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Abstract

Bayesian optimization (BO) is a popular sequential machine learning optimization
strategy for black-box functions. BO has proven to be an effective approach for
guiding sample-efficient exploration of materials domains and is increasingly being
used in automated materials optimization set-ups. However, when exploring novel
materials, sample quality may vary unexpectedly, which, in the worst case, can
invalidate the optimization procedure if undetected. This limits the use of highly-
automated optimization loops, especially in high-dimensional materials spaces
that require more samples. Sample quality may be hard to define unequivocally
for a machine but human scientists are usually good at quality assurance, at least
on a cursory yet often sufficient level. In this work, we demonstrate that humans
can be added into the BO loop as experts to comment on the sample quality,
which results in more trustworthy BO results. We implement human-in-the-loop
BO via a data fusion approach and simulate BO of experimental perovskite film
stability (data from the literature). Our human-in-the-loop approach facilitates
automated materials design and characterization by reducing the occurrence of
invalid optimization results.
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1 Introduction

Bayesian optimization (BO) is a machine learning method designed to globally optimize a black-box
function with sequential acquisitions of samples [1-2]. BO is intended specifically for guiding the
sample acquisitions – that can be costly – towards the most promising areas of the search space
[3]. More precisely, BO utilizes a probabilistic surrogate model (typically, a Gaussian process (GP))
that predicts the target property across a fixed search space of input variables. The surrogate model
is improved via active learning by iteratively collecting new samples. The sampling strategy is
determined by an acquisition function that has access to the surrogate model. Acquisition functions
balance the exploration of new areas against the exploitation of promising, already sampled regions
[3].

BO can be combined with automation to form semi- or fully autonomous materials optimization
loops in self-driving materials laboratories (the concept illustrated in Figure 1a step (i), in which
compositions suggested by BO are synthesized in a laboratory and then measured). In materials
science, BO has successfully been used for guiding the experimental or computational exploration of
novel materials spaces and for determining the optimal combinations of device settings [4-7].

One of the factors limiting the broader use of BO in experimental materials science is the varying
quality of the experimentally prepared samples. The samples should be of sufficient quality to
ensure valid characterization results for the target property, which is a necessity in any experimental
work. In material composition explorations, for example, the sample preparation conditions (e.g.
annealing temperature) might have to be adjusted for specific compositions to maintain sufficient
quality. Such adjustments are possible only when the number of required samples is small or when
domain knowledge on the nature and location of potential sample quality issues is available.

The increasing level of laboratory automation facilitates a paradigm shift towards higher-dimensional
(i.e., more samples needed) and novel search spaces (i.e., more unexpected events during the search).
In that scenario, human scientists can no longer manually check all the samples in-situ, else, they
would severely slow down the otherwise accelerated optimization loop. Alternatively, automated sam-
ple quality tracking via a series of added characterization methods could in principle be implemented,
but this is in many applications prohibitively costly and difficult to maintain. Moreover, tracking
sample quality fully automatically by a machine would require defining sample quality precisely and
unequivocally before having prepared the samples. This is challenging especially in novel search
spaces in which unanticipated events frequently occur. An experienced human scientist remains more
versatile than a machine at suspecting sample quality issues after a quick inspection and – when
needed – confirming them with a suitable characterization method.

We thus propose to add humans into the BO loop to evaluate sample quality, and query them only
when the human opinion is needed to prevent the humans from becoming a bottleneck in the loop.
Human-in-the-loop approaches do exist in machine learning [8-12] but they are less frequent in
materials science [13-14]. In this contribution, we show via a simulated example that is based on real
experimental data [4] that adding humans into the BO loop reduces the likelihood of ending the search
in erroneous optima. Adding humans into the loop thus increases trust in BO optimization without
significantly increasing the overall effort. By showcasing our human-in-the-loop approach, we hope
to trigger discussion on the roles of human scientists in the AI-guided design of new materials, and
on how sample quality should be addressed in partially for fully self-driving materials laboratories.

2 Results and discussion

2.1 Framework

We investigate the proposed human-in-the-loop BO methodology in an example setting of com-
positional stability optimization of perovskite film samples (Figure 1a, see the detailed methods
description in Supplementary Methods Section A.1). New experimental data has not been generated
for this contribution. Instead, we simulate BO loops utilizing experimental BO results from [4] and
sample from the environmental stability landscape produced in [4] (Figure 1b) to retrieve emulated
experiment data.

The composition of a ternary perovskite CsxMAyFAzPbI3, where

(x; y; z) 2 [0; 1]3; x+ y + z = 1; (1)
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Figure 1: a) Experimental Bayesian optimization (BO) of materials (i) with humans added into the
loop for evaluating the quality of synthesized samples (ii-iii). Adding humans requires a query policy
(ii) and the integration (iii) of the human response into the loop. The simulated BO loops in this
work sample from two Gaussian process models (assumed here in the simulations as the ground truth,
a lower value is better for both models): b) the environmental stability of perovskites (BO target)
via a proxy variable Ic (the color change of the sample in RGB pixels integrated over the aging test
duration in hours), and c) human evaluation on the quality of the perovskite samples fitted based on
the pictures of the fresh samples (evaluations on a scale of [-1,1]). The data for fitting both models is
from literature [4]. Region A is the pursued optimum that virtual BO runs should find in this work,
and Region B is the region to be avoided.

was, in the previous work [4], optimized to survive environmental stress from heat, humidity, and
visible light illumination. The BO optimization variables were x, y, and z, the compositional
proportions of A site compounds in the perovskite ABX3 crystal structure. Perovskite thin film
samples were prepared with compositions suggested by BO and exposed to aging tests (detailed
in Supplementary Section A.1.1). Since the investigated perovskite compositions undergo color
changes from dark to yellow when the films degrade [14], the BO minimization target was taken
to be the integrated color change of the perovskite film Ic (cf Supplementary Section A.1.1). The
loop of preparing samples with compositions suggested by BO (a local penalization batch-mode
BO implementation with expected improvement acquisition function and GP surrogate model with
Matern kernel) was iterated until the search converged.

Here we adopt the same BO input space x; y; z and target variable Ic to be minimized, sampling
from the environmental stability GP model (Figure 1b) that we reproduced from the converged BO
search in [4]. It should be mentioned that in [4], the expected improvement acquisition function was
modified with a data fusion method to account for a secondary design requirement, thermodynamic
phase stability of the compositions. In the current work, we do not use the thermodynamic phase
stability data, but we utilize the same data fusion method for adding the humans into the loop. The
data fusion method (inspired by the unknown constraint method [16]) uses the estimated probability
of filling the secondary design requirement (here, sufficient sample quality evaluated by humans) as a
down-weighting cost factor in the BO acquisition function.

An experienced scientist can provide an initial evaluation of perovskite film quality based on its color
and uniformity. All the samples produced in the earlier work [4] were photographed. Thus, in this
work, we graded the sample quality on a scale of 0 (good quality) - 3 (low quality) post-hoc based
on the saved photographs (example pictures shown in Supplementary Figure S2). We subsequently
trained a GP model on this data (Figure 1c, see Supplementary Section A.1.2 for details) that serves
as the human opinion in the present work. Interestingly, the resulting human opinion model (formed
with no knowledge on the individual sample compositions) identifies the same part of the search
space as low quality than the thermodynamic phase stability approximation in [4] (see Supplementary
Figure S3). This suggests the human evaluation on perovskite film samples indeed links to physically
meaningful properties of the samples.

The comparison of the two GP models (Figure 1b-c) reveals a global optimum region (Region A) in
the search space that has good quality samples and is environmentally stable. There is also a false
optimum region (Region B), which results in seemingly almost equally good environmental stability
but many of the samples are actually low quality, leading to invalid stability measurements in this
region (the reasons discussed in Supplementary Section A.3). Hence, in this work, we investigate if
human input can steer the BO search away from Region B and facilitate convergence towards the
optimum in Region A.
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