
A Reward function details

The reward at each time step t within an episode of a maximum length of L is defined by:

R =


5 if Et < ξ
−5 if t ≥ L and Et ≥ ξ

max ( Et−1−Et

Et−1−Emin
,−1) otherwise

, (1)

Here, the energy Et is the energy obtained from the circuit at time step t, and Emin is the exact
energy. If an energy below the current threshold ξ is achieved, the reward function assigns a reward
of +5 and the episode is terminated. If during an entire episode of placing L gates the threshold
ξ was never reached a reward of −5 is issued. The extreme reward values ±5 are crucial for the
performance of the agent. We hypothesize that larger extreme rewards facilitate the agent’s learning
of the correct architectures, as the discovery of desired circuits is highly rewarded (independent
from the current energy difference). We added the intermediate reward term Et−1−Et

Et−1−Emin
to avoid a

highly sparse reward. This intermediate reward, Et−1−Et

Et−1−Emin
(which ideally would be equal to 1), is

capped by −1 whenever the estimate at timestep t is significantly worse than that at t−1 (recall that
Et−1 − Emin ≥ 0).

B Circuit depth reduction

Reinforcement learning in general aims to maximize the discounted sum of collected rewards. The
discount factor has been selected in such a way that if the agent performs the maximum number of
actions (i.e. adds L gates), the reward for the last action is discounted by the factor γL ≈ 1e−2.
Since each action corresponds to an appended gate, the number of actions directly translates to the
number of gates in a resulting circuit. Given this figure of merit, a circuit with a smaller number
of gates yields a higher discounted sum of rewards. Thus, this optimization procedure leads to an
optimization of the number of gates. As discussed in the last section, we chose the final reward to be
5, this final reward does not have to be exactly 5 but it will suffice to choose a value that is noticeably
larger than the bounds of the intermediate reward. We have chosen the value for the final reward to
be 5 since our initial experiments showed that this value led to the best performance.

C Circuit structure discussion

Our preliminary analysis shows that the agent-constructed circuits, although very NISQ-friendly (in
the sense of minimized gate numbers and quantum circuit depth), still carry redundancies, e.g., the
same gates are sometimes repeated one after another, which are a result of the method, and which
could be eliminated. This could be achieved, e.g., by using automated postprocessing methods to
optimize the circuits (e.g. a Qiskit Terra transpiler [1]). The result would be a collection of distinct
optimized circuits providing a characterization of the low-energy manifolds.

However, without such circuit optimization/clean-up, we can already identify certain persistent fea-
tures. For instance, the vast majority of rotations gates used by the agent are RY gates, in all cases
we analyzed. At present, it is not obvious whether this is a feature of the method or the systems
under study. However, it is difficult to find any additional regularity in the structure of our cir-
cuits, beyond such simple observations. In particular, the ansatzes we obtain seem very dissimilar to
standard architectures. For instance, they do not resemble the HE architectures, and they are much
shallower than the UCCSD circuits, which makes comparison difficult. A more detailed analysis of
the circuits obtained is planned for follow-up work.

D Different Deep Reinforcement Learning methods

In this section, we want to motivate selecting DDQN as the RL algorithm for the proposed ap-
proach. We test different standard RL algorithms in a LiH experiment. We compare DQN, Double
DQN (DDQN), and Dueling DDQN by evaluating the average errors obtained after each episode.
We perform the LiH experiments at bond distance 3.4 described in Section 5 using the same hyper-
parameter settings. Figure 1 shows that the DDQN algorithm reaches chemical accuracy first. The
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Figure 1: Comparison of the average energy obtained at the end of the episode by DQN, Double
DQN, Dueling DQN, and Dueling Double DQN algorithms. Experiments performed on 4-qubit LiH
with bond distance 3.4 with lower bound energy used as in Section 5.

performance of DDQN shows that it most consistently outperforms the other algorithms, ultimately
achieving a lower distance to the target energy.
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