q (Figure 1). We upper bound the
statistical KS distance of these distributions: 1) By DKW inequality, we upper bound the KS-distance
between D̂ and D by Θ̃(1/

√
n) for each coordinate i (with probability 1− δ/2). 2) By definition, we

upper bound the KS-distance between D̂ϵ and D̂q by kϵq . 3) By developing and converting the bound
of the DP quantile algorithm (Lem. H.3) into a bound on the CDF, we upper bound the KS-distance
between D̂q and D̂p by kϵ̂ for ϵ̂ := Θ̃(1/(ϵpn)) (with probability 1− δ/2).

Upper Bounding the Revenue Loss. We then upper bound optimal revenue loss from D to D̂p. This
upper bound can be obtained by combining the revenue loss from the aforementioned distributions
(by revenue shift theorem), with an additive ϵa revenue loss from discretization (by Lem. F.1). The
revenue loss from statistical shift aggregates to Θ̃((1/

√
n+ ϵq + ϵ̂)kh) with probability 1− δ.

Putting it all together. Finally, condition on the DPQUANT proceeds successfully and the samples
are close to the underlying distribution (with probability 1− δ), we get that the expected revenue of
DPQUANT on the underlying distribution is at least the optimal revenue from this distribution minus
the revenue difference between D and D̂p by the following inequality:

0 ≥ E[Rev(MD̂p ,D)− OPT(D)] ≥ E[Rev(MD̂p ,D)− OPT(D̂p)]− |OPT(D̂p)− OPT(D)|
where the first inequality follows from the optimality of MD on D and the second inequality follows
from adding OPT(D̂p). By our construction of D̂p, this distribution is stochastically dominated by D,
thus from the strong revenue monotonicity (Lem. F.3), we get that E[Rev(MD̂p ,D)−OPT(D̂p)] ≥ 0.
Thus, we concluded that the revenue gap is upper bounded by Θ̃((1/

√
n+ ϵq + ϵ̂)kh+ ϵa). We set δ

in the statement as 1/k of the δ we used in this proof to generate the final revenue guarantee.

Dist. D Emp. D̂ Discrete D̂ϵ

line 1 in Alg. 1

Discrete D̂q

Private D̂p

line 4 in Alg. 1

large n

close CDF

small ϵa
close Rev.

large n

close CDF

Figure 1: Distribution analyzed for DPMYER(Alg. 1). We establish connections between the
accuracy/revenue guarantee of the original distribution D with the empirical distribution D̂, the value-
discretized D̂ϵ, the quantile-discretized D̂q and the distribution D̂p returned by DPQUANT(Alg. 4).

Next, we demonstrate the efficiency of our algorithm, which is achieved through a organized im-
plementation of the DP Quantile algorithm. Intuitively, given m ordered quantiles, the algorithm
iteratively identifies and estimates the median (the m/2-th), followed by the m/4 and the 3m/4
quantiles, and so on. This hierarchical structure ensures that each data point is used in at most logm
quantile estimates (of a single quantile). For more details, we refer readers to Appendix H.1.
Theorem 3.3 (Time Complexity for Private Myerson, Bounded). Given the same parameters as
stated in Theorem 3.2, DPMYER (Alg.1) runs in Θ̃(kn) time and requires Θ̃(1) passes of the samples.

Proof Sketch. The time dominant step is quantile estimation, which requires log(⌊1/ϵq⌋+ 1) passes
of the dataset. It takes O(k log(⌊1/ϵq⌋ + 1)/(ϵaϵq)) = Θ̃(kn) time, since n = Θ̃(ϵ−2). This step
calculates the utility of k⌊h/ϵa⌋ over ⌊1/ϵq⌋ quantiles for at most Θ̃(1) time. For full version of this
proof, please refer to Appendix H.3
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4 GENERALIZATION TO UNBOUNDED DISTRIBUTIONS

Generalizing the DP Myerson mechanism to unbounded distributions introduces new challenges.
The revenue loss upper bound produced by previously introduced quantile estimation algorithm and
revenue shift theorem both depends (positively) on the range of the distribution. Without a finite
range, these upper bound becomes infinite and fail to effectively control the revenue loss.

We consider the widely accepted η-strongly regular distributions, which decays at least as fast as
exponential distributions. A key element of our approach is appropriately truncating the distribu-
tion, which enables us to extend the discretize-then-DP-quantile method to the unbounded setting.
Specifically, we apply the property of the regular distribution that (Devanur et al., 2016), truncating
the distribution by 1

ϵOPT(D) costs at most 2ϵ fraction of the optimal revenue (Lem. I.1). Hence,
for the truncation to work, it is essential to approximate the optimal revenue based on sample data.
Meanwhile, incorporating the truncation with pure DP introduces additional complexities.

We are now ready to present our approach for a k-approximation of the optimal revenue with pure
DP for η-strongly regular product distributions. Our DPKOPT (Alg. 2) algorithm approximates the
optimal revenue by running a empirical reserve(ER) over each bidder’s distribution truncated at the
top η1/(1−η)/4 quantile.5 Summing up these estimates gives us a Θ(k)-approximation of the optimal
revenue, by the fact that kOPT(D) ≥

∑
i∈[k] OPT(Dk) ≥ OPT(D).

Algorithm 2 DP Estimation for Optimal Revenue DPKOPT(V, ϵq, ϵa, ϵp, η)

Input: n samples V = {v1, . . . ,vn}, quantile discretization ϵq, additive discetization ϵa, privacy
parameter ϵp, regularity parameter η.

1: for d = 1→ k do
2: q̂ ← 1/4 · η1/1−η

3: Let ubd ← DPQUANTU(V[d,:], 1− q̂). ▷ Estimate the truncation point of Dd.
4: Truncate distribution Dd at ubd as D̂d, and discretize D̂d by additive ϵa in the value space.
5: Prepare the quantile to be estimated, Q← {1− q̂, 1− q̂ − ϵq, · · · , 1− q̂ − ⌊ 1−q̂

ϵq
⌋ · ϵq, 0}.

6: Ŝ[d,:] ← QESTIMATE(Q,V[d,:], ϵp) ▷ Apply DP quantile estimate (Alg. 4).
7: Let F̂d be the distribution generated by value profile Ŝ[d,:] and quantile set Q.
8: SREVd ← maxr∈Ŝ r(1− F̂d(r)). ▷ Estimate the optimal revenue from F̂d (Alg. 6).
9: end for

10: KREV ←
∑

d∈[k] SREV

11: return KREV

To guarantee pure privacy, our algorithm estimates the optimal revenue using a DP-estimated proxy
F̂[k] derived from the sample data. This proxy is obtained from truncating the distribution by
DPQUANTU (Alg. 7) and quantile-discretizing the distribution by DPQUANT. During this process,
the truncation by DPQUANTU cost at most a constant fraction of the optimal revenue, and DPQUANT

cost at most an additional Θ̃( 1
ϵpn

k + ϵa). Aggregating these revenue loss concludes that the output is
a Θ(k)-approximation of the optimal revenue. See Appendix I.4 for more details.

Our private Myerson algorithm for the unbounded distribution (Alg. 9) integrate DPKOPT and yields
the following accuracy bound. See Appendix I.5 for formal statements and more details.
Theorem 4.1 (Revenue Guarantee of Private Myerson, Unbounded). Given ϵ ∈ [0, 1/4], n samples
V̂ of the joint distribution D ∈ [0, h]k, the output of Myerson fitted under DPMYERU (Alg. 9) is
(2kϵp, 0)-DP, and under ϵa = ϵq = ϵ, n = Θ̃(ϵ2), n1 = Θ̃(ϵ2), ϵt =

√
ϵ, with probability 1− δ,

E[Rev(MDPMYERU,D)− Rev(MD,D)]| ≤ Õ(k2
√
ϵ+ k2ϵ1.5/ϵp)

5Without privacy constraints, truncating at the top η1/(1−η)-suffices by Lem. I.4. Our algorithm adopt a
looser truncation since the DPQUANTU algorithm only return the value of given quantiles approximately.
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5 APPLICATION: ONLINE MECHANISM DESIGN FROM BIDS

We now study how to integrate our previous solutions into the online auction setting, such that, the
algorithm produces time-averaged revenue guarantee that converges to the optimal. The auction
now spans multiple rounds, where each auction is informed by the bids from previous rounds. We
consider the setting where bidders are non-myopic bidders, and have incentives to bid strategically in
the current round to increase their utilities over future auctions.

5.1 APPLICATION BACKGROUND

Before presenting our algorithm, we first provide the formal problem definition of the online auction
setting. We study online mechanism design over a time horizon of T , where an identical item is sold
at each iteration. Each bidder has a publicly observable attribute. Bidders with the same attribute
have the same valuation distribution.

We are now ready to describe interactions between bidders and the auctioneer over time horizon T ,
as shown in Figure 2. We defer to Appendix J.2 for more details how bidder generates the samples.

For each time t ∈ [T ]:
• The learner/auctioneer sells a fresh copy of the item.
• The learner collects the bids in the form of (bj , aj), where bj and aj denote the bid

and the attribute of the j ∈ [dt]-th bidder, respectively.
• The learner decides the allocation rule xt and payment pt accordingly.

Figure 2: Online Auction with k Attributes.

Each item the auctioneer sells is identical, and each bidder has an additive (discounted) utility of the
items across rounds. We consider the bidders either have discounted utility or are in a large market.
Definition 5.1 (Bidder’s Utility). Each bidder j has a quasi-linear utility function at time t: ut

j =

xt
j(v

t
j − ptj), where xt

j , v
t
j , p

t
j are the allocation, value, price for bidder j at time t, respectively. We

consider two nonmypoic bidders’ utility models:

Discounted Utility: For discount factor γ ∈ [0, 1], the bidders seek to maximize the sum of utilities
discounted by γ. At the t-th iteration, the discounted utility is ût

j =
∑T

r=t u
r
jγ

r−t.

Large Market: (Anari et al., 2014; Jalaly Khalilabadi and Tardos, 2018; Chen et al., 2016): The bidder
only participates in a subset Sj of auctions, i.e., for each u1:T =

∑
t∈Sj

ut, with subset |Sj | < l.

Ideally, the learner’s objective is maximize time-averaged revenue with high probability. Our regret
compare this revenue against the optimal revenue of the (unobservable) value history.
Definition 5.2 (Learner’s Objective). Given δ, the learner’s objective is to decide an allocation x1:T

and a payment p1:T that achieves sublinear regret, i.e., with probability 1− δ,

REGRET :=
1

T

∑
t∈[T ]

E[Rev(xt,pt,bt)− E [OPT(vt)]] = o(1),

with the expectation taken over the value distribution.

5.2 TWO-STAGE MECHANISM FOR BOUNDED DISTRIBUTION

This two-stage algorithm (Alg. 3) consists of repeated auctions over T rounds, and the participating
bidders’ values in each round are upper bounded by a known constant h. The algorithm first collects
the samples for the first T1 rounds, by running a commitment algorithm (Alg. 10) that punishes
nontruthful bids. Then, the algorithm deploys our previously developed DP Myerson’s Algorithm
(Alg. 1, Alg. 9) for the remaining rounds to obtain near optimal revenue. In addition to these two
steps, our algorithm includes a step where all samples are reduced by ν (line 4 of Alg. 3) and projected
onto nonnegative value spaces. This step is designed to offset the impact of strategic bidding.
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Algorithm 3 Two-Stage Algorithm ABOUNDED

Input: Rounds T , learning rounds T1, parameter ϵa, ϵq , ϵp, ν, upper bound h.
1: for t← 1, . . . T1 do ▷ Collection Stage
2: Receive bids bt, and attributes at.
3: Return (xt,pt)← COMMIT(bt). ▷ Commitment Algorithm(Alg. 10)
4: b̂t ← P[0,h][b

t − ν1k]
5: end for
6: (x̃(·), p̃(·))← DPMYER(b̂1:T1 ,a1:T1 , ϵq, ϵa, h, ϵp) ▷ Fit Myerson’s auction (Alg. 1, or Alg. 9)
7: for t← T1 + 1, . . . T do ▷ Revenue Stage
8: Receive bids bt, and attributes at.
9: (xt,pt)← MYERSON(x̃(·), p̃(·));

10: end for

Specifically, the parameter ν is carefully calibrated to ensure that the bid distribution fed into the
private Myerson mechanism is stochastically dominated by the empirical distribution. Our algorithm
provides an incentive guarantee that bids lie within a small, controllable neighborhood of the true
values. The range of this neighborhood is determined by the privacy parameter ϵp (hence is controlled
by our algorithm), and the bidders’ utility functions. By setting ν to match the range of this
neighborhood, the resulting distribution is dominated by the empirical distribution.

5.3 REVENUE GUARANTEE OF THE ALGORITHM

Before presenting the revenue guarantee of our main algorithm, we first introduce a lemma that upper
bounds how a bidder’s bid deviates from its true value during the collection stage. Intuitively, by the
design of our commitment algorithm the bidder will incurs a loss that scales (positively) with the bid
deviation, compared to truthful bidding. Furthermore, our private Myerson ensures that the bidder’s
future utility gain is upper bounded (Lem. J.5). Thus, bidders are incentivized to report bids within a
certain range of their true values to optimize their overall utility. More details in Appendix J.4.
Lemma 5.3 (Bid Deviation). For any t ∈ [0, T1], the bidder will bid only bt such that |bt − vt| ≤ 2α,

where α =
√
2(l − 1)ϵphk for bidders in a large market; and α =

√
2γϵp
1−γ kh for discounting bidder.

From this lemma, we get that selecting a small ϵp would incentivize bid distributions that are close
to the ground-truth. Let ν = 2α in our algorithm (line 4, Alg. 3) would yield a distribution that
is stochatically dominated by, yet close in revenue guarantee to, the true distribution. Run our DP
Myerson algorithm on this distribution would give us sublinear regret, as stated below.
Theorem 5.4 (Accuracy Guarantee of Two-stage Mechanism). Given ϵ ∈ [0, 1/4], n samples of
the joint distribution D ∈ [0, h]k, and T1 = Θ(ϵ−2 log(k/δ)), T = Ω(T1), ϵa = ϵq = ϵp = ϵ, with
probability 1− δ, Alg. 3 generates sublinear regret, i.e.,

Under a large market, the regret is upper bounded by Õ[(ϵ+
√
lϵ)kh], for ν = 2

√
2(l − 1)ϵphk.

Under discounting bidder, the regret is upper bounded by Õ[(ϵ+
√

γϵ
1−γ )kh], for ν = 2

√
2γϵp
1−γ kh.

Proof Sketch. We denote the empirical distribution as D̂, the distribution after subtraction in line 4 of
Alg. 3 as D̃, and the (final) output distribution as D̂p. Then these distribution satisfies D̂ ⪰ D̃ ⪰ D̂p.
By strong monotonicity(Lem. F.3), we know that E[Rev(MD̂p ,D)] ≥ E[OPT(D̂p)]. Since MD̂p

need not be optimal over D, we have that:

0 ≥ E[Rev(MD̂p ,D)− OPT(D)]

≥ E[Rev(MD̂p ,D)− OPT(D̂p)] + E[OPT(D̂p)− Rev(MD,D)]

≥ E[OPT(D̂p)− OPT(D̂)]− |E[OPT(D̂)− OPT(D)]| ≥ −Θ̃((ϵ+ ϵ2/ϵp)kh+ ν).

where in the last inequality we apply revenue shift theorem (Thm. 3.1) to upper bound the first term
and apply Lemma J.9 to upper bound the second term. Please refer to Appendix J.3 for more details.
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6 EXPERIMENTS

In this section, we present the experimental results for the Differentially Private (DP) Myerson
mechanism, comparing its performance against two standard mechanism design baselines: the
Myerson (optimal) auction and the Vickrey (second-price) auction. The former is designed to achieve
near-optimal revenue for a given value distribution, whereas the latter, while strategy-proof, offers no
revenue guarantees in settings with independent and non identical value distributions.

Our experiments are conducted on normal and lognormal distributions truncated to positive domains.
The lognormal distribution is widely considered a representative or “groundtruth” model in many
auction settings, thanks to its capacity to capture a broad spectrum of value distributions commonly
observed in economic and market contexts (Gorbenko and Malenko, 2014). A random variable V is
said to be lognormal distributed with parameter (µ, σ), if ln(V ) follows normal distribution N (µ, σ).

For each value profile, we test various hyperparameters—additive discretization (ϵa), quantile dis-
cretization (ϵq), and the privacy parameter (ϵp)—and select the configuration with the best perfor-
mance. For details on DP Myerson’s sensitivity to hyperparameters, see Appendix A.

Bidder Profile DP Myerson Second Price Myerson Ref.

Normal N (0.3, 0.5) 0.25272 0.15154 (66.7 %) 0.32598 Table 2Lognormal (µ, σ) = (−1.87, 1.15)
Normal N (0.3, 0.5) 0.37691 0.33741 (11.7 %) 0.50204 Table 3Normal N (0.5, 0.7)

Lognormal (µ, σ) = (−1.87, 1.15) 0.13912 0.11578 (20.2 %) 0.21292 Table 4Lognormal (µ, σ) = (−1.24, 1.04)

Table 1: Empirical Revenue of DPMyerson (Alg. 1) under 2-dimensional non-identical value distribu-
tions. Each DPMyerson configuration is averaged over 50 draws, with revenue evaluated on 10, 000
samples. Percentages in parentheses represent the improvement over the second-price mechanism.

In Table 1, under non i.i.d distribution settings where there is a significant revenue gap between the
Vickrey auction and the Myerson auction, DPMyerson achieves a notable revenue increase (at least
11% ) over the second-price mechanism.

7 CONCLUSION

We investigate the problem of learning a single-item auction (i.e., Myerson) from samples with pure
DP. We consider the broader setting where the agents’ valuations are independent, non-identical, and
can either be bounded or unbounded. By recognizing that the optimal auction mechanism exhibits
robustness to small statistical perturbations in the underlying distribution, we reduce the challenge
of privately learning an optimal auction from sample data to the task of privately approximating
pre-specified quantiles. Specifically, our approach ensures pure privacy while generating a distribution
that is closely aligned with the underlying distribution in terms of expected revenue.

We then extend this framework to the online auction setting, where later auctions are fitted on bids
from previous auctions. In this setting, non-myopic bidders reasons about their utility accross rounds,
and can bid strategically under (one-shot) truthful auctions. By leveraging our private Myerson
mechanisms with an extra commitment mechanism, we achieve near-optimal revenue outcomes over
the bidders’ (unobservable) value samples, despite the strategic complexity introduced by non-myopic
behavior (i.e., time discounting bidder and/or non-discounting bidders in a large market). This result
highlights the robustness of our approach in both protecting privacy and maintaining near optimal
expected revenue in dynamic, strategic environments.
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A MORE DETAILS FROM EXPERIMENTS

In this section, we present the experimental results for the bounded Differentially Private (DP)
Myerson mechanism, comparing its performance against two standard mechanism design baselines:
the Myerson (optimal) auction and the Vickrey (second-price) auction. The Myerson auction is
designed to achieve near-optimal revenue for a given value distribution, whereas the Vickrey auction,
while strategy-proof, offers no revenue guarantees in settings with non-i.i.d. value distributions. All
reported results are based on experiments conducted with at least 10, 000 samples. In the following
subsections, we detail the various experimental settings and configurations considered in this study.

A.1 DISTRIBUTION

Definition A.1 (Log Normal Distribution). A random variable V is said to be lognormal distributed
with parameter (µ, σ), if ln(V ) follows normal distribution N (µ, σ).

Given mean µV and and standard deviation σV , the parameter of the underlying normal distribution
is as follows:

µ = ln(
µ2
V√

µ2
V + σ2

V

), σ =

√
ln(1 +

σ2
V

µ2
V

)

A.2 EMPIRICAL REVENUE ANALYSIS OF DP MYERSON ACROSS HYPERPARAMETERS

In this subsection, we evaluate the performance of DP Myerson across various hyperparameter con-
figurations, including additive discretization (ϵa), privacy parameter (ϵp), and quantile discretization
(ϵq), using 2-dimensional non-i.i.d. distributions. We compare the revenue guarantees of DP Myerson
against those of the second-price auction and the Myerson auction. It is important to note that we do
not expect DP Myerson to outperform the Myerson auction, as the latter converges to the optimal
auction as the sample size increases.

Bidder 1 Normal N (0.3, 0.5)
Bidder 2 Lognormal (µ, σ) = (−1.87, 1.15)
Privacy Parameter ϵp 0.1 0.2 0.4 0.7

w/ additive ϵa = 0.05, Upper Bound h = 1.
DPMy w/ ϵq = 0.05 0.14974 0.15777 0.17104 0.14598
DPMy w/ ϵq = 0.1 0.15564 0.17322 0.17218 0.18670
DPMy w/ ϵq = 0.14 0.18674 0.19108 0.18960 0.18429
Second Price 0.17755
Myerson 0.33291

w/ additive ϵa = 0.1, Upper Bound h = 1.
DPMy w/ ϵq = 0.26 0.2500 0.25272 0.248056 0.24658
DPMy w/ ϵq = 0.31 0.24780 0.24387 0.24540 0.24689
DPMy w/ ϵq = 0.36 0.24534 0.24899 0.24687 0.24723
Second Price 0.15154
Myerson 0.32598

Table 2: Average Empirical Revenue of DP Myerson under non-i.i.d. Value Distributions with Varying
Discretization Parameters (additive ϵa, quantile ϵq) and Privacy Parameter ϵp. The performance of
each DP Myerson is averaged over 50 draws, fitted on 100, 000 samples, with empirical average
revenue evaluated over another 10, 000 samples. Best performing for each ϵp are marked bold.

In Table 2, we evaluate the performance of DPMyerson in a setting where one bidder’s value
distribution follows a normal distribution, and the other follows a lognormal distribution with
parameters (µ, σ) = (−1.87, 1.15) (i.e., mean 0.3 and standard deviation 0.5). The revenue achieved
by the best DPMyerson configuration significantly exceeds that of the second-price auction.
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Bidder 1 Normal N (0.3, 0.5)
Bidder 2 Normal N (0.5, 0.7)
Privacy Parameter ϵp 0.1 0.2 0.4 0.8

w/ additive ϵa = 0.1, Upper Bound h = 1.5, w/ 100, 000 samples.
DPMy w/ ϵq = 0.05 0.33918 0.32878 0.34927 0.33501
DPMy w/ ϵq = 0.2 0.36784 0.36229 0.36408 0.37160
DPMy w/ ϵq = 0.3 0.37521 0.37691 0.37436 0.35579
Second Price 0.33741
Myerson 0.50204

Table 3: Average Empirical Revenue of DP Myerson under non-i.i.d. Value Distributions with Varying
Discretization Parameters (additive ϵa, quantile ϵq) and Privacy Parameter ϵp. The performance of
each DP Myerson is averaged over 50 draws, with empirical average revenue evaluated over another
10, 000 samples. Best performing for each ϵp are marked bold.

In Table 3, we evaluate the performance of DPMyerson under non-i.i.d. normal bid distributions. The
best DPMyerson configuration achieves a significant revenue improvement over the second-price
auction, with an increase of 12%.

Bidder 1 Lognormal (µ, σ) = (−1.8685, 1.1528)
Bidder 2 Lognormal (µ, σ) = (−1.2357, 1.0417)
Privacy Parameter ϵp 0.1 0.2 0.4 0.8

w/ additive ϵa = 0.1, Upper Bound h = 1.0.
DPMy w/ ϵq = 0.1 0.13536 0.13156 0.11881 0.11976
DPMy w/ ϵq = 0.2 0.13912 0.13448 0.12737 0.13947
DPMy w/ ϵq = 0.3 0.035531 0.03761 0.03568 0.03952
Second Price 0.11578
Myerson 0.21292

Table 4: Average Empirical Revenue of DP Myerson under non-i.i.d. Value Distributions with Varying
Discretization Parameters (additive ϵa, quantile ϵq) and Privacy Parameter ϵp. The performance of
each DP Myerson is averaged over 50 draws, fitted on 100, 000 samples, with empirical average
revenue evaluated over another 10, 000 samples. Best performing for each ϵp are marked bold.

In Table 4, we evaluate the performance of DPMyerson under non-i.i.d. lognormal bid distri-
butions. The first bidder’s value distribution follows a lognormal distribution with parameters
(µ, σ) = (−1.8685, 1.1528) (mean 0.3, std 0.5), while the second bidder’s value distribution follows
a lognormal distribution with parameters (µ, σ) = (−1.2357, 1.0417) (mean 0.5, std 0.7).

Remark A.2. The tables above compare the revenue of all mechanisms on distributions discretized
and truncated using the same hyperparameters ( i.e., ϵa and h) as DP Myerson. As a result, the
empirical revenue of the baseline mechanisms varies with these hyperparameters.

Remark A.3. The revenue loss incurred in the above tables are expected and consistent with our
theoretical analysis. More specifically, the additional revenue loss compared to the optimal Myerson
mechanism on the given distribution consists of two components: 1) Quantile Discretization Cost, and
2) Private Quantile Estimation Cost. For the tables above, the revenue loss of DP Myerson under the
best hyperparameters is upper-bounded by hϵq , which is the upper bound of the former component.
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(a) Table 2 w/ ϵq = 0.12. (b) Table 3 w/ ϵq = 0.3. (c) Table 4 w/ ϵq = 0.2.

Figure 3: The impact of different privacy parameter ϵp w/ other discretization parameters fixed.

In Figure 3, we illustrate the revenue performance of DP Myerson across different values of the privacy
parameter ϵp. As shown, ϵp acts as a hyperparameter, and the revenue does not vary monotonically
with changes in ϵp. Interestingly, while one might intuitively expect higher values of ϵp (indicating
weaker privacy constraints) to result in consistently improved revenue, this is not observed uniformly.
Instead, the relationship between ϵp and revenue appears non-linear, suggesting a complex interplay
between privacy guarantees and auction performance.

Notably, the performance of DP Myerson demonstrates significant robustness to the choice of ϵp
under large sample sizes. This robustness implies that careful tuning of ϵp may not always be critical
for achieving competitive revenue, particularly in data-rich settings. However, for smaller sample
sizes, the choice of ϵp could have a more pronounced impact, potentially requiring more nuanced
calibration to balance privacy and revenue effectively.
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B REMARKS

B.1 GENERALIATION TO JOINT DIFFERENTIAL PRIVACY

A related but weaker privacy notion for multi-player setting, i.e, jointly differential privacy
(JDP) (Kearns et al., 2014) also applies to our setting. Standard Differential Privacy (DP) requires that
changing one entry in the dataset affects the probability of every possible output vector by at most
ϵp. In contrast, joint differential privacy only requires that changes in one player’s input (multi-party
collision) do not significantly affect other player’s scalar outcome, without imposing restrictions on
how those changes impact the outcomes of the players whose inputs were altered. Thus, DP implies
JDP, and our algorithm provides a JDP guarantee that is 1/k of its DP guarantee.

Notice that JDP doesn’t implies DP in general. JDP guarantees privacy only in an incomplete
information setting where each bidder sees only their own outcome, which is often impractical in
auction settings due to (1) Sybil attacks, where bidders may create multiple identities/attributes
within the same auction, and (2) transparency requirements, such as EU regulations mandating public
disclosure of political ad payments and allocations (European Commission, 2024).

B.2 GENERALIZATION OF DP MYERSON

Our DP Myerson for unbounded distributions (Alg. 9) can be generalized to unbounded and irregular
distribution settings with light tail. The effectiveness of the truncation depends solely on whether the
tail of the distribution decays faster than that of the equal revenue distribution, which has support
over [1,+∞] and has a cdf F (v) = 1− 1/v. When the condition is met, the truncated distribution
(hence the integrated algorithm), still approximately maintains the revenue guarantee.

B.3 GENERALIZATION TO OTHER ONLINE AUCTION SETTINGS

Varying Bidder Counts. Our mechanism generalizes to settings where, in certain iterations, there
are multiple bidders or occurrences for a single attribute or an absence of a single attribute, as long as
there are sufficient samples for each attribute over the collection stage.

Generalization to Bounded Rationality. If we adopt the weaker assumption that the bidders
has bounded rational, i.e., they will bid truthfully if strategic bidding only gives them at most a
small fraction of the extra utility. Then running our DP Myerson alone with an appropriate privacy
parameter ϵp would incentivize truthful bidding. In this context, the commitment mechanism can be
replaced by any truthful and prior-independent auctions, for example, second price auction.
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C PRIOR WORK DISCUSSION

DP Mechanism Design. Emerging from McSherry and Talwar (2007), there has been interest in
delivering mechanisms with DP guarantees Nissim et al. (2012). However, their designs focused more
on approximating optimal utility and less on running time efficiency. Consequently, these algorithms
incur exponential time in our setting, even when the distribution is of finite support(See Appendix D).

The most relevant recent work is Huang et al. (2018a), which developed an (ϵ, δ)-approximate private
empirical reserve mechanism by applying the Gaussian mechanism via two-fold aggregation (Dwork
et al., 2010). The added noise follows a mean-0 normal distribution and hence coincides with the
smoothed analysis framework, allowing this work to apply solutions from there (Abernethy et al.,
2014). However, getting a stronger pure DP mechanism requires the added noise to be non-normal.
Thus, existing technical solutions from smoothed analysis do not apply to our setting.

Sample Complexity of Auctions One line of related research problem is to show provably sample
complexity guarantees for learning in auctions from truthful samples, i.e., how many samples are
needed to learn auctions that approximately maximize revenue. This problem was first introduced
by (Balcan et al., 2005), and led to an explosion of work on the topic (Bubeck et al., 2019; Huang et al.,
2018b; Morgenstern and Roughgarden, 2015; Elkind, 2007; Balcan et al., 2005; 2008; Roughgarden
and Schrijvers, 2016; Cai and Daskalakis, 2011; Hartline and Roughgarden, 2009; Devanur et al.,
2016; Balcan et al., 2016; Cole and Roughgarden, 2014; Guo et al., 2019). Typically, they upper bound
the sample complexity of certain auctions by proposing a mechanism that achieves the proposed
complexity, and their lower bound for independent, non-i.i.d single-item auctions apply to our setting.

However, it is non-trivial to extend their mechanism to our setting with non-myopic bidders, in
that this line of work assumes the learner/ auctioneer has access to truthful samples. In contrast, in
our setting, if the bidders participate in multiple rounds of the auction, they can bid strategically to
maximize their own total utility over all their rounds, and hence the samples are no longer truthful.

Online learning in repeated auction Reserve-price style strategies achieve near-optimal revenue
for the i.i.d setting and can be learned within given incentive guarantees (Deng et al., 2020; Kanoria
and Nazerzadeh, 2021). However, these methods capture only a constant fraction of the optimal
revenue in our setting where the bidders are from different distribution.6

Huang et al. (2018a); Abernethy et al. (2019) have applied differential privacy as a solution to achieve
incentive compatibility. However, their methods rely heavily on the existence of an upper bound of
the value distribution and are thus not applicable to the unbounded setting.

Incentive measurements Another relevant topic is to measure and guarantee the incentive compati-
bility (IC) Myerson (1979) in a mechanism. A mechanism is IC if truthful bidding outperforms other
strategies. In the absence of truthful samples from value distribution, strict-IC and the optimality of
revenue guarantee cannot be achieved simultaneously.

Hence, previous works have designed several approximate IC metrices and methods to evaluate them
from samples (Balcan et al., 2019). This includes approximate Bayesian Incentive Compatibility Bal-
seiro et al. (2024), approximate Dominant Strategy Incentive Compatibility Dütting et al. (2024),
Stage Incentive Compatibility Deng et al. (2021), and etc.

6See example 3.11 in Hartline and Roughgarden (2009).
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D FAILED ATTEMPTS

D.1 FAILED ATTEMPTS FOR DP MYERSON

Failed Attempt 1: Deploying the Exponential Algorithm. The exponential mechanism is one
typical solution to integrate pure DP with Myerson,but applying it directly to a continuous distribution
is computationally inefficient. This is because it requires fitting an (ironed) virtual value curve for
each dimension—a continuous function with an unknown exact form, aside from the fact that it
is monotonically increasing with the value. A plausible fix is to discretize the distribution into a
finite number of values, and then deploy exponential over possible Myerson’s over the discretized
distribution, assuming the distribution is bounded. This doesn’t fully resolve the computational
challenges. Specifically, when each value distribution is of finite support l and there are k different
attributes/distributions, then Myerson’s auction corresponds to ranking all kl values in increasing
order of their virtual values. According to this ranking, the mechanism picks the bidder with the
highest-ranked value as the winner and charges them the minimum value that maintains a higher rank
than the value of the second-highest-ranked bid.

Thus, the exponential mechanism corresponds to sampling an ordering over all (kl)!/(l!)k possible
rankings, with each requiring O(kn) time to evaluate revenue, resulting in exponential running time.
Suppose we additive discretize each (bounded) distribution by ϵa, the number of distinct ordering will
be Θ(kk/ϵa), which blow up exponentially with 1/ϵa). This approach is inefficient since the number
of possible rankings grows exponentially with l and does not generalize to unbounded distributions.

Failed Attempt 2: Pre-processing Via Tree Aggregation. One might wonder whether we could use
tree aggregation with differentially private(DP) noise (e.g., Laplacian noise) on its cumulative density
function after discretizing the value space into intervals when value distribution is bounded. While
this method could maintain DP guarantee, the noise added only maintains “close” approximations to
the zeroth order information of the revenue curve, and could lead to negative probability mass on
certain intervals. This solution indeed is feasible for mechanisms that only require the accuracy of
the zeroth order information of the revenue curve, e.g., empirical reserve. However, for the Myerson
auction in the non i.i.d case, approximating this mechanism requires both the zeroth order and the
first order information of the revenue curve, hence tree aggregation is not feasible.

Failed Attempt 3: Postprocessing. Another common solution to differentially private release
mechanisms is to add noise to the output. Although this method witnessed its success in robust and
differentially private mean estimation, it’s unclear how to handle noise in the mechanism design
setting even when the value distribution is bounded by, say H . The reason is due to sensitivity: For
mean estimation, the sensitivity (hence the necessary level of added noise ) grows smaller with a
larger number of samples. On the contrary, for the mechanism design setting, it’s not clear how the
efficiency guarantee (e.g. revenue, social welfare) scales with the inverse of the number of bidders. 7

Unfortunately, if we add DP noise according to sensitivity H , the noise level is too large and fails to
guarantee a near-optimal target.

D.2 FAILED ATTEMPTS AND LOWER BOUNDS FOR ONLINE MECHANISM DESIGN

If the bidder is non-discounting and participates in every round of the auction, then it is known that it
is not possible to obtain sublinear regret against bid history.

Lemma D.1 (Regret Lower Bound for Additive Bidder (Theorem 3, Amin et al. (2013))). Let A be
any seller algorithm for the repeated setting; then, there exists a valuation D such that:

Regret ≥ 1/12.

For application to our online setting, bounding the regret against bid history is not enough to guarantee
a near-optimal revenue for the value distribution.

Failed Attempt: Bounding the Regret Only Another way of thinking about the repeated auction
problem is to reduce it to the online setting, and the benchmark is the revenue produced by best-fixed
mechanism over the bid history. At every iteration, however, the adversary would produce bids as the

7In fact, this efficiency guarantee in the worst case will be exactly H .
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best (or better) response to the mechanism, hence this bid could deviate a lot from the value sequence.
Thus, the revenue from the benchmark could be arbitrarily worse than the revenue from the best-fixed
mechanism over the value history.
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E MORE DETAILS FROM PRELIMINARIES

Notation. For a mechanism M and a k dimensional product distribution D = D1×· · ·×Dk, denote
Rev(M,D) as the expected revenue by running auction M on D. Let MD be the revenue-maximizing
auction on D and its expected revenue be OPTD = Rev(MD,D). Denote xj(v) ∈ [0, 1], pj(v) as the
allocation probability and the payment for the bidder with value v and distribution Dj . We overload
j to denote both the index of bidder and the index of distribution, and we denote x = (x1, . . . , xk)
and p = (p1, . . . , pk) as the allocation vector and payment vector, respectively. We use Rev(M,D)
to denote the expected revenue for mechanism M on distribution D, where M = (x,p) denotes the
allocation and payment as a function of bids.

For bidder j at round t ∈ [T ], denote the bidder value as vtj , bid as btj , the allocation rule as
xt
j , and the set of indices of rounds the bidder participates in the mechanism as Sj . WLOG, for

t /∈ Sj , we let btj = vtj = 0. We denote v
[T ]
j = (v1j , . . . , v

T
j )

⊤ and b
[T ]
j = (b1j , . . . , b

T
j )

⊤ as the
batched value and bid vectors, respectively. Assume the utility of bidder j at time t with bid btj is

ut
j(b

t
j) = xt

j(b
t
j) · (vtj − ptj) and over all T rounds is u[T ]

j (b
[T ]
j , v

[T ]
j , ht

j) =
∑

t∈Sj
xt
j(b

t
j) · (vtj − ptj).

Denote U t
j (b

[T ]
j ) = E[u[T ]

j (b
[T ]
j , v

[T ]
j , ht

j) − u
[t]
j (b

[T ]
j , v

[T ]
j , ht

j)] as the expected utility of bidder j

from the t-th round to final round T if the bidder’s bid vector is b[T ]
j , where ht

j is the history at the
t-th round, including the price history up to the t-th round.

E.1 MECHANISM DESIGN BASICS

In this section, we present a detailed definitions on the machineries we use in this paper. We begin
with the formal definition of Myerson’s auction, which maximizes revenue in Bayesian environments.

Definition E.1 (Myerson’s auction, formal version of Definition 2.2). Myerson (1981) Myerson’s
auction maximizes the expected revenue of a single-item single round auction on product distribution
D = D1× . . . × Dk. Consider the single round auction where there k bidders, where bidder i is
from distribution Di, and let Fi and fi denote the cdf and pdf of her value distribution.

For continuous product distribution D, the virtual value ϕi(vi) of the bidder i with value vi is
ϕi(vi) = vi − 1−Fi(vi)

fi(vi)
. For the case where the product distribution D is discrete, the virtual value

function from distribution Dj at value vji with support Vj = {vj1, . . . , vjn}, is defined as(Elkind
(2007)):

ϕj(v
j
i , v

j
i+1) = vji − (vji+1 − vji )

1− Fj(v
j
i )

fj(v
j
i )

where vji s are ordered in increasing order of i, and fj(v
j
i ) = P[vj = vji ], and Fj(v

j
i ) =

∑i
k=1 f(v

j
k).

We say a distributionDj is η−strongly regular if for every distribution j, ϕj(vi)−ϕj(vj) ≥ η(vi−vj),
for every vi > vj ∈ V . When η = 1, we say the distribution is monotone hazard rate(MHR)
distribution. For any distribution D with the above property, Myerson’s allocation rule is

xi(vi) =

{
1 if ϕi(vi) ≥ max(0,maxj ̸=i ϕj(vj))

0 otherwise

and payment8 rule is

pi(vi) =

{
ϕ−1
i (max(0,maxj ̸=i ϕj(vj))) if ϕi(vi) ≥ max(0,maxj ̸=i ϕj(vj)).

0 otherwise

8The virtual value inverse ϕ−1
i (v) for discrete distribution is defined as argminv∈V ϕi(v) ≥ ϕ, where V is

the support for distribution Di.
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For regular distributions, Myerson’s auction allocates the good to the bidder with highest non-negative
virtual value9, and the winner pays the threshold value10. If there are no bidders with non-negative
virtual value, no one wins the item.

For irregular distributions, Myerson’s auction requires an extra “ironing” procedure. The “ironed”
virtual value ϕ̃ is a monotonic increasing function of the value, and the above payment/allocation rule
are defined based on the “ironed” virtual value.

Next, we introduce the definition of Vickrey auction.
Definition E.2 (Vickrey Auction). For a single item auction with multiple bidders, the Vickrey
auction allocates the item to the highest bidder and charges them the second highest bid.

When all bidders’ values are i.i.d distributed, the Vickrey auction with Myerson Reserve (r = ϕ−1(0))
gets optimal revenue in expectation Hartline and Roughgarden (2009).

E.2 DIFFERENTIAL PRIVACY BASICS

We present the definition of pure DP and approximate DP below.
Definition E.3 (Differential privacy). An algorithm A : Rn

+ → R is (ϵ, δ)-approximate DP if for
neighboring dataset V, V ′ ∈ Rn

+ that differs in only one data point, and any possible output O, we
have: Pr[A(V ) = O] ≤ exp (ϵ) Pr[A(V ′) = O] + δ. We say it satisfies pure DP for δ = 0.

A key property we leverage from differential privacy is its immunity to post-processing. Post-
processing refers to any computation or transformation applied to the output of a DP algorithm after
the data has been privatized. In our context, Myerson’s auction can be seen as a post-processing step.
Therefore, applying Myerson’s auction to a differentially private release of the empirical distribution
preserves the original privacy guarantees of the input distribution.
Lemma E.4 (Immunity to Post-Processing). Let A : Rn

+ → R be an (ϵ, δ)-DP algorithm, and let
f : R→ R be a random function. Then, f ◦ A : Rn

+ → R is also (ϵ, δ)-DP.
Lemma E.5 (Basic Composition Theorem (Dwork et al., 2006)). LetM1 : D → R1 andM2 :
D → R2 be two mechanisms that are (ε1, δ1)-differentially private and (ε2, δ2)-differentially private,
respectively. Then, the composition ofM1 andM2, denoted as (M1,M2) : D → (R1 × R2),
satisfies (ε1 + ε2, δ1 + δ2)-differential privacy.

E.3 PROBABILITY INEQUALITIES

Next, we present the Dvoretzky–Kiefer–Wolfowitz(DKW) inequality that, upper bound the probability
that the empirical CDF differs from the CDF of the true distribution.
Lemma E.6 (DKW Inequality (Dvoretzky et al. (1956))). Let X1, X2, . . . , Xm be i.i.d random vari-
ables with cumulative distribution function F (·). Let Fm denote the associated empirical distribution
function defined as Fm(x) = 1

m

∑
i∈[m] 1{Xi≤x}. Then, we have the following probability bound:

Pr[max
x∈R
|Fm(x)− F (x)| > ϵ] ≤ 2 exp(−2mϵ2)

E.4 STOCHASTIC DOMINANCE BASICS

Next, we introduce some technical preliminaries on the distance and dominance between distributions.
Definition E.7 (First Order Stochastic Dominance). For distribution D and D′, we denote the cdf of
them as FD, FD′ , respectively. Distribution D first order stochastically dominates distribution D′ if:

• For any outcome x, FD(x) ≤ FD′(x).

• For some x, FD(x) < FD′(x)

9If there are multiple bidders with highest virtual value, break ties arbitrarily, e.g., in lexicographical order
10the max of the value at which her virtual value is zero and the value at which her virtual value becomes

largest
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We denote D ⪰ D′ for D first order stochastically dominates D′. For product distribution D and D′,
if for every i, Di ⪰ D′

i, we say that D ⪰ D′.
Definition E.8 (Kolmogorov-Smirnov distance). For probability distributions D1, D2 on R, and let
F1, F2 denote the culmulative function of D1, D2. Then, the Kolmogorov-Smirnov distance of D1

and D2 is defined as follows:

dks(D1,D2) = sup
x∈R
|F1(x)− F2(x)|.

Moreover, we call D1 and D2 t-close if dks(D1,D2) ≤ t.
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F RESULTS FROM BAYESIAN MECHANISM DESIGN

F.1 REVENUE LOSS

We first state a lemma that guarantee the expected revenue loss by additive discretization by ϵ is upper
bounded by ϵ:
Lemma F.1 (Additive Discretization of Value Space (Lemma 6.3 in arXiv version of Devanur et al.
(2016))). Given any product distribution D and D′, where D′ is obtained by rounding down the
values from D to the closest multiples of ϵ, we have:

OPT(D′) ≥ OPT(D)− ϵ

Lemma F.2 (Weak Revenue Monotonicity (Devanur et al., 2016)). Suppose D,D′ be two product
distribution such that D′ is first order stochastic dominated by D, then the optimal revenue for these
distributions satisfies the following:

OPT(D) ≥ OPT(D′)

Lemma F.3 (Strong Revenue Monotonicity (Devanur et al., 2016)). Let D′ be a product distribution
with finite support. There exists a mechanism M0 such that M0 is an optimal auction for D, and for
all finite support distributions D ⪰ D′:

Rev(M0,D) ≤ Rev(M0,D
′)
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G REVENUE SHIFT THEOREM

In this subsection, we introduce technicals to show our revenue shift theorem. We present the
definition of an increasing function w.r.t vector input below.
Definition G.1 (Increasing Functions ). Let u : Rn → R, we say that u is increasing if for every
v = (v1, . . . , vk),v

′ = (v′1, . . . , v
′
k) such that v′i ≥ vi, it holds that u(v′) ≥ u(v).

We now extend this definition to the scenario where the input vectors follow distributions. In this
case, the difference in the expected output on these vectors can be bounded by a function of the
statistical distance between their underlying distributions.
Lemma G.2 (Utility Difference for Bounded Distribution (Guo et al., 2021)). Let D = D1× . . .×Dk,
D′ = D′

1× . . .×D′
k be product k-dimensional distributions with dks(Di, D

′
i) ≤ αi. Then for every

increasing function u : Rk → [0, ū], it holds that:

| E
v∼D

[u(v)]− E
v′∼D′

[u(v′)]| ≤ ū · (
n∑

j=1

αi)

Our proof of the revenue shift theorem relies on the property that the optimal revenue (as characterized
by Myerson in our setting) equals the maximum payment achievable from a given value profile and is
an increasing function of the observed bids. The formal proof is provided below:
Theorem G.3 (Revenue Shift). Given two product distribution D ⪰ D′ whose valuations are
bounded by [0, h], with dks(Di,D

′
i) ≤ αi for any bidder/entry i, the optimal revenue of these

distribution satisfies:

0 ≤ E[Rev(MD,D)− Rev(MD′ ,D′)] ≤ (
∑
i∈[k]

αi)h

Proof. According to weak revenue monotonicity F.2, we get that the optimal revenue of a distribution
D over support [0, h] is an increasing function defined in Def. G.1, and the optimal revenue is upper
bounded by h. Hence, by lemma G.2, we get that for any distribution D ⪰ D′.

0 ≤ E[Rev(MD,D)− Rev(MD′ ,D′)] ≤ (
∑
i∈[k]

αi)h
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H MORE DETAILS FOR BOUNDED DISTRIBUTIONS

H.1 PRIVATE QUANTILE ESTIMATION

It’s worthwhile to present and state the quantile estimation oracle below. In our paper, we apply
a similar quantile estimation algorithm as in Kaplan et al. (2022), which applies the exponential
mechanism (Smith, 2011) efficiently on the dataset/samples.

Algorithm 4 DP Quantile, Bounded Distribution DPQUANT (Kaplan et al., 2022)

Input: n samples V = {v1, . . . , vn}, range [lb, ub], set of quantiles Q := {q1, . . . , qm}, privacy
parameter ϵp, DP oracle A that estimate a single quantile with privacy ϵp/(log2 m+ 1) (Alg. 5).

1: Rank the quantiles Q in increasing order.
2: if m == 1 then return {A((lb, ub), V, q1)}
3: end if
4: s← A((lb, ub), V, q⌊m/2⌋).
5: Separate the samples V by s into left and right quantiles, i.e., Vl := {v < s|v ∈ V }, Vr := {v >

s|v ∈ V }.
6: Update the candidate quantile into Ql and Qr, where Ql := {q < q⌊m/2⌋|q ∈ Q}, Qr = {q >

q⌊m/2⌋|q ∈ Q}
7: return {DPQUANT(Vl, (lb, s), Ql, ϵp,A)} ∪ {s} ∪ {DPQUANT(Vr, (s, ub), Qr, ϵp,A)}

We define the utility function measuring the accuracy of a given quantile estimation I of quantile
q. This function measures the number of points between the true value of a given quantile q and its
estimation I .

Definition H.1 (Utility Function of Quantile Estimation (Smith, 2011)). Given a dataset V ∈ [lb, ub]n,
a quantile q, and an estimation I , the utility function of quantile estimation is defined as:

u(V, I, q) := −|{v ∈ V |v < I} − ⌊q · n⌋|

For multiple quantiles Q = (q1, . . . , qm) and estimation I = (I1, . . . , Im), the utility is defined as
the worst utility of these quantile estimations, i.e.,

u(V, I,Q) := min
r∈[m]

u(V, Ir, qr)

Here we present the DP Single Quantile estimation below. WE apply this algorithm in thhe DP
Quantile with privacy ϵp/(log2 m+1), for number of quantiles m and required (pure) privacy ϵp. The
DP Single Quantile guarantees pure privacy by efficiently implementing the exponential algorithm
with the utility we previously described. For DP Single Quantile, we use the convention that for
vk = vk−1, the sample probability is 0, under this convention, only interval with positive length will
have the probability to be sampled.

Algorithm 5 DP Single Quantile

Input: n samples V = {v1, . . . ,vn}, range [lb, ub], quantile q, privacy parameter ϵp
1: Rank samples in V in increasing order.
2: for i = 1→ n+ 1 do
3: Let interval Ii = [vi−1, vi], where x0 = lb, xn+1 = ub.
4: end for
5: Sample an interval Ik from this set of intervals, with probability exp(ϵpu(V, Ik, q)/2) · (vk −

vk−1).
6: return a uniformly random point from interval Ik.

Now we present the utility for single quantile for duplicates value below. This proof is similar to the
one adopted in the Appendix A.1 of Kaplan et al. (2022).

Lemma H.2 (Utility for Single Quantile, Discrete Distribution). With probability 1−δ, given samples
V ∈ [0, h]n and quantile q ∈ [0, 1], where samples may have the same value, but those with different
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values will differ by at least ϵa. Then, the exponential mechanism described in Alg. 5 would output s
with (ϵp, 0)-DP and:

|u(V, I, q)| ≤ 2 · log ϕ− log δ

ϵp
.

where ϕ := h/ϵa.

Proof. Let It be an interval that u(V, It, q) ≤ −γ. Then the probability that we sample a point from
It is at most:

Pr[A(V ) = It] ≤
exp(−ϵpγ/2)(vi − vi−1)∑

i∈[n],xi ̸=xi−1
exp(ϵpu(V, Ii, q))ϵa

≤ exp(−ϵpγ/2)h
exp(ϵpu(V, Io, q))ϵa

≤ ϕ exp(−ϵpγ/2)

whereA denotes the output by DP Single Quantile, and o denote the optimal interval with for quantile
q that has zero utility. Next, it follows that with probability less than δ, the returned interval will have
a utility at most −γ for γ = Θ(log ϕ+ log(1/δ))/ϵp, which completes the proof.

We have proven that the single quantile algorithm still holds similar accuracy guarantee under our
assumption on the dataset which the data points can have same value, but if they are different, then
their values will differ by at least ϵa. Following the same logic as in Kaplan et al. (2022), we can also
demonstrate the accuracy guarantee of the quantile estimation algorithm in our distribution setting.
Lemma H.3 (Utility of DP Quantile (Thm. 3.3 in Kaplan et al. (2022))). With probability 1 − δ,
given samples V ∈ [0, h]n and quantile Q = (q1, . . . , qm) and privacy parameter ϵp, where samples
may have the same value, but those with different values will differ by at least ϵa. Then, the Alg 4 will
output S = (s1, . . . , sm) with (ϵp, 0)-DP, such that:

ERR(V, S,Q) := −u(V, S,Q) ≤ 2(logm+ 1) · log ϕ+ logm− log δ

ϵp

where ϕ := h/ϵa.

H.2 REVENUE GUARANTEE OF PRIVATE MYERSON

We now present the complete proof of the accuracy guarantee for the private Myerson mechanism
under the bounded distribution setting.
Theorem H.4 (Revenue Guarantee of Private Myerson (Alg. 1), formal version of Theorem 3.2).
Given n samples V̂ ∈ [0, h]k×n of the joint distribution D, DPMYER (Alg. 1) is (2kϵp, 0)-DP, and
the expected revenue of this mechanism is close to the optimal revenue of distribution D, i.e., with
probability 1− δ:

|E[Rev(MDPMYER,D)− Rev(MD,D)]| ≤ Θ̃((ϵq +
1

ϵp · n
+

1√
n
) · kh+ ϵa).

for n ≥ max{2 log(4k/δ)/ϵ2q, 8(log(1/ϵq) + 1)(log(hk log(1/ϵq)/(ϵaδ)))/(ϵqϵq)}, which can be
further simplifies to n = Ω̃(max{1/(ϵpϵq), 1/ϵ2q)}). Furthermore, under ϵa = ϵq = ϵ, and that n =

Θ(max{ϵ−2 log(k/δ), ϵ−2 log(1/ϵ) log(hk log(2/ϵ)
ϵδ ), ϵ−2 log(k/δ)}), which can be further simplifies

to n = Θ̃(ϵ−2), we have:

|E[Rev(MDPMYER,D)− OPT(D)]| ≤ Θ̃((ϵ+ ϵ2/ϵp)kh).

Proof. Privacy We know that the quantile estimates from DPQE is (ϵp, 0) private (Lem. H.2).
Since DP is immune to post-processing (Lem. E.4), and that the output of allocation and payment
combination is 2k dimensional, by composition theorem (Lem. E.5), our algorithm is (2kϵp, 0)-DP.

We include all distributions considered in this proof in Figure 1 below.
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Dist. D Emp. D̂ Discrete D̂ϵ

line 1 in Alg. 1

Discrete D̂q

Private D̂p

line 4 in Alg. 1

large n

close CDF

small ϵa
close Rev.

large n

close CDF

Figure 4: Distribution analyzed for DPMYER(Alg. 1). We establish connections between the
accuracy/revenue guarantee of the original distribution D with the empirical distribution D̂, the value-
discretized D̂ϵ, the quantile-discretized D̂q and the distribution D̂p returned by DPQUANT(Alg. 4).

From the DKW inequality E.6, we know that with probability 1− δ1, the cumulative density function
of the empirical distribution is close to the true distribution, i.e., for all attribute i ∈ [k],

dks(Di, D̂i) := max
v
|(FD(v)− FD̂(v))| ≤

√
log(2k/δ1)/2n.

We condition on this event holds since after discretization by ϵa, each value at most decreases by ϵa
in the new distribution D̂ϵ. By Lemma F.1, we note that the optimal revenue at most decreases by ϵa:

E[Rev(MD̂, D̂)− Rev(MD̂ϵ , D̂
ϵ)] ≤ ϵa.

Next, we discretize again on distribution D̂ϵ, which additively discretizes this distribution in the
quantile space. We denote this distribution as D̂q . Consequently, for any attribute i ∈ [k], we have:

dks(D̂
ϵ, D̂q) ≤ ϵq.

Next, from Lemma H.3, we get that with probability 1− δ2, for each attribute i ∈ [k], the following
holds:

dks(D̂
q
i , D̂

p
i ) = | − ERR(V, S,Q)|/n

≤ 2(logm+ 1) · log h− log ϵa + logm+ log k − log δ2
ϵp · n

:= ϵ̂.

Next, we show by n ≥ max{2 log(4k/δ)/ϵ2q, 4(logm + 1)(log(hmk/(2ϵaδ)))/(ϵqϵq)}11, we
have D ⪰ D̂q: 1) For n ≥ 2 log(4k/δ)/ϵ2q , we have that dks(Di, D̂i) ≤ ϵq/2. 2) For
n ≥ 4(logm+ 1)(log(hmk/(2ϵaδ)))/(ϵqϵq), we have that ϵ̂ ≤ ϵq/2. Since quantile discretization
shift the distribution down by [ϵq, 2ϵq], and that additive discretization only shift the distribution to a
one that is dominated by it, we have that D̂q is still dominated by D.

We condition on both events holding and denote the KS-distance upper bound between the privacy
estimation vs the ground truth of the discretized distribution of one attribute as ϵ̂. Thus, we get that
with probability 1− δ1 − δ2, we have the following revenue bound of the final mechanism:

0 ≥E[Rev(MD̂p ,D)− Rev(MD,D)]

≥E[Rev(MD̂p ,D)− Rev(MD̂p , D̂
p)]− |Rev(MD̂p , D̂

p)− Rev(MD,D)|

≥ − |Rev(MD̂p , D̂
p)− Rev(MD̂q , D̂

q)| − |Rev(MD̂q , D̂
q)− Rev(MD,D)|

≥ − kϵ̂h− |Rev(MD̂q , D̂
q)− Rev(MD̂ϵ , D̂

ϵ)| − |Rev(MD̂ϵ , D̂
ϵ)− Rev(MD,D)|

≥ − k(ϵ̂+ ϵq)h− |Rev(MD̂ϵ , D̂
ϵ)− Rev(MD̂, D̂)| − |Rev(MD̂, D̂)− Rev(MD,D)|

≥ − k(ϵ̂+ ϵq)h− ϵa −
√

log(2k/δ1)/2nkh,

where the first inequality follows from the optimality of mechanism MD on distribution D, and
that D ⪰ D̂q by our choice of n. The second inequality follows from rearranging the term. The

11The quantity in the theorem statement is 8(log(1/ϵq)+1)(log(hk log(1/ϵq)/(ϵaδ)))/(ϵqϵq) and is greater
than the second term in the max here.
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third inequality follows from strong revenue monotonicity F.3 and that D ⪰ D̂p, we get that the
term E[Rev(MD̂p ,D)− Rev(MD̂p , D̂

p)] ≥ 0. The next few inequalties follows from applying the
revenue shift theorem (Thm G.3) iteratively for: 1) D̂p and D̂q with distance ϵ̂, 2) D̂ϵ and D̂q with
distance ϵq , and 3) D̂ and D with distance

√
log(2k/δ1)/2n. We also apply Lemma F.1 to upper bound

the revenue loss from additive discretization.

Next, we plug in the value of ϵ̂ and m = ⌊1 + 1/ϵq⌋ to upper bound the value of ϵ̂, i.e.,

ϵ̂ ≤ 4

ϵp · n
· log( 1

ϵq
) · ( mhk

ϵa · δ2
).

Finally, letting δ1 = δ2 = δ/2, we get the final result: with probability 1− δ:

|E[Rev(MD̂p ,D)− Rev(MD,D)]|

≤ (ϵq +
10

ϵp · n
log(

1

ϵq
) · log( hk

ϵqϵa · δ
) +

√
log(4k/δ)

2n
) · kh+ ϵa

≤Θ̃((ϵq +
1

ϵp · n
+

1√
n
) · kh+ ϵa),

where the Θ̃ hide the polylog factors. Furthermore, let ϵq = ϵa and let n ≥ ϵ−2 log(2k/δ1)/2 give us
the following bound:

|E[Rev(MD̂p ,D)− Rev(MD,D)]| ≤ Θ̃((ϵ+ ϵ2/ϵp)kh).

Next, we let δ in the statement to be 1/k of the δ we used in this proof. This δ would only affect the
revenue by poly log factors hence are hidden in the Θ̃.

H.3 RUNNING TIME FOR PRIVATE MYERSON

Theorem H.5 (Running time, DP Myerson for Bounded Distribution). Given the same parameters
as stated in Theorem 3.2, the running time of DPMYER (Alg.1) is Θ(log(1/ϵq)n + kn) = Θ̃(kn)

and requires Θ(log(1/ϵq) = Θ̃(1) passes of the samples.

Proof. We describe below how to implement DPMYER efficiently.

• For the additive discretization step, we rounded down each value to the closest multiples of
ϵa. This step runs in O(kn) time and requires 1 pass of the dataset.

• For quantile preparation, this step takes ⌊1/ϵq⌋+ 1 time.

• For the DP quantile estimation step, we know that it requires log(⌊1/ϵq⌋ + 1) passes of
the dataset. The running time of each of these pass depends not on n, but on the number
of distinct value we have after additive discretization (i.e., O(h/ϵa)), and the number of
quantiles we want to calculate our utility (Def. H.3) on (i.e., O(1/ϵq)). Each pass of the
distribution will take O(k/(ϵaϵq)) time. Since ϵa = ϵq = ϵ, we have that the total running
time is Θ̃(kϵ−2) = Θ̃(kn).

Summing them up provides the final guarantee.
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I MORE DETAILS FOR UNBOUNDED DISTRIBUTIONS

I.1 TRUNCATION POINT LEMMA

Here we present a lemma on how to truncate the regular distribution. Notice that this truncation
point depends on the optimal revenue produced by the distribution itself. In order to estimate this
truncation point up by approximation, an approximation on the revenue is needed.
Lemma I.1 (Truncation of Regular Distribution (Devanur et al., 2016)). For any product regular
distribution D = (D1, . . . , Dk), given any ϵ ∈ (0, 1/4], let v̄ ≥ 1

ϵ OPT(D) be the truncation point,
and let D̄1, . . . , D̄k be the distribution after truncating D by point v̄. Then, we have

OPT(D̄) ≥ (1− 2ϵ)OPT(D).

I.2 THE EMPIRICAL RESERVE ALGORITHM

In this section, we formally introduce the details of Empirical Reserve algorithm, and how it
approximates the optimal revenue when there is only one bidder. We run a δ/2-guarded reserve
mechanism to collect an estimation on the optimal revenue of product distribution D. Then, we
analyze the approximation guarantee, the incentive robustness and the convergence of this algorithm.
In this subsection, the quantile q is defined as the value corresponds to the top q quantile as opposed
to in out context, the quantile is defined as the bottom q quantile. First, we describe the β-guarded
empirical reserve algorithm (Alg. 6).

Algorithm 6 Empirical Reserve ER (Huang et al., 2018b)

Parameters: distribution D, failure probability δ, guarded parameter β, accuracy parameter ϵER.
Input: m = Θ(β−1ϵ−2 log(β−1ϵ−1) log(1/δER)) samples from distribution D

1: Sort m samples in the decreasing order, i.e., v1 ≥ v2 ≥ . . . ≥ vm.
2: Find the smallest index j ∈ [β ·m,m] that maximizes the empirical revenue, i.e.,

j = arg max
βm≤i≤m

i · vi

3: rD ← vj ▷ β-guarded empirical reserve
4: RD ← j × vj/m ▷ Empirical revenue

Output: rD, RD

Definition I.2 (β-guarded reserve). Given m samples v1 ≥ v2 ≥ · ≥ vm, the empirical reserve is

argmax
i≥1

i · vi

If we only consider i ≥ βm for some parameter β, it is called the β-guarded empirical reserve.
Lemma I.3 (Empirical Reserve, γ-strongly-Regular, Thm 3.3 in Huang et al. (2018b)). The empirical
reserve with m = Θ(ϵ−3/2 log(ϵ−1)) samples is (1 − ϵ)-approximate for all γ-strongly regular
distributions, for a constant α > 0.
Lemma I.4 (Optimal Quantile). Let q denote the quantile, v(q) denote the value of that quantile,
and let R(q) = qv(q) be thr revenue as a function over the quantile space. Let q∗ and v∗ = v(q∗) be
the revenue-optimal quantile and reserve price respectively. Then,

• (Hartline et al. (2008)) For every MHR distribution, q∗ ≥ 1
e .

• (Cole and Roughgarden (2014)) For any γ-strongly regular distribution, q∗ ≥ γ
1

1−γ .
Lemma I.5 (Empirical Reserve, Bounded, Thm 3.6 in Huang et al. (2018b)). The empirical reserve
with m = Θ(Hϵ−2 log(Hϵ−1)) samples is (1 − ϵ)-approximate for all distributions with support
[1, H].
Lemma I.6 (β0/2-guarded empirical reserve, Thm. 3.5 in Arxiv Version of Huang et al. (2018b)).
The β0

2 -guarded empirical reserve with m = Θ(β−1
0 ϵ−2 log(β−1

0 ϵ−1)) gives revenue at least (1−
ϵ)R∗

β0
for all distributions, where R∗

β0
is the optimal revenue by prices with sale probability at least

β0, in expectation.
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I.3 DIFFERENTIAL PRIVATE QUANTILE ESTIMATION FOR UNBOUNDED DISTRIBUTION

For the sake of completeness, we present the algorithm for DP quantile estimation for unbounded
distribution (Durfee, 2023) below. This algorithm works for value distributions with lower bound
and no upper bound. Intuitively, the algorithm gradually guess the correct value for the quantile
q, and check whether there are sufficient number of points in the given dataset V that are below
the guessed value. Specifically, for β > 1, the algorithm first check whether β − 1 is the correct
quantile, then scale this guess roughly exponentially to β2− 1, β3− 1, . . . , βi− 1 until the algorithm
stops. This algorithm guarantees that with high probability, the value it finds has the quantile greater
than q −∆ for some small ∆. This Alg. 7 can be run in time in Õ(n) by specific dictionary data
structure(Section 4.2 of Durfee (2023)), where the Õ hides the log factors of n and target value v̂.

Algorithm 7 DP Quantile Estimation for Unbounded Distribution, DPQUANTU(V,Q) (Durfee,
2023)

Input: n samples V = {v1, . . . , vn}, quantile q, privacy parameter ϵp, parameter β > 1

1: Let T̂ = qn+ EXP(2/ϵp).
2: for i = 1, 2, 3, . . . do
3: fi(V )← |{vj ∈ V |vj + 1 < βi}|
4: ϵi ← EXP(2/ϵp).
5: if fi(V ) + ϵi ≥ T̂ then Output βi − 1 and halt

▷ Check whether current βi − 1 exceeds the threshold.
6: end if
7: end for

Lemma I.7 (DP Guarantee of DP Quantile, Unbounded (Durfee, 2023)). Alg. 7 is ϵp-DP.
Definition I.8 (Exponential Noise). The exponential distribution with parameter z, i.e., EXP(z) has
the following PDF: For v ≥ 0,fEXP(z)(v) =

1
z exp(−v/z).

We derive the accuracy guarantee of DP Quantile for unbounded distribution below.
Lemma I.9 (Accuracy Guarantee of DP Quantile, Unbounded). Given n samples V = {v1, . . . , vn},
quantile q, privacy parameter ϵp and parameter β. Alg. 7 will output Ŝ satisfies the following:

• Unbiased: E[fi−1(V )] ≤ qn ≤ E[fi(V )], for i is the iteration of halt.

• Asymptotic β approximation: With probability 1− 2δ:

F ((Ŝ + 1)/β − 1)− ϵp · log(1/δ)/2n ≤ F (S) ≤ F (Ŝ) + ϵp · log(1/δ)/2n
where S is the value of quantile q and F (·) is the CDF of samples V .

Proof. We prove the unbiasedness and approximation guarantee below:

• Unbiased:We plug in the value of T̂ into the If statement, i.e., fi(V ) + ϵi ≥ qn + ϵ,
where ϵ and ϵi follows the exponential distribution with parameter 2/ϵp. Then after taking
expectations, we have fi(V ) ≥ qn.The same logic applies to fi−1(V ).

• Asympotic β-approximation: This follows from the tail bound of exponential distribution:
Pr[ϵ ≥ x] = exp(−2x/ϵp)

Reorganizing we have, with probability 1− δ:
ϵ ≤ ϵp log(1/δ)/2

Since ϵi, ϵ ≥ 0, we have:
Pr[fi(V ) ≤ qn− x] ≤ Pr[ϵi ≥ x]

Pr[fi−1(V ) ≥ qn+ x] ≤ Pr[ϵ ≥ x]

The plugging in fi(V ) = n ·F (Ŝ) and fi−1(V ) = n ·F (Ŝ +1/β − 1) gives us the desired
result.
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I.4 ANALYSIS FOR DPKOPT

In this subsection, we formally present our algorithm for estimate an Θ(k)-approximation of the
optimal revenue. We private estimate the maximum revenue (of a single item single bidder setting)
from each bidder’s distribution. Aggregating these private estimation of the empirical revenue gives
as a Θ(k)-approximation of the optimal revenue for the product distribution.

Algorithm 8 DP Estimation for Optimal Revenue DPKOPT(V, ϵq, ϵa, ϵp, η)

Input: n samples V = {v1, . . . ,vn}, quantile discretization ϵq, additive discetization ϵa, privacy
parameter ϵp, regularity parameter η.

1: for d = 1→ k do
2: q̂ ← 1/4 · η1/(1−η)

3: Let ubd ← DPQUANTU(V[d,:], 1− q̂, ϵp). ▷ Estimate the truncation point of Dd.
4: Truncate distribution Dd at ubd as D̂d, and discretize D̂d by additive ϵa in the value space.
5: Prepare the quantile to be estimated, Q← {1− q̂, 1− q̂ − ϵq, · · · , 1− q̂ − ⌊ 1−q̂

ϵq
⌋ · ϵq, 0}.

6: Ŝ[d,:] ← QESTIMATE(Q,V[d,:], ϵp) ▷ Apply DP quantile estimate(Alg. 4).
7: Let F̂d be the distribution generated by value profile Ŝ[d,:] and quantile set Q.
8: SREVd ← maxr∈Ŝ r(1− F̂d(r)). ▷ Estimate the optimal revenue from F̂d(Alg. 6).
9: end for

10: KREV ←
∑

d∈[k] SREVd

11: return KREV

Lemma I.10 (Expected Revenue Guarantee of DPKOPT). Given ϵ ∈ (1, 1/4) and n =

Θ(ϵ−2 log(ϵ−1)) samples V̂ of the joint distribution D ∈ [0,h]k, the expected revenue of My-
erson fitted under DPKOPT (Alg. 2) over distribution D is close to the optimal revenue of distri-
bution D, i.e., with probability 1 − kδ, for every i ∈ [k], |E[Rev(MER(Dp),Dp) − OPT(Di)]| ≤
Õ(k( ϵ

2

ϵp
+ ϵ+ ϵq + ϵa)).

Proof. Since bidders’ distributions are independent, we analyze the the revenue guarantee of each
SREVi for i ∈ [k] separately, and we omitted the subscription on i in the proofs.

We denote q0 = η1/(1−η) = 4q̂ as the (top) optimal quantile for the empirical revenue (Lem. I.4). We
denote the output value from line 3 as v̂max.

From Lemma I.9, with probability 1− δ2, for n ≥ 4ϵp log(1/δ2)/q̂ = Θ(ϵp log(1/δ2)) samples:

F (v̂max) ≥ 1− q̂ − ϵp log(1/δ2)/2n ≥ 1− 3

8
q0.

This is saying that with high probability, the returned value is greater than that of the top 3q0/8
quantile. Thus, conditioned on this event, the revenue from applying the empirical reserve on the
truncated distribution (which equals the optimal revenue from the truncated distribution) is equivalent
to that of applying the empirical reserve on the original distribution. The revenue generated by
empirical reserve equals the expected optimal revenue from the same distribution. Hence, we
concluded that this truncation won’t affect the optimal revenue.

Next, we privately estimate the pre-specified quantiles of the truncated distribution, and output the
revenue generated from it. We denote the output distribution as Dp, and the truncated distribution
as DTR. By similar arguments as in Theorem 3.2, we know that, with probability 1 − δ2, for
n ≥ Θ̃(1/ϵp):

dks(Dp,DTR) ≤ 2(logm+ 1)
log v̂max − log ϵa + logm− log δ2

ϵp · n
+ ϵq

:= ϵPTR = Θ̃(
1

ϵp · n
)(≤ 1/16q0)

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

where m = ⌊ 1−q̂
ϵq
⌋+ 1. Then, from Thm G.3, the optimal revenue from these distributions differs by

at most v̂maxϵPTR. Notice again from Lemma I.9, with probability 1− δ1, v̂maxϵPTR also satisfies:
F (v̂max/β) ≤ 1− q0/8

This results in v̂max ≤ β ·C0, where C0 is the true value of quantile 1− 1/8q0, and can be treated as
a constant since q0 is a constant. Aggregating these together gives us the optimal revenue loss from
the second private algorithm is upper bounded by C0βϵPTR, where β is the parameter used by the DP
quantile for unbounded distribution.

The final ingredient is how the empirical reserve algorithm works for distributionDp; from Lemma I.6,
we know that when n = θ(ϵ−2 log(ϵ−1)), this revenue is at least (1− ϵ)OPT(Dp), i.e.,

|Rev(MER,Dp)− OPT(Dp)| ≤ ϵ · OPT(Dp).

Hence, assuming δ1 = δ/4, δ2 = δ/2 and noticing that v̂max still exceeds the optimal quantile for
distribution Dp, we can upper bound the expected revenue gap between empirical reserves on the
private distribution. The optimal revenue of the original distribution becomes:
|E[Rev(MER(Dp),Dp)− OPT(D)]| ≤ |Rev(MER(Dp),Dp)− OPT(Dp)|+ |OPT(Dp)− OPT(D)|

≤ ϵ · OPT(Dp) + ϵa +Θ(βϵPTR) ≤ Θ(ϵ+ ϵa + ϵPTR)

≤ Õ(
ϵ2

ϵp
+ ϵ+ ϵq + ϵa),

where the second to last inequality following from C is a constant, and the last inequality follows
from hide the log factors. Since each of the k distribution would contribute this amount to the revenue
loss, our statement as an revenue error bound as Õ(k( ϵ

2

ϵp
+ ϵ+ ϵq + ϵa)).

Notice that this lemma only guarantees that the expectation of SREVi is close to the expected optimal
revenue of Di. We still needs to prove that the SREVi converges to its expectation quickly, hence is
clost to the underlying expected optimal revenue.
Theorem I.11 (Accuracy Guarantee of DPKOPT). Let all parameters be the same as stated in
Lemma I.10, we have that: with probability 1− δ,

|KREV −
∑
i∈[k]

E[OPT(Di)]| ≤ Θ̃(k(ϵ+ ϵ2/ϵp + ϵq + ϵa))

Proof. From the proofs of previous lemma, we notice that the distribution Ŝ is upper bounded by
v̂max, hence upper bounded by a βC0. We denote C1 := βC0 here, and applies the Chernoff to upper
bound how SREVi might deviates from its expectation. With probability 1− δ3,

|SREVi − E[Rev(M i
ER(Dp),D

i
p)]| ≤ Θ(

√
1/n · log(1/δ3))

Plugging in n = ϵ−2 log(ϵ−1) gives us that, with probability 1− δ3,

SREVi − E[Rev(M i
ER(Dp),D

i
p)] ≤ Θ̃(ϵ)

Thus, we have that, with probabilty 1− kδ3, we have:

KREV =
∑
i∈[k]

SREVi

≤
∑
i∈[k]

E[Rev(M i
ER(Dp),D

i
p)] + Θ̃(kϵ)

≤
∑
i∈[k]

E[OPT(Di)] + Θ̃(k(ϵ+ ϵ2/ϵp + ϵq + ϵa))

At the same time, KREV ≥
∑

i∈[k] E[OPT(Di)]− Θ̃(k(ϵ+ ϵ2/ϵp+ ϵq + ϵa)). Now, let δ3 = δ, thus
we have that with probability 1− 2kδ,

|KREV −
∑
i∈[k]

E[OPT(Di)]| ≤ Θ̃(k(ϵ+ ϵ2/ϵp + ϵq + ϵa))

Now let δ in the statement be 1/2k of the δ applied in the proof gives us the desired results.
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I.5 DP MYERSON FOR UNBOUNDED DISTRIBUTION

Algorithm 9 DP Myerson, Unbounded Distribution DPMYERU(V, ϵq, ϵa, h, ϵp)

Input: n samples V = {v1, . . . ,vn}, parameter n1, quantile discretization ϵq , additive discretization
ϵa, regularity parameter η, privacy parameter ϵp, truncation parameter ϵt

1: KREV ← DPKOPT({v1, . . . ,vn1
}, ϵq, ϵa, ϵp, η).

▷ Use n1 samples to get a k-approximation of the optimal revenue.
2: Truncation all remaining samples by 1/ϵt · KREV.
3: Discretize all the values into multiples of ϵa, let the resulting samples be V̂ .
4: Prepare the quantile to be estimated: Q← {ϵq, 2ϵq, . . . , . . . , ⌊(1/ϵq)⌋ · ϵq, 1}
5: For each dimension d, decide the prices on remaining samples:

Ŝ[d,:] ← QESTIMATE(Q,V[d,n1:], ϵp)
▷ Apply DP quantile estimate on the discretized value space(Alg. 4).

6: Fit Myerson’s mechanism as if the valuations is in Ŝ, each associated with probability ϵq .

Intergrating the bound of the DPKOPT(Alg. 2) into Alg. 9 gives us the following accuracy bound:

Theorem I.12 (Revenue Guarantee of Private Myerson, Unbounded (Alg. 9)). Given ϵ ∈ [0, 1/4],
n samples V̂ of the joint distribution D ∈ [0, h]k, the output of Myerson fitted under DPMYERU
(Alg. 9) is (2kϵp, 0)-DP, and the expected revenue of this mechanism is close to the optimal revenue of
distribution D, i.e., for ϵa = ϵq = ϵ, n = Θ(ϵ2 log(k/δ)) and n1 = ϵ−2 log(ϵ−1), with probability
1− δ,

|E[Rev(MDPMYERU,D)− Rev(MD,D)]| ≤ Õ(ϵt + k2ϵ/ϵt + k2ϵ2/ϵpϵt)

Furthermore, when ϵt =
√
ϵ, the bounds simplifies to:

|E[Rev(MDPMYERU,D)− Rev(MD,D)]| ≤ Õ(k2
√
ϵ+ k2ϵ1.5/ϵp)

Proof. From Thm H.4, we get that from n = Θ̃(ϵ−2) samples, with probability 1−δ and ϵa = ϵq = ϵ
we get that:

|E[Rev(MDPMYER,D)− OPT(D)]| ≤ Θ̃((ϵ+ ϵ2/ϵp)kh).

Next, we upper bound the value of the truncation point, from Thm I.11, with probability 1− δ, we
get:

|KREV −
∑
i∈[k]

E[OPT(Di)]| ≤ Θ̃(k(ϵ+ ϵ2/ϵp))

Then, we have:

KREV ≤
∑
i∈[k]

E[OPT(Di)] + Θ̃(k(ϵ+ ϵ2/ϵp + ϵq + ϵa))

≤ kOPT(D) + Θ̃(k(ϵ+ ϵ2/ϵp + ϵq + ϵa))

= Θ̃(k(1 + ϵ+ ϵ2/ϵp))

Now we plug in h = 1
ϵt

KREV, after simplification, this will gives us that, with probability 1− 2δ:

|E[Rev(MDPMYERU,D)− Rev(MD,D)]| ≤ Õ(ϵt + k2ϵ/ϵt + k2ϵ2/ϵpϵt)

Now let the δ in the statement be the 1/2 of the δ applied in this proof gives us the desired results.
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Since our DP Myerson for unbounded distribution integrates the DP Myerson for bounded distribution,
and the estimation for optimal revenue at most take O(n) pass of the whole distribution, we have the
running time guarantee below. Notice that here the ϵt doesn’t affects the running time
Theorem I.13 (Running time, DP Myerson for Unbounded Distribution). Given n samples, and
quantile discretization parameter ϵq, the running time of DPMYER (Alg.9) is Θ(k log(1/ϵq)n) =

Θ̃(kn) and requires Õ(n) pass of the distribution.

Proof. From previous running time analysis of the DP Myerson for bounded distribu-
tion(Theorem H.5), we get that this part will take Θ̃(1) pass of the distribution and has running time
Θ̃(kn).

The major component that contributes to the time complexity is the DP Quantile Estimation for
Unbounded distribution, which, in the worst case, will take O(n) passes over the dataset Durfee
(2023), with each subsequent query takes O(1) time for each distribution. Thus, the running time of
DPQE for unbounded distribution is O(kn).

Summing these up gives us a total running time of Θ̃(kn).
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J MORE DETAILS FOR APPLICATION TO ONLINE MECHANISM DESIGN

J.1 COMMITMENT MECHANISM

Algorithm 10 Commitment Mechanism for bounded distribution

Input: Bids b ∈ Rn
+, distribution upper bound h.

1: Sample a price p ∈ [0, h] uniformly at random.
2: Sample a bidder i ∈ [n] uniformly at random.
3: if bi > p then allocate the item to bidder i with price p.
4: else No bidder gets the item.
5: end if

Our commitment algorithm (Alg. 10) selects each bidder with equal probability, with a price drawn
uniformly from [0, h].

J.2 ONLINE MECHANISM DESIGN PRELIMINARIES

Assumption J.1 (Bidders’ Distributions). We assume there are k publicly available bidder attributes,
corresponding to k different distributions, i.e., each bidder with the attribute a ∈ [k] will sample their
valuations from Da. These distributions are unknown to the learner (i.e., prior independent). At every
iteration t, one bidder from each attribute participates in the auction, sees the item, and decides their
valuations.12 In addition, these valuations are independent across different bidders and rounds.
Definition J.2 (Bidder’s Utility). Each bidder j has a quasi-linear utility function at time t: ut

j =

xt
j(v

t
j − ptj)In our paper, we consider the following bidder models:

• Discounted Utility. For some discount factor γ ∈ [0, 1], all bidders discount future utility by
γ and seek to maximize the sum of discounted utilities. At the t-th iteration, the discounted
utility is ût

j =
∑T

r=t u
r
jγ

r−t.

• Large Market (Anari et al., 2014; Jalaly Khalilabadi and Tardos, 2018; Chen et al., 2016):
u1:T
j =

∑
t∈Sj

ut
j , with |Sj | < l.

where Sj is the set of iterations that the bidder participates in for the auction and xt
j , v

t
j , p

t
j is the

allocation, value, price for bidder j at time t, respectively.

This assumption is essential to optimize a near-optimal revenue since it is impossible to obtain more
than a constant fraction of the revenue in a single bidder setting if each bidder participates in every
round of the mechanism (Lem D.1). Ideally, the learner’s objective is to learn a revenue-maximizing
auction with a small failure probability. This regret is comparable to the revenue of the best fixed
mechanism against the (nonobservable) value history; hence, it is stronger than the traditional regret,
which is comparable to the revenue of the best-fixed mechanism against the bid history.
Definition J.3 (Learner’s Objective). Given δ, the goal of the learner is to decide an allocation
x1:T and p1:T such that the cumulative revenue is near optimal and with sublinear regret, i.e., with
probability 1− δ:

REGRET :=
1

T

∑
t∈[T ]

E[Rev(xt,pt,bt)− E [OPT(vt)]] = o(1),

where the expectation is taken over the bidders’ distribution.

J.3 REVENUE GUARANTEE

Theorem J.4 (Accuracy Guarantee of Two-stage Mechanism). Given ϵ ∈ [0, 1/4], n samples of
the joint distribution D ∈ [0, h]k, let Alg. 3 run with parameter T1 = Θ(ϵ−2 log(k/δ)), T =
Ω(T1), ϵa = ϵq = ϵp = ϵ, ν = 2α as calculated by Lemma J.7. Then, with probability 1 − δ, the
regret is upper bounded, i.e.,

12We assume the bidder cannot see her valuation of all items at the start of the process.
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• Large Market Bidder: REGRET = Θ̃[(ϵ+
√
lϵ)kh]

• Discounting Bidder: REGRET = Θ̃[(ϵ+
√

γϵ
1−γ )kh].

Proof. First note that each mechanism in the rounds T1 to T is (2kϵp, 0)-DP. From Lemma J.7, we
get that by our choice of ν, during the first stage of our mechanism, each bid will at most deviate by
ν. Then, by Lemma J.9, the expected utility of the Myerson deployed in the second stage (without
DP) satisfies that

|E[Rev(MD̂,D)− Rev(MD,D)]| ≤ 2ν,

where D̂ is the distribution after subtracting in line 4 of Alg. 3. Then, from the proofs of the DP
mechanism for bounded distribution (Thm. 3.2), we have that with probability 1− δ, the expected
utility of DPMYER on distribution D̂ will have the following guarantee under n = Θ(ϵ−2 log(k/δ)):

|E[Rev(MP̂p , D̂)− Rev(MD̂, D̂)]| ≤ Θ̃[(ϵ+ ϵ2/ϵp)kh],

where MP̂p denotes the algorithm applied in the second stage of our mechanism. Aggregating this
guarantee gives us:

|E[Rev(MP̂p ,D)− Rev(MD,D)]|

≤|E[Rev(MP̂p ,D)− OPT(D̂)]|+ |E[OPT(D̂)− Rev(MD,D)]|

≤Θ̃((ϵ+ ϵ2/ϵp)kh+ ν).

We can now analyze the entire regret of our 2-stage algorithm. With probability 1− δ,

REGRET = E[
T − T1

T
(OPT(D)− Θ̃((ϵ+ ϵ2/ϵp)kh+ ν))− OPT(D)].

Plugging in the ν for the large market and the discounting bidder gives us the desired result.

J.4 PROOF OF LEMMAS

Lemma J.5 (Approximate Truthfulness via DP (Lemma 3 in McSherry and Talwar (2007))). Given a
mechanism M with (ϵp, 0)-DP and database V, V̂ that differs only in one entry, for any nonnegative
function g, we have that

E[g(M(V ))] ≤ exp(ϵp) · E[g(M(V̂ ))].

Moreover, this implies that E[g(M(V ))] ∈ [(1± 2ϵp)E[g(M(V̂ ))]].

We now give a lemma controlling the distance between a bid and its value.

Lemma J.6 (Bid Utility). Given α ∈ [0, 1] and t ∈ [0, T1], the current utility at the t-th round of
truthful bidding vt exceeds that of strategic bidding bt such that |bt − vt| > 2α by at least 2α2

kh .

Proof. WLOG, we assume bt < vt − 2α. Then, the utility loss of strategic bidding is calculated as
follows: ∫ vt

p=vt−2α

(vt − p)
1

kh
=

αvt
kh

+
2α2

kh
≥ 2α2

kh
.

Lemma J.7 (Bid Deviation). Given any t ∈ [0, T1], the bidder will bid only bt such that |bt−vt| ≤ 2α
for:

• Large Market:
√

2(l − 1)ϵphk.

• Discounting Bidder:
√

2γϵp
1−γ kh.
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Proof. The future utility of a bidder is upper bounded by: (1) (l − 1)h for the large market and (
2) h[1 + 1

γ + 1
γ2 + . . .] = γ

1−γh for the discounting bidder. Notice that for each round in [T1, T ],
the mechanism is 2kϵp-DP; then, from Lemma J.5, we get that the future utility of strategic bidding
is upper bounded by: (1) 4(l − 1)hkϵp for the large market and (2) γ

1−γ 4khϵp for the discounting

bidder. Letting the current utility loss (i.e., 2α2

kh ) exceed the future rounds gives us a lower bound on

α: (1)
√
2(l − 1)ϵphk for the large market and (2)

√
2γϵp
1−γ kh for the discounting bidder.

We now present an auxiliary lemma that bounds the revenue gap between the optimal mechanism
under D versus D−2ν.
Lemma J.8 (Loss under additive ν). Given a product distribution D ∈ Rk

+, let D̂ := PR+ [D− ν],
which results from subtracting ν for each value in D then projected onto positive value domain. Then,
we have that

E[OPT(D)− OPT(D̂)] ≤ ν.

Proof. Let D̃ := D−ν, then we couple distribution D and D̃ such that each v ∈ Rk
+in D corresponds

to v − γ in D̃, where 1k denotes the all one vector in k-dimensional space.

Then, we construct mechanism M according to the optimal mechanism MD as follows: For each
value profile v, xM (v) = xMD

(v + ν1k) and pM (v) = pMD
(v + ν1k) − 1kν. Since MD̃ is

monotonic (hence, truthful), M is also truthful. Since all virtual value shifts equally, the allocation of
M corresponds to the allocation of the optimal mechanism for D̃. Hence, we have

E[OPT(D)− OPT(D̂)] ≥ E[OPT(D)− OPT(D̃)] + E[OPT(D̃)− OPT(D̂)]

≥ E[Rev(MD,D)− Rev(MD̂, D̂)]

≥ E[Rev(MD,D)− Rev(M, D̂)] = ν,

where the first line follows from the definition of the optimal mechanism.

We can now give our bound on the revenue deviation due to untruthful bidding.

Lemma J.9 (Revenue Deviation). Given distribution D, for any (bid) distribution D̃ resulting from
perturbing at most ±ν for each value of D and any distribution D̂ resulting from subtracting γ for
each value of D̃, we have that

0 ≥ E[Rev(MD̂,D)− Rev(MD,D)] ≥ −2ν.

Proof. We clearly see that D̂ satisfies D ⪰ D̂. Since MD is optimal for D, we have 0 ≥
E[Rev(MD̂,D) − Rev(MD,D)]. It remains to give a lower bound of this revenue difference. By
strong monotonicity (Lemma F.3), we have

E[Rev(MD̂,D)− Rev(MD,D)] ≥ Rev(MD̂, D̂)− Rev(MD,D) ≥ −2ν,

where the last inequality follows from Lemma J.8.
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