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ABSTRACT

We study offline reinforcement learning (RL) with general function approximation.
General function approximation is a powerful tool for algorithm design and analysis,
but its adaptation to offline RL encounters several challenges due to varying
approximation targets and assumptions that blur the real meanings of function
assumptions. In this paper, we try to formulate and clarify the treatment of general
function approximation in offline RL in two aspects: (1) analyzing different types of
assumptions and their practical usage, and (2) understanding its role as a restriction
on underlying MDPs from information-theoretic perspectives. Additionally, we
introduce a new insight for lower bound establishing: one can exploit model-
realizability to establish general-purpose lower bounds that can be generalized
into other functions. Building upon this insight, we propose two generic lower
bounds that contribute to a better understanding of offline RL with general function
approximation.

1 INTRODUCTION

Reinforcement Learning (RL; Sutton & Barto (2018)) studies learning optimal policies by interacting
with the environment. Thanks to the increase in computation powers and the development of
powerful function approximators, this learning-based control methodology has had tremendous
success in recent years, as seen in studies such as Mnih et al. (2013); Silver et al. (2016); Kalashnikov
et al. (2018). However, despite the significant progress and its great potential, RL algorithms face
challenges in real-world applications like Healthcare (Gottesman et al., 2018; 2019; Tang et al., 2023)
and Autonomous Driving (Kiran et al., 2021), due to the risk, cost, or ethical concerns associated
with online explorations. A promising idea for applying RL to these domains is to utilize the dataset
collected in advance to learn policies—this line of research falls into the area of offline RL (also
known as batch RL; Lange et al. (2012); Levine et al. (2020)).

Theoretical studies of offline RL range from exceptional cases such as tabular Markov decision
processes (MDPs; Wang et al. (2022); Rashidinejad et al. (2021); Xie et al. (2021b); Yin & Wang
(2021); Li et al. (2022); Yan et al. (2022)) and low-rank MDPs (Jin et al., 2020; Xie et al., 2021a;
Zanette et al., 2021; Yin et al., 2022; Huang et al., 2023) to the broader and more general setting
of function approximation (Chen & Jiang, 2019; Liu et al., 2020; Xie & Jiang, 2020a; Foster et al.,
2021b; Xie et al., 2021a; Cheng et al., 2022; Zhan et al., 2022). As algorithms and accompanying
theoretical results for tabular MDPs and low-rank MDPs are incompatible with complex real-world
problems attributable to the enormous states/actions or the complicated dynamics, general function
approximation is often favored.

From the perspective of practical applications, general function approximation also enjoys its own
significance. It characterizes how the approximation power and the complexity of approximators (e.g.,
support vector machine (Cortes & Vapnik, 1995) and neural net (Goodfellow et al., 2016)) jointly
affect the performance of learning algorithms. In the analysis of offline RL, the approximation
powers of function classes can be categorized into two types (Chen & Jiang, 2022; Zhan et al., 2022;
Ozdaglar et al., 2022; Mao, 2023): realizability-type and completeness-type. Given a function class
F and an approximation target F⋆, the assumption F⋆ ⊆ F is considered realizability-type (F is
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then called realizable) if |F⋆| = 1 (e.g., F⋆ = {Q⋆}), and is considered completeness-type if there
exists a (known) bijection between F⋆ and another realizable function class G. Most theoretical
algorithms and analyses assume an exponentially large function class to achieve realizability-type
assumptions and provide sample-complexity guarantees that are polynomial in log(|F|). As a
consequence, completeness-type assumptions can lead to an exponential performance bound since
the approximation target itself may be exponentially large. Moreover, one of the most common
completeness-type assumptions is Bellman-completeness (the value function class is closed under
Bellman backup), where two function classes (e.g., F and G above) are identical. This form of “self-
completeness” is more stringent because the performance guarantee may be violated by just adding
one function into the function class (in contrast to the general intuition in supervised learning (Chen
& Jiang, 2019)). Thus, in most cases, realizability-type assumptions are preferred.

The assumptions of functions are also impacted by the quality of the dataset, which forms another
aspect of learnability in offline RL. On one hand, Xie & Jiang (2020a) shows that realizability-type
assumptions (concretely, Q⋆-realizability) combined with data assumptions that are even stronger
than the classic and stringent exploratory coverage (Precup et al. (2000); Antos et al. (2006); see also
Section 2.2), are enough for learning a near-optimal policy.2 On the other hand, there are works (e.g.,
Liu et al. (2020); Xie et al. (2021a); Rashidinejad et al. (2022); Zhu et al. (2023)) showing that with
some mild completeness-type assumptions, even a dataset with partial coverage is enough for learning
a good policy. However, despite numerous efforts devoted, no work has yet achieved learnability
under both weak assumptions on function classes and datasets. This raises the question: what are the
limitations of general function approximation in offline RL?

In learning theory, the fundamental limitations of problems are often identified by the minimax lower
bound. However, establishing such lower bounds becomes a challenging task when dealing with
general function approximation in offline RL. This is primarily due to the significant variation in the
functions that we want to approximate and the relationships between them. What is even worse is that
establishing lower bounds for certain properties does not necessarily imply a fundamental barrier to
learnability. For instance, if a lower bound is established for value functions, it does not necessarily
imply that the problem cannot be learned. Additional assumptions on properties such as the density
ratio (Liu et al., 2018; Uehara et al., 2019) may make it learnable.

This paper enhances the understanding of general function approximation in offline RL in the
following aspects:

1. (Section 3) Following the insight from Chen & Jiang (2022); Zhan et al. (2022); Ozdaglar et al.
(2022); Mao (2023), we classify function assumptions in offline RL into completeness-type and
realizability-type. Based on this taxonomy, we analyze their practical usage and demonstrate that
completeness-type assumptions are often necessary to approximate targets for every possible policy
in algorithms.

2. (Section 4) We show that function classes in RL can be viewed as a restriction on possible MDPs.
We can concretize this restriction as model-realizability, i.e., the assumption that we have a MDP
class M containing the real MDP. This allows us to establish lower bounds for model-realizability
and extend them to other function classes.

3. (Section 5) We propose a generic lower bound in Theorem 1 for general function approximation.
Based on the principle of lower bound construction presented in Section 4, we derive some interesting
corollaries from Theorem 1:3

(a) Informal version of Corollary 1: Given realizability-type assumptions on the value function
and the density ratio for a specific policy within a policy class, along with “any” data-coverage
assumption, we cannot learn a better policy than the aforementioned one.

(b) Informal version of Corollary 2: Given exploratory-accurate realizability-type assumptions on
any functions that take the state space as input for a specific policy within a policy class, along
with “any” data-coverage assumption, we cannot learn a better policy than the aforementioned
one.

2Their data assumptions require that (i) the state margin of the data distribution both scales with the transition
kernel and scales with the initial distribution, and (ii) for every state, the behavior policy (i.e., the conditional
distribution of the action given that state, which is derived from the data distribution) should cover all actions.

3See Section 3 for the definitions of exploratory-accuracy and behaviour-accuracy.
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(c) Informal version of Corollary 3: Given behaviour-accurate realizability-type assumptions on any
functions for a specific policy within a policy class, along with “any” data-coverage assumption,
we cannot learn a better policy than the aforementioned one.

4. (Section 6) We augment results from Section 5 with Q⋆-realizability at the cost of introducing
partial coverage (Theorem 2). A limitation of this augmented lower bound is that the covered policy
is not optimal.

2 PRELIMINARIES AND RELATED WORKS

This section introduces basic settings and concepts in offline RL. See Table 1 in Appendix A for the
full list of notations.

2.1 MARKOV DECISION PROCESSES (MDPS)
This paper studies infinite-horizon discounted Markov Decision Processes (abbreviated as MDPs for
short). An MDP is characterized by a tuple (S,A, P,R, µ0, γ), where S is the state space, A is the
action space, P : S×A → ∆(S) is the transition kernel, R : S×A → [0, Rmax] is the (deterministic)
reward function,4 µ0 ∈ ∆(S) is the initial state distribution, and γ ∈ [0, 1) is the discount rate. We
use ν to denote the uniform measure of A, S, or S × A, depending on the context. We will add a
subscript M to a certain symbol (e.g., PM ) when we want to highlight the dependency with a specific
MDP M . A policy π : S → ∆(A) is a mapping from the state space to a distribution on the action
space,5 and with a slight abuse of notation, we sometimes use π to denote deterministic policies.
We say a policy π induces a (random) trajectory {s0, a0, r0, s1, a1, r1, . . . , si, ai, ri, si+1, . . . } if
s0 ∼ µ0, ai ∼ π(·|si), ri = R(si, ai), si+1 ∼ P (·|si, ai) for all i ∈ N. For a policy π, we define
its value function as the expected return from a specific state or a state-action pair, i.e., Vπ(s) :=
E[
∑∞

i=0 γ
iri|s0 = s, ai ∼ π(·|si)] and Qπ(s, a) := E[

∑∞
i=0 γ

iri|s0 = s, a0 = a, ai ∼ π(·|si)].
Since ri ∈ [0, Rmax], the value function is upper bound by Vmax := Rmax/(1 − γ). We denote
Q⋆ as the unique solution of the celebrated Bellman-optimality equation and name it as optimal
value function. The state version of Q⋆ is defined as V ⋆(s) := maxa∈A Q⋆(s, a). We assess
the performance of π through the expected return from the initial state s0 that follows from µ0:
J(π) := Es∼µ0

[Vπ(s)]. We also define J⋆ := maxπ J(π) as the optimal return, and take a policy
π as an optimal policy if J(π) = J⋆. We say that a policy is optimal everywhere if its state value
function is V ⋆, and such a policy is denoted as π⋆

e . For a policy π and a transition kernel P , we
define the state transition kernel Pπ : S → ∆(S) as Pπ(s

′|s) :=
∫
A P (s′|s, a)π(a|s)dν(a). An

S-trajectory of a policy π is a sequence {s0, r0, s1, r1, . . . , si, ri, si+1, . . . } such that s0 ∼ µ0, ri =
Ea∼π(·|si)

[
R(si, a)

]
, si+1 ∼ Pπ(·|si) for all i ∈ N. The induced distribution on the state-action

pair of a policy π is defined as dπ(s, a) := (1 − γ)
[∑∞

i=0 γ
iP(si = s, ai = a|s0 ∼ µ0, π)

]
. In

certain cases, we may come across trajectories and induced distributions that do not originate from
µ0. However, unless specified otherwise, we default to using µ0 as the initial distribution.

2.2 OFFLINE POLICY LEARNING

In the general framework of offline policy learning, we are given a dataset D consisting of N i.i.d.
(s, a, r, s′) tuples. Given a data distribution dD, the dataset D is collected such that (s, a) ∼ dD, r =
R(s, a) and s′ ∼ P (·|s, a). A learning algorithm, that is denoted as A, is a mapping from the dataset
D to a policy π̂.

Difficulties in offline policy learning arise from limited access to pre-collected datasets, with no further
interaction with the environment permitted. The representability of the dataset, which determines
the fundamental limit of algorithms, is often evaluated through the concentration coefficient (Munos,
2003; 2005). The concentration coefficient measures the distribution shift from the data distribution
dD to the induced distribution of some policies. Concretely, the classical exploratory coverage
assumption assumes that there exists a constant Cexp such that for any (sometimes also non-stationary)
policy π, Cexp ≥

∥∥ dπ

dD

∥∥
∞. The partial coverage assumption (Liu et al., 2020; Xie et al., 2021a), on

the other hand, assumes that there exists a constant Cpar such that for some policy π, Cpar ≥
∥∥ dπ

dD

∥∥
∞.

4Stochastic rewards contain deterministic rewards. Thus, our lower bound can also be applied to the stochastic
reward setting.

5This paper primarily focuses on stationary policies. Non-stationary policies, which can change over different
steps, are denoted as πnon.
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The learning goal (i.e., the criterion of learnability) in offline RL is to obtain a policy that is at least
no worse than the covered one (i.e., if π is covered, J(π̂) ≥ J(π) asymptotically).

2.3 GENERAL FUNCTION APPROXIMATION

General function approximation in RL is a broader framework that extends beyond tabular MDPs or
low-rank MDPs. It is assumed that we have some function classes with good properties (e.g., contain-
ing the approximation target) while still maintaining limited complexity (measured by cardinality,
metric entropy, etc.). Most works allow function classes to have exponential cardinalities or covering
numbers. The complexity of function classes is determined by the complexity of the underlying
MDPs. Thus, these modeling assumptions can also be viewed as implicit structural assumptions for
MDPs. Further, when considering algorithm designs and analyses in tabular or low-rank settings,
careful investigations suggest that the structures of MDPs are influential because of their role in
function classes modeling (e.g., modeling state-action value functions or transition kernels) and
some structure-specific quantities (e.g., the feature covariance matrix). In particular, generalizing
these structural-specific quantities to complex real-world problems is much more challenging. Thus,
general function approximation is crucial when considering algorithm design in RL.

From a historical perspective, the analyses of offline RL with general function approximation are
extended from approximate dynamic programming (ADP; Bertsekas & Tsitsiklis (1996); Munos
(2003; 2005)). Works in the early stages mainly focus on the error propagation bounds in the process
of dynamic programming. For instance, in policy iteration, how errors from value estimation in each
step affect the finally approximated optimal value function. Later on, the complexity of the function
classes being used (mainly the value function class) and non-asymptotic analyses for the dataset are
taken into consideration (Szepesvari & Munos, 2005; Antos et al., 2006; 2007; Munos & Szepesvari,
2008). Through the development, concepts like concentration coefficient and Bellman-completeness
are proposed, and strong assumptions on both function classes and datasets are considered necessary
for learning near-optimal policies (Chen & Jiang, 2019). The lack of understanding of the fundamental
requirement of offline RL was first noticed long later by Chen & Jiang (2019), and it asks if learning
under weaker assumptions is possible for offline RL. From then on, there have been emerging works
proposing PAC-learnable algorithms under either mitigated assumptions on dataset (Jiang & Huang,
2020; Liu et al., 2020; Xie & Jiang, 2020a; Uehara & Sun, 2021; Xie et al., 2021a; Cheng et al., 2022;
Rashidinejad et al., 2022; Zhu et al., 2023) or on function classes (Xie & Jiang, 2020a). However,
despite these advancements, comprehension of general function approximation (e.g., how different
assumptions interact and play their roles) is still lacking.

2.4 LOWER BOUNDS IN OFFLINE RL

While information-theoretic lower bounds have been extensively studied in both tabular
MDPs (Rashidinejad et al., 2021; Xie et al., 2021b; Li et al., 2022) and linear MDPs (Jin et al.,
2020; Wang et al., 2020; Amortila et al., 2020; Zanette, 2020; Chen et al., 2021; Wang et al., 2021),
lower bounds considering general function approximation in offline RL are still lacking. The most
notable work is Foster et al. (2021a), demonstrating that learning is impossible without Bellman-
completeness, even in the presence of an exploratory dataset. However, their lower bounds are
limited since they only consider value functions and are value-based, while recent years have seen
the significant development of newly proposed properties such as the density ratio. The complexity
and difficulty of analyses in general function approximation explode for the increasing number of
properties we can model. Moreover, the fundamental requirement of learnability in general func-
tion approximation—which properties we should approximate and what assumptions we should
demand—is still unclear.

3 ON THE PRACTICAL USAGE OF GENERAL FUNCTION APPROXIMATION

Recall that in the analysis of general function approximation, the assumptions can be categorized into
two types: realizability-type and completeness-type (Chen & Jiang, 2022; Zhan et al., 2022; Ozdaglar
et al., 2022; Mao, 2023). Since the gap between these two types of assumption is sometimes vague in
previous works, we first formalize our discussion with some definitions.

Definition 1 (Realizability-type assumption). Given a function class F and a target function class
F⋆, we say that the assumption F⋆ ⊆ F is realizability-type if |F⋆| = 1 (we can thus denote
F⋆ = {f⋆}), and say that F is realizable under this assumption.
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Additionally, an exploratory-accurate realizability-type assumption assumes that F⋆ is only accurate
under the induced distribution of any non-stationary policy, i.e., ∀πnon,minf∈F∥f − f⋆∥∞,dπnon

= 0.
A behaviour-accurate realizability-type assumption assumes that F⋆ is only accurate under the
induced distribution of a specific policy π, i.e., minf∈F∥f − f⋆∥∞,dπ

= 0.6 In the above definition,

∥x∥p,q denotes the q-weighted Lp norm, i.e., ∥x∥p,q :=
( ∫

xpdq
)1/p

.

Example 1 (Example of realizability-type assumptions). We have a state-action value function class
Q ⊆ (S × A → [0, Vmax]) such that {Q⋆} ⊆ Q. Corresponding to Definition 1, we thus have
F⋆ = {Q⋆} and F = Q.

Definition 2 (Completeness-type assumption). Given a function class F and a target function class
F⋆, we say that the assumption F⋆ ⊆ F is completeness-type if |F⋆| = |G| for another realizable
function class G, and we say that F is complete with respect to (w.r.t.) G under this assumption.

Example 2 (Example of completeness-type assumptions). We have a policy class Π ⊆ (S → ∆(A))
and a state-action value function class Q ⊆ (S × A → [0, Vmax]). We assume that π⋆ ∈ Π. The
assumption that {Qπ | π ∈ Π} ⊆ Q is completeness-type, and we say that Q is complete w.r.t. Π
under this assumption. Corresponding to Definition 2, we thus have F⋆ = {Qπ|π ∈ Π}, F = Q and
G = Π.

Remark 1. The completeness-type assumption is commonly used to ensure the existence of a
function class that can minimize a set of loss functions indexed by another function class.

Completeness-type assumptions are common but may be harmful. Intuitively, making a completeness-
type assumption is like making as many realizability-type assumptions as the number of functions in
another realizable function class. This tiered structure would introduce a dilemma in the approximator
design. Assuming that F is complete w.r.t. G, one may wish G to be rich enough to capture
the approximation target of itself. However, even adding just one function into G may break the
completeness-type assumption on F , rendering the guarantees associated with this assumption no
longer applicable.

Remark 2. Although the richness of function classes would also affect the generalization error, the
influence is monotonic in sample complexity and can be mitigated by large samples. This contrasts
the completeness-type assumption since it can induce a constant performance gap for having just one
more function in the function class (which is referred to as non-monotonic, therefore).

Moreover, constructing a function F that can model |G| targets is overly complicated and can spoil
the final results. For a universal approximator without prior knowledge, assuming that we can
approximate a single target (in cases of realizability-type assumptions) with an exponentially large
function class (matching the classical log sample complexity bound), a complete function class would
be “doubly-exponentially” large. In such a situation, the sample complexity, measured in terms of the
polylogarithm of the cardinality of the complete function class, would become exponentially large.
This renders it impractical and no longer meaningful.7

Why do we need completeness-type assumptions In RL, the primary goal is to learn a policy
that meets certain criteria. We argue that most algorithms in RL can be considered “policy-based”
and are designed with a specific set of policies in mind. For instance, value-based methods focus
on updating policies that take actions with the highest value in each state for each value function,
and model-based methods would consider optimal policies under the MDPs from the model class.
Policies considered in these methods are pre-defined even before algorithms start. This means that
most algorithms in RL can be regarded as those that take a policy class Π, a function class F , and a
set of assumptions A as input. Completeness-type assumptions are required to approximate targets
well for each π ∈ Π.

Example 3. The Fitted Q-iteration requires a state-action value function class satisfying Bellman-
completeness, i.e., given a state-action value function class Q ⊆ (S × A → [0, Vmax]), for each

6In the case that f is defined on S instead of S ×A, we can substitute dπ with its state margin µπ .
7For example, the typical union bound would introduce logarithmic dependency in sample complexity,

whichever function class we use. If we can approximate a target with a function class with cardinality exp(C),
as the completeness-type assumption requires us to approximate exp(C) targets, the completeness-type as-
sumption would require a function class with exp(exp(C)) elements. The sample complexity bound would be
log(exp(exp(C))) = exp(C).
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q ∈ Q, we have its Bellman update T q contained by Q. It can be regarded as “policy-based” such
that Π := {πq|q ∈ Q} , F = Q, and A assumes that there is a known mapping ϕ (maps from q to
πq) such that for all π ∈ Π, T πf ∈ F for all f ∈ ϕ−1(π).

In the above example, T denotes the Bellman operator, πq denotes the optimal policy for q, and T π

denotes the Bellman operator of policy π.

Two instances that contradict the aforementioned statements are model-realizability and the algorithm
from Xie & Jiang (2020a). On one hand, while the upper bound for model-realizability has already
been proposed (Uehara & Sun, 2021), model-realizability subsumes completeness-type assump-
tions (cf. Proposition 3). On the other hand, Xie & Jiang (2020a) use discretization to ensure good
approximations for a refined T q for each q, and they require a dataset with quite strong coverage
assumptions that are a bit unrealistic.

In summary, we want to ask:

Question 1. Can we learn good policies without approximating targets well for all π ∈ Π?

To provide a more concise presentation, we will first introduce insights and tools related to learnability
and general function approximation in the next section. This will provide the necessary background
for answering Question 1.

4 ANATOMY OF GENERAL FUNCTION APPROXIMATION APROPOS OF
LEARNABILITY

This section provides a detailed analysis of general function approximation in offline RL with a focus
on learnability.

On the role of function classes A reinforcement learning problem can be defined by an MDP M ,
supplemented by additional information in the form of a function class F and a set of assumptions A.
F is allowed to encompass multiple function classes through cartesian products. From a theoretical
perspective, it is crucial to understand the significance of F in the context of information-theoretic
learnability. A key insight into this problem is given by the well-known definition of the minimax
lower bound, which we denote as L,

L(F ,A) := min
A

max
M∈M(F,A)

C(A,M), (1)

where C is a real-valued objective function we can ask algorithms to minimize, and M(F ,A)
enumerates all possible MDPs with A satisfied w.r.t. F we may encounter.

The “max” part of Eqn. (1) can be understood as the presence of an adversary who selects the
worst-case MDP from M(F ,A) for algorithms. Specifying to the concrete problem, there is a real
model M⋆ that serves as the ground truth. Note that M⋆ ∈ M(F ,A) by the definition of M(F ,A).
In other words, The adversary can only select elements from M(F ,A) as the real model M⋆. To
summarize, Eqn. (1) asserts implicitly that: function class F and assumption set A are a restriction
on possible underlying MDPs that the adversary can select.

Remark 3. In offline RL, we are also given a dataset D with data distribution dD. With a slight
abuse of notations, one can view D as a part of F , dD as a part of the MDP M , and the assumptions
on the dataset D as a part of A, respectively. These inclusions are only assumed in this section.

Model-realizability: a principle for lower bound construction Lower bounds for general function
approximation are inherently specific to the type of function being considered. It is often believed
that lower bounds derived for one type of function are not applicable to another. However, this is not
the case for model-realizability. We argue that the lower bounds derived for model-realizability can
also be applied to other types of functions. For any function class F , we denote A(F) as the set of all
possible algorithms taking F as inputs. We denote F(M,A) as a constructed function class from M
and A such that A is satisfied for all M ∈ M. It is assumed that the construction process is known.
Proposition 1 below shows that lower bounds for a realizable M (M⋆ ∈ M) apply to F(M,A) for
any A.

Proposition 1. Algorithms taking F(M,A) as inputs must perform no better than the best algorithm
that takes the realizable M as input in the worst case:

min
A∈A(F(M,A))

max
M∈M(F(M,A),A)

C(A,M) ≥ min
A∈A(M)

max
M∈M

C(A,M). (2)
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Proposition 1 can be justified by the facts that: (i) the set of algorithms taking F(M,A) as inputs is
a subset of the set of algorithms that takes M as inputs (we can transfer before applying algorithms);
and (ii) the set M(F(M,A),A) is a superset of the MDP class M. The significance of Proposition 1
is that it provides a general principle for lower bound construction: one can first establish lower
bounds based on the assumption of model-realizability, and then extend the bound to any function
that may not have been accessible previously.

A more detailed discussion of how can we construct F from M and A is deferred to Appendix C
due to the page limitation. Moreover, F may also depend on properties other than M (e.g., the value
function of a policy). This type of functions is related to completeness-type assumptions. We also
defer the elaboration of this to Appendix C.

Remark 4. It is worth noting that upper bounds for partial concentrability and model realizability
have been established in previous works (e.g., Uehara & Sun (2021)). As a consequence, the lower
bound we establish for M requires certain weakening of assumptions.

5 LOWER BOUNDS UNDER STRONG DATA ASSUMPTIONS

This section provides a negative answer to Question 1, even when the policy class Π only contains
two elements. We first interpret Question 1 through the goal presented below.

Goal. Given a dataset D, a policy class Π, a function class F , and a set of assumptions A, we
wish to learn a policy π̂ such that J(π̂) ≥ J(π̃) for any policy π̃, while only assuming that we can
approximate certain targets for π̃ .

This goal is closely related to the target of robust policy improvement (Cheng et al., 2022). Our data
assumption is modified from Xie & Jiang (2020a), and is stronger than classic partial coverage or
exploratory coverage assumptions, as well as the more refined data assumptions presented in recent
years (Xie & Jiang, 2020a; Uehara et al., 2023). The primary lower bound is presented in Theorem 1.
A detailed comparison with assumptions in previous works is deferred to Appendix F.

Theorem 1. For any sample size N and γ ∈ [0, 1), there exist a family of MDPs M with the same
state-action spaces, a reward function R, a transition kernel P̃ , a dataset D with distribution dD, a
policy class Π, a state-action value function class Q and a state transition probability class PS , such
that

1.
∥∥dM,πnon

dD

∥∥
∞ ≤ 16 for any (possibly non-stationary) policy πnon and for all M ∈ M,

2. the behaviour policy πb (obtained from dD) satisfies πb(a | s) ≥ 1/2 for all s ∈ S and
a ∈ A,

3. the state margin µD (obtained from dD) satisfies PM (s′ | s, a)/µD(s′) ≤ 8 for all s ∈
S, a ∈ A, s′ ∈ S and M ∈ M, 8

4. |A| = |Q| = |PS | = |Π| = 2,

5. R is the reward function for all M ∈ M,

6. there exists a (unknown) mapping ξ ∈ (M → Π) such that for all M ∈ M,

• ξ(M) has its state-action value function realized by Q (i.e., QM,ξ(M) ∈ Q),

• the state transition kernel of ξ(M) is realized by PS with exploratory-accuracy,
i.e., ∃PS ∈ PS , such that for all (possibly non-stationary) policy πnon, ∥PS −
PM,ξ(M)∥∞,dπnon

= 0,

• P̃ is partially accurate under the induced distribution of ξ(M) (i.e., ∥P̃ −
PM∥∞,dξ(M)

= 0).

Any learning algorithm A—which takes S,A, R, µ0, γ,D, dD,Π,Q, P̃ and PS as input and outputs
a policy π̂—must satisfy

max
M∈M

(
JM (ξ(M))− E

[
JM (π̂)

])
≥ γ2

8
.

8We define 0/0 = 1.
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Moreover, for all M ∈ M, we have that JM (ξ(M)) = J⋆
M .

Remark 5. While we are provided with the policy class Π, the learner has the freedom to select
policies that do not belong to Π.

Our counterexample construction technique is inspired by the concept of “over-coverage” from Xie &
Jiang (2020a); Foster et al. (2021b). Through the function transfering principle presented in Section 4,
several interesting corollaries can be derived from Theorem 1. These corollaries are presented in
Section 5.1 below.

We defer the proofs for this section to Appendix D.

5.1 INTERPRETION OF THEOREM 1

To answer Question 1, we need to first clarify what are the targets of a policy.

Definition 3. We say that a function mapping from S × A or S is π-related if for each entry of
this function, we can calculate its value from the induced trajectory of π from this entry. A function
mapping from S is (π, S)-related if we can calculate its values from the induced S-trajectory of π
from each entry.

Example 4. Qπ is π-related since its value for each (s, a) ∈ S × A is the sum of the cumulative
rewards of the trajectory thereby. Moreover, Vπ is (π,S)-related.

First, as a response to marginalized importance sampling (MIS), we show in Corollary 1 that the
realizability w.r.t. the density ratio is insufficient for learning a better policy. We denote the density
ratio class as W ⊆ (S × A → [0,Wmax]) where Wmax is a constant, while the density ratio of a
policy π is defined as wπ(s, a) := dπ(s, a)/d

D(s, a).

Corollary 1. Under the condition of Theorem 1, any algorithm that also takes W , which has the
density ratio realized (∀M ∈ M, wξ(M) ∈ W) and only contains 4 elements, as input must have

maxM∈M
(
JM (ξ(M))− E

[
JM (π̂)

])
≥ γ2

8 .

The following corollary shows that modeling any function defined on S (as a consequence of PS)
with exploratory-accuracy is not enough for learning a better policy.

Corollary 2. Under the condition of Theorem 1, for any function (which we denote as f⋆) we want
to approximate that is (π,S)-related for a certain π ∈ Π specified by ξ,9 we can construct a function
class F such that

1. F only contains four elements,

2. for all M ∈ M, there exists f ∈ F such that for any (possibly non-stationary) policy πnon,
∥f − f⋆

M∥∞,µπnon
= 0.

Algorithms from Theorem 1 that also take F as input must have maxM∈M
(
JM (ξ(M)) −

E
[
JM (π̂)

])
≥ γ2

8 .

Furthermore, modeling any π-related function that is accurate under the induced distribution of π (as
a consequence of P̃ ) is not enough for learning a better policy.

Corollary 3. Under the condition of Theorem 1, for any function (which we denote as f⋆) we want
to approximate that is π-related for a certain π ∈ Π specified by ξ, we can construct a function class
F such that

1. F only contains two elements,

2. for all M ∈ M, there exists f ∈ F such that ∥f−f⋆
M∥∞,dξ(M)

= 0 (or ∥f−f⋆
M∥∞,µξ(M)

=
0 if f is defined on S).

Algorithms from Theorem 1 that also take F as input must have maxM∈M
(
JM (ξ(M)) −

E
[
JM (π̂)

])
≥ γ2

8 .

9Thus f⋆ is primarily dependent on M ∈ M since ξ is also a function of M.
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5.2 LIMITATION OF THE LOWER BOUND

The major drawback of Theorem 1 is the use of “over-coverage”—our dataset covers states that are
unreachable from the initial state. Another concern may be that while ξ(M) can be optimal, the
value function class Q does not contain the optimal value function Q⋆.However, the exclusion of
Q⋆ is unavoidable since Xie & Jiang (2020a) has proposed an upper bound under the condition of
Q⋆-realizability under weaker data assumptions compared with ours.

6 ON EXACTLY Q⋆-REALIZABILITY

The seminal work Xie & Jiang (2020a) presents an algorithm with state abstraction, showing that
Q⋆-realizability, together with their refined data assumptions, is enough for learning near-optimal
policies. Since the data assumption in Theorem 1 is stronger than the one from Xie & Jiang (2020a),
Theorem 1 is, of course, incapable of Q⋆-realizability. This section bridges this gap by showing
that even with Q⋆-realizability, learning near-optimal policies is impossible under the weaker partial
coverage data assumption.

Theorem 2. For any sample size N and γ ∈ [0, 1), there exist a family of MDPs M with the same
state-action spaces, a reward function class R, a transition kernel P̃ , a dataset D with distribution
dD, a policy class Π, a state-action value function class Q, a state transition probability class PS ,
such that

1. |A| = |PS | = |Π| = |R| = 2, |Q| = 8,

2. for all M ∈ M, Q⋆
M ∈ Q and RM ∈ R,

3. there exists a (unknown) mapping ξ ∈ (M → Π) such that for all M ∈ M,

•
∥∥dξ(M)

dD

∥∥
∞ ≤ 32,

• ξ(M) has its state-action value function realized by Q (i.e., QM,ξ(M) ∈ Q),

• the state transition kernel of ξ(M) is realized by PS with exploratory-accuracy (i.e.,
∃PS ∈ PS , for all (possibly non-stationary) policy πnon, ∥PS −PM,ξ(M)∥∞,dπnon

= 0),

• P̃ is partially accurate under the induced distribution of ξ(M) (i.e., ∥P̃ −
PM∥∞,dξ(M)

= 0).

Any learning algorithm A—which takes S,A,R, µ0, γ,D, dD,Π,Q, P̃ and PS as input and outputs
a policy π̂—must satisfy

max
M∈M

(
JM (ξ(M))− E

[
JM (π̂)

])
≥ γ2

16
.

The proof of Theorem 2 is provided in Appendix E.

A limitation of Theorem 2 is that while this counterexample considers Q⋆-realizability, the dataset
does not cover the optimal policy. However, we argue that this result is still interesting since it
allows the function class to contain the corresponding functions of the covered policy, and the dataset
with partial coverage that does not cover optimal policies is more prevalent in real-world scenarios.
Moreover, this theorem demonstrates the impossibility of achieving robust policy improvement with
Q⋆-realizability.

7 CONCLUSION

This paper serves as an elaboration on offline RL with general function approximation. We clarify
different types of function assumptions of offline RL—namely, the completeness-type and the
realizability-type—by providing clear definitions and analyzing their practical usage. We interpret
completeness-type assumptions as a typical requirement for the good approximation of targets under
all possible policies considered in the algorithm. To determine the necessity of this requirement, we
delve into the role of general function approximation in offline RL on learnability, and also propose a
principle for establishing lower bounds. With the help of this principle, we propose two lower bounds
showing the necessity of completeness-type assumptions.

9
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A NOTATIONS

Table 1: Notations.
T Bellman operator, T f(s, a) := R(s, a) + γEs′∼P (·|s,a)

[
max f(s′, ·)

]
T π Bellman operator of policy π, T πf(s, a) := R(s, a) + γEs′∼P (·|s,a),a′∼π(·|s′)

[
f(s′, a′)

]
Unif(X) uniform distributions on X (e.g., normalized Lebesgue measure for subsets of RN )
∆(X) distributions on X
S state space
A action space
Q state-action value function class
W state-action density ratio function class
Vπ state value function for policy π
Qπ state-action value function for policy π
V ⋆ optimal state value function
Q⋆ optimal state-action value function
dπ induced distribution of a policy π, dπ(s, a) := (1− γ)

[∑∞
i=0 γ

iP(si = s, ai = a|s0 ∼ µ0, π)
]

wπ density ratio of π, wπ(s, a) := dπ(s, a)/d
D(s, a)

ν uniform measure of A, S, or S ×A, depending on the context
D dataset used in the algorithm
dD state-action distribution of the dataset
µD state distribution of dataset (margin of dD)
πq policy that takes actions that maximize value function q in each state, πq(s) := argmaxa∈A q(s, ·)
πb behaviour policy πb(s, a) :=

{
dD(s, a)/µ(s) if µ(s) > 0

ν(a) otherwise.
µ0 initial state distribution
d1 ≫ d2 d2 is absolutely continuous w.r.t. d1
E the complementary event of E
PN
M the law of events under MDP M with size N , mainly used for datasets

PM the law of events under MDP M with size 1, mainly used for datasets
Pπ Pπ(s

′|s) :=
∫
A P (s′|s, a)π(a|s)dν(a)

TV(P,Q) total variation distance between P and Q
χ2(P,Q) χ2-divergence between P and Q
∥x∥p,q q-weighted Lp norm, ∥x∥p,q := p

√∫
xpdq

While π, µ, and d are mainly used to denote the Radon–Nikodym derivatives of the underlying
probability measures w.r.t. ν, we sometimes also use them to represent the corresponding distribution
measures with a slight abuse of notations.

B HELPER LEMMAS

Lemma 1 (Hypergeometric tail bound (Hoeffding, 1963; Skala, 2013)). Let X ∼Hyper(K,N,N ′)10

be a hypergeometric random variable, and define p := K/N . For any pN ′ ≥ ϵ ≥ 0,

P[X − pN ′ ≥ ϵN ′] ≤ exp(−2ϵ2N ′).

Lemma 2. For any probability space defined with a sample space Ω, a sigma-algebra E , and
probability measures P and Q, the total variation distance between the conditional measures is upper
bounded by the origin one:

∀ E ∈ E , TV(P,Q) ≥ TV
(
P(· | E),Q(· | E)

)
·min{P(E),Q(E)}.

10We follow the definition from Wikipedia (2023): the hypergeometric distribution is a discrete probability
distribution that describes the probability of X successes (random draws for which the object drawn has a
specified feature) in N ′ draws, without replacement, from a finite population of size N that contains exactly K
objects with that feature, wherein each draw is either a success or a failure.
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Proof. For a fixed E ∈ E , we define

E ′ :=
{
E ∩ E′ | E′ ∈ E

}
.

Since a sigma-algebra is closed under intersection, we have E ′ ⊆ E . Through the definition of total
variation distance,

TV(P,Q) =max
E′∈E

|P(E′)−Q(E′)|

≥ max
E′∈E′

|P(E′)−Q(E′)|

=max
E′∈E

|P(E′ ∩ E)−Q(E′ ∩ E)|

≥max
E′∈E

|P(E′ | E)P(E)−Q(E′ | E)Q(E)|

≥max
E′∈E

∣∣P(E′ | E)−Q(E′ | E)
∣∣ ·min{P(E),Q(E)}

=TV
(
P(· | E),Q(· | E)

)
·min{P(E),Q(E)}.

This completes the proof.

C ON EXACT CONSTRUCTION OF F(M,A)
In most cases, a function we want to approximate is a property summarized from a MDP. We can
define a property (the concept of a function) as a mapping from a MDP class M. Furthermore,
suppose we have a function class F used to approximate properties in advance, an F-property is a
mapping from M×F .11 For example, the action space and the optimal value function are properties,
and the value functions of policies from Π are Π-properties. We can instantiate a property given
one specific M ∈ M (or f ∈ F and M ∈ M for F-property), such as computing the exact optimal
value function of this M . The instantiation for the real model M⋆ is always the target we want to
approximate.

The uniqueness of properties under any specific M ∈ M means that we can derive a function class
for any properties by collecting their instantiations for each MDP from a realizable M.

Proposition 2. Given a model class M which contains the real model, for any property (denoted
as f ), we can construct a function class F with the realizability-type assumptions satisfied and
|F| = |M|.
Proposition 3. Given a model class M which contains the real model and a function class F , for
any F-property (denoted as f ′), we can construct a function class F ′ with the completeness-type
assumptions w.r.t. F satisfied and |F ′| = |M| · |F|.
Thus, among all assumptions, model-realizability (M⋆ ∈ M) is the strongest.

Remark 6. This tiered structure is incapable of completeness-type assumptions on one function class
like Bellman-completeness. However, most completeness-type assumptions are built on different
function classes, and even the Bellman-completeness can be reconstructed into a completeness-type
assumption between two function classes (Chen & Jiang, 2019).

Example 5 (Value functions of all policies). The state-action value function is a Π-property. If there
are a policy class Π and a model class M, we can calculate the value function of policy π ∈ Π under
MDP M ∈ M as QM,π with integration. If we want a value function class containing all value
functions for policies from Π, we can take {QM,π|M ∈ M, π ∈ Π}.

D PROOFS OF SECTION 5
This section provides a detailed proof for Section 5. Appendix D.1 and Appendix D.2 first introduce
the MDPs and the function classes used in the counterexamples. Appendix D.3 then sketches the
proof of Theorem 1 with the help of some high-level proofs. Appendix D.6 provides proofs for
the corollaries in Section 5.1. The remainder of this section is then devoted to the proof of some
lemmas.

11We assume that these mappings are known—we can compute the desired property if we have M ∈ M (and
h ∈ F ).
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Note that throughout the proof, we sometimes introduce the multiplication of decimal terms and
integers. We assume implicitly that we tune the terms so that the result are integers if necessary.

D.1 MDP STRUCTURES

I

I

Ī

Ī
s

I1 I2 . . . In I ′1 I ′2 . . . I ′n

X Y

1/21/2

1 − γ0 0

Ī1 Ī2 . . . Īn Ī ′1 Ī ′2 . . . Ī ′n

X̄ Y

1 − γ0 0

a = 2a = 1

I

I

Ī

Ī
s

I1 I2 . . . In I ′1 I ′2 . . . I ′n

X Y

1 − γ0 0

Ī1 Ī2 . . . Īn Ī ′1 Ī ′2 . . . Ī ′n

X̄ Y

1/21/2

1 − γ0 0

a = 1 a = 2

Figure 1: A counterexample from M1 (above) and a counterexample from M2 (below).

As shown in Figure 1, the constructed MDP class M contains M1 and its axisymmetric M2. MDPs
in M1 and M2 only differ in their transition kernels.

State space and action space As shown in Figure 1, S consists of an initial state s, a collection of
intermediate states that belong to either set I or set I , and a set of terminal states

{
X,Y,X

}
. The

sets I and I are disjoint, and have the same cardinality that will be specified later. We denote states
from I as {I1, I2, I3 . . . }, and states from I as {I1, I2, I3 . . . }. We take I (resp. I) as a subset of
I (resp. I) with half cardinality that would be used to determine the identities of the MDPs from
M. I and I can be summarized by sets I := {I ⊆ I | |I| = |I|/2} and I := {I ⊆ I | |I| = |I|/2}.
There are two actions (A = {1, 2}) in each state.

Transition kernel For MDPs from M1 with I specified,

P1(· | s, a) =



Unif(I) if s = s and a = 1

Unif(I \ I) if s = s and a = 2

Unif({X,Y }) if s ∈ I
Unif({X}) if s ∈ I

Unif({Y }) if s ∈ I \ I
Unif({s}) otherwise.

Also, for MDPs from M2, we “swap” the transition probability vertically,

P2(· | s, a) =



Unif(I \ I) if s = s and a = 1

Unif(I) if s = s and a = 2

Unif({X,Y }) if s ∈ I
Unif({X}) if s ∈ I

Unif({Y }) if s ∈ I \ I
Unif({s}) otherwise.
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As each I ∈ I and each I ∈ I will determinate the transition kernel for MDPs from M1 and M2,
which is the only difference between them, M1 and M2 can actually be written as

M1 = {MI | I ∈ I} and M2 = {MI | I ∈ I}.

Reward One can only receive non-zero rewards by taking action 2 at states {X,X}, which gives a
1− γ reward:

R(s, a) =

{
1− γ if s ∈ {X,X} and a = 2

0 otherwise.
(3)

D.2 FUNCITON CLASSES AND DATA DISTRIBUTION

Policy function class The policy function class Π contains two policies π1 and π2, which are given
by

π1(s) =

{
2 if s = X

1 otherwise,
π2(s) =

{
1 if s = X

2 otherwise.

It is worth pointing out that, in the context of Theorem 1, π1 is optimal for all the MDPs belonging
to M1, and π2 is optimal for all the MDPs from M2. ξ thus maps MDPs in M1 to π1, and maps
MDPs in M2 to π2 in this circumstance.

Value function class The state-action value function class Q contains two functions q1 and q2,
which are given by

q1(s, a) =



γ2/2 if s = s and a = 1

0 if s = s and a = 2

γ/2 if s ∈ I
0 if s ∈ I
γ if s = X and a = 1

1 if s = X and a = 2

0 if s = X and a = 1

1− γ if s = X and a = 2

0 if s = Y ,

q2(s, a) =



0 if s = s and a = 1

γ2/2 if s = s and a = 2

0 if s ∈ I
γ/2 if s ∈ I
0 if s = X and a = 1

1− γ if s = X and a = 2

γ if s = X and a = 1

1 if s = X and a = 2

0 if s = Y .

One can check that q1 is the value function of π1 for MDPs in M1, and q2 is the value function of π2

for MDPs in M2.

Partially accurate transition kernel We set P̃ as

P̃ (· | s, a) =



Unif(I) if s = s and a = 1

Unif(I) if s = s and a = 2

Unif({X,Y }) if s ∈ I
Unif({X,Y }) if s ∈ I
Unif({s}) otherwise.

State transition kernel with exploratory-accuracy The set PS contains two elements described
below:

PS,1(· | s) =


Unif(I) if s = s

Unif({X,Y }) if s ∈ I
Unif({Y }) if s ∈ I
Unif({s}) otherwise,

and PS,2(· | s) =


Unif(I) if s = s

Unif({X,Y }) if s ∈ I
Unif({Y }) if s ∈ I
Unif({s}) otherwise.

We point out that PS,1 is the state transition kernel for π1 under MDPs from M1, and PS,2 is the
transition kernel for π2 under MDPs from M2.

Remark 7. All functions mentioned above are independent with the choice of I and I .
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Data distribution The state distribution is a uniform distribution on the “endpoint” and intermediate
states repectively. The behaviour policy is a uniform distribution w.r.t. the action space A, regardless
of the underlying state,

dD =
1

2
Unif

(
{X,Y,X, s} × A

)
+

1

2
Unif

((
I ∪ I

)
×A

)
.

D.3 PROOF SKETCH OF THEOREM 1
From learning to hypothesis testing Following the similar principle of deriving minimax lower
bounds (Yu, 1997; Yang & Barron, 1999; Tsybakov, 2008), we begin with transferring an estimation
problem to a hypothesis testing problem, of which the corresponding error probability can be related
to the total variation distance between certain distributions.

First, the sub-optimality of the learned policies mainly comes from the chance of selecting action 2 in
MDPs from M1, and the chance of selecting action 1 in MDPs from M2. For MDP M ∈ M and
learning algorithm A, we denote this event as EA

M . Letting π̃M = π1 for M ∈ M1 and π̃M = π2 for
M ∈ M2. For any M ∈ M, we have

JM (π̃M )− E[JM (π̂)] ≥ γ2/2− γ2

2
PN
M (EA

M ) =
γ2

2
PN
M (EA

M ). (4)

Furthermore, we transfer the minimax lower bound into a Bayesian problem,

max
M∈M

[
PN
M (EA

M )
]
≥ EM∼Unif(M)

[
PN
M (EA

M )
]
. (5)

For any learning algorithm A, we have

EM∼Unif(M)

[
PN
M (EA

M )
]
=
1

2
EM∼Unif(M1)

[
PN
M (EA

M )
]
+

1

2
EM∼Unif(M2)

[
PN
M (EA

M )
]

(6)

≥1

2

(
1− TV

(
1

|M1|
∑

M∈M1

PN
M ,

1

|M2|
∑

M∈M2

PN
M

))
, (7)

where Eqn. (7) follows from (i) the inequality P(E) +Q(E) ≥ 1− TV(P,Q), and (ii) the event EA
M

when M ∈ M1 is the complement with itself when M ∈ M2. While the total variation distance
from Eqn. (7) is algorithm dependent, we can extend it as a probability on the dataset D through data
processing inequality, for which we add subscript D for clarify:

TV

(
1

|M1|
∑

M∈M1

PN
M ,

1

|M2|
∑

M∈M2

PN
M

)
≤ TVD

(
1

|M1|
∑

M∈M1

PN
M ,

1

|M2|
∑

M∈M2

PN
M

)
. (8)

Combining Eqns. (4), (5), (7) and (8), we obtain

inf
A

sup
M∈M

[
JM (π̃M )− EDN∼PM,N

[JM (π̂))]
]
≥ γ2

4

(
1− TVD

(
1

|M1|
∑

M∈M1

PN
M ,

1

|M2|
∑

M∈M2

PN
M

))
.

(9)

Bounding the Total variation distance For notational convenience, we define

PN
1 :=

1

|M1|
∑

M∈M1

PN
M and PN

2 :=
1

|M2|
∑

M∈M2

PN
M . (10)

The remaining task is to bound the total variation distance between PN
1 and PN

2 , and it is done through
the following lemma.

Lemma 3. For any sample size N , we can choose the cardinality of I to achieve
TVD(PN

1 ,PN
2 ) ≤ 1/2. (11)

The proof of Lemma 3 is provided in Appendix D.5.

Finally, combining Eqns. (9) and (11) yields that

inf
A

sup
M∈M

[
JM (π̃M )− E[JM (π̂))]

]
≥ γ2

8
.

This completes the proof.
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D.4 A GENERAL BOUND

Lemma 4. For any 0 ≤ ϵ ≤ |I|/4,

TVD
(
PN
1 ,PN

2

)
≤

√√√√(1 + 5ϵ

8

)N

+ exp

(
− ϵ2|I|+N log

(21
16

))
− 1.

The proof of Lemma 4 is adapted from Foster et al. (2021b) with appropriate modifications. Specif-
ically, we first construct a dominating measure that follows the left branch of M1 and the right
branch of M2, then we transfer the total variance distance to χ2-divergence and bound it via the
hypergeometric tail bound.

Proof.

Construct the dominating measure Because of the use of χ2-divergence, we first construct an
MDP M0 whose transition kernel is

P0(· | s, a) =



Unif(I) if s = s and a = 1

Unif(I) if s = s and a = 2

Unif({X,Y }) if s ∈ I
Unif({X,Y }) if s ∈ I
Unif({s}) otherwise

and whose reward function follows Eqn. (3) (as shown in Figure 2). We define the data collecting
process under M0 and the data distribution dD with sample size N as PN

0 .

s

I1 I2 . . . In I ′1 I ′2 . . . I ′n

X Y

1 − γ0 0

Ī1 Ī2 . . . Īn Ī ′1 Ī ′2 . . . Ī ′n

X̄ Y

1 − γ0 0

Figure 2: The MDP of the dominating measure.

From total variance distance to χ2-divergence We first decouple the total variance distance via
the triangular inequality and transfer it to χ2-divergence,12

TVD
(
PN
1 ,PN

2

)
≤TVD

(
PN
1 ,PN

0

)
+ TVD

(
PN
2 ,PN

0

)
≤1

2

√
χ2
(
PN
1 ,PN

0

)
+

1

2

√
χ2
(
PN
2 ,PN

0

)
.

12We refer the interested readers to Polyanskiy & Wu (2022) for more details about these inequalities.
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As the last two terms in the above inequality are symmetric, we will introduce how to bound the first
term, while skipping the proof for the second term for simplicity. By the definition of χ2-divergence,

χ2
(
PN
1 ,PN

0

)
=ED∼PN

0

[( 1
|M1|

∑
M∈M1

PN
M (D)

)2
(
PN
0 (D)

)2
]
− 1

=ED∼PN
0

[
1

|M1|2
∑

M,M ′∈M1
PN
M (D)PN

M ′(D)(
PN
0 (D)

)2
]
− 1

=
1

|M1|2
∑

M,M ′∈M1

ED∼PN
0

[
PN
M (D)PN

M ′(D)(
PN
0 (D)

)2
]
− 1

=
1

|M1|2
∑

M,M ′∈M1

E{(si,ai,ri,s′i)}N
i=1∼PN

0

[ N∏
i=1

(
PM (si, ai, ri, s

′
i)PM ′(si, ai, ri, s

′
i)
)

N∏
i=1

(
P0(si, ai, ri, s′i)

)2
]
− 1

=
1

|M1|2
∑

M,M ′∈M1

E{(si,ai,ri,s′i)}N
i=1∼PN

0

[
N∏
i=1

(
PM (si, ai, ri, s

′
i)PM ′(si, ai, ri, s

′
i)
)

(
P0(si, ai, ri, s′i)

)2
]
− 1.

Since the dataset is generated in an i.i.d. manner, we can take the multiplication out from the
expectation,

χ2

(
PN
1 ,PN

0

)
=

1

|M1|2
∑

M,M ′∈M1

(
E(s,a,r,s′)∼P0

[
PM (s, a, r, s′)PM ′(s, a, r, s′)(

P0(s, a, r, s′)
)2

])N

− 1, (12)

where P0 and P1 are the one sample version of PN
0 and PN

1 , correspondingly. Through the definition
of the data collecting process, for any M,M ′ ∈ M1, we have

E(s,a,r,s′)∼P0

[
PM (s, a, r, s′)PM ′(s, a, r, s′)(

P0(s, a, r, s′)
)2

]

=
11

16
+

1

16
Er=R(s,2),s′∼P0(·|s,2)

[
PM (s, 2, r, s′)PM ′(s, 2, r, s′)(

P0(s, 2, r, s′)
)2

]

+
1

4
E(s,a)∼Unif(I×A),r=R(s,a),s′∼P0(·|s,a)

[
PM (s, a, r, s′)PM ′(s, a, r, s′)(

P0(s, a, r, s′)
)2

]

=
11

16
+

1

16
Es′∼P0(·|s,2)

[
PM (s′ | s, 2)PM ′(s′ | s, 2)(

P0(s′ | s, 2)
)2

]
︸ ︷︷ ︸

Φ1(tM,M′ )

+
1

4
E(s,a)∼Unif(I×A),s′∼P0(·|s,a)

[
PM (s′ | s, a)PM ′(s′ | s, a)(

P0(s′ | s, a)
)2

]
︸ ︷︷ ︸

Φ2(tM,M′ )

.

The last equality holds since the reward function is ths same. As the last two variables only depend
on the number of overlapped states between IM and IM ′ , which we denote as tM,M ′ , we can define
them as Φ1(tM,M ′) and Φ2(tM,M ′) respectively.
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Model as hyper-geometric distribution We take the summation in Eqn. (12) as taking the expecta-
tion of sampling two MDPs uniformly from M1,

1

|M1|2
∑

M,M ′∈M1

(
E(s,a,r,s′)∼P0

[
PM (s, a, r, s′)PM ′(s, a, r, s′)(

P0(s, a, r, s′)
)2

])N

− 1

=EM∼Unif(M1)EM ′∼Unif(M1)

[(
E(s,a,r,s′)∼P0

[
PM (s, a, r, s′)PM ′(s, a, r, s′)(

P0(s, a, r, s′)
)2

])N]
− 1

=EM∼Unif(M1)EM ′∼Unif(M1)

[(
11

16
+

1

16
Φ1(tM,M ′) +

1

4
Φ2(tM,M ′)

)N]
− 1.

As MDPs from M1 are indexed by I ∈ I, for any fixed M ∈ M1,

EM ′∼Unif(M1)

[(
11

16
+

1

16
Φ1(tM,M ′) +

1

4
Φ2(tM,M ′)

)N]
− 1

is equal to taking the expectation for a function of tM,M ′ w.r.t. the following process:

Fix IM , we are selecting IM ′ without replacement uniformly from I . Take the number of overlapped
state between IM and IM ′ as tM,M ′ , and denote this random variable as T .

Through the definition, we have T ∼ Hyper(0.5|I|, |I|, 0.5|I|) for any choice of M and M ′. Thus,

EM∼Unif(M1)EM ′∼Unif(M1)

[(
11

16
+

1

16
Φ1(tM,M ′) +

1

4
Φ2(tM,M ′)

)N]

=EM∼Unif(M1)ET∼Hyper(0.5|I|,|I|,0.5|I|)

[(
11

16
+

1

16
Φ1(T ) +

1

4
Φ2(T )

)N]

=ET∼Hyper(0.5|I|,|I|,0.5|I|)

[(
11

16
+

1

16
Φ1(T ) +

1

4
Φ2(T )

)N]
.

By definition,

Φ1(θ|I|) =
θ

0.52
= 4θ, Φ2(θ|I|) = 0.5

θ

0.52
+ (1− 0.5)

θ

(1− 0.5)2
= 4θ. (13)

Note that both of them are monotonic.

Bound via exponential tail bound Eqn. (12) is finite only if the probability that

11

16
+

1

16
Φ1(T ) +

1

4
Φ2(T ) > 1
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is exponentially small. We divide the expectation into two parts,

ET∼Hyper(0.5|I|,|I|,0.5|I|)

[(
11

16
+

1

16
Φ1(T ) +

1

4
Φ2(T )

)N]

=

0.5|I|∑
t=0

(
0.5|I|

t

)( 0.5|I|
0.5|I|−t

)
( |I|
0.5|I|

)
(
11

16
+

1

16
Φ1(t) +

1

4
Φ2(t)

)N

=

(0.5+ϵ)0.5|I|∑
t=0

(
0.5|I|

t

)( 0.5|I|
0.5|I|−t

)
( |I|
0.5|I|

)
(
11

16
+

1

16
Φ1(t) +

1

4
Φ2(t)

)N

+

0.5|I|∑
t=(0.5+ϵ)0.5|I|

(
0.5|I|

t

)( 0.5|I|
0.5|I|−t

)
( |I|
0.5|I|

)
(
11

16
+

1

16
Φ1(t) +

1

4
Φ2(t)

)N

≤
(
11

16
+

1

16
Φ1((0.5 + ϵ)0.5|I|) + 1

4
Φ2((0.5 + ϵ)0.5|I|)

)N

︸ ︷︷ ︸
(1)

+ P(T ≥ (0.5 + ϵ)0.5|I|)
(
11

16
+

1

16
Φ1(0.5|I|) +

1

4
Φ2(0.5|I|)

)N

︸ ︷︷ ︸
(2)

By the definition of Φ1 and Φ2, we have(
11

16
+

1

16
Φ1((0.5 + ϵ)0.5|I|) + 1

4
Φ2((0.5 + ϵ)0.5|I|)

)N

=

(
11

16
+

(0.5 + ϵ)0.5

16 · 0.52 + 0.5
(0.5 + ϵ)0.5

4 · 0.52 + (1− 0.5)
1− 0.5− 0.5 + 0.5(0.5 + ϵ)

4(1− 0.5)2

)N

(by definition)

=

(
11

16
+

1

16
+

ϵ

8
+

1

8
+

ϵ

4
+

0.25 + 0.5ϵ

2

)N

=

(
1 +

5ϵ

8

)N

,

and (
11

16
+

1

16
Φ1(0.5|I|) +

1

4
Φ2(0.5|I|)

)N

=

(
11

16
+

0.5

16 · 0.52 + 0.5
0.5

4 · 0.52 + (1− 0.5)
1− 0.5− 0.5 + 0.5

4(1− 0.5)2

)N

=

(
11

16
+

1

8
+

1

4
+

1

4

)N

=
(21
16

)N
.
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The probability presented in term (2) is exponentially small due to the hypergeometric tail bound
(Lemma 1), which yields that

P(T ≥ (0.5 + ϵ)0.5|I|)
(
11

16
+

1

16
Φ1(0.5|I|) +

1

4
Φ2(0.5|I|)

)N

≤ exp(−2ϵ2 · 0.5|I|)
(21
16

)N
(0 ≤ ϵ ≤ 1

4 |I|)

≤ exp

(
− ϵ2|I|+N log

(21
16

))
.

Combining them, we have

χ2
(
PN
1 ,PN

0

)
≤
(
1 +

5ϵ

8

)N

+ exp

(
− ϵ2|I|+N log

(21
16

))
− 1.

Through the similar arguments, we also have

χ2
(
PN
2 ,PN

0

)
≤
(
1 +

5ϵ

8

)N

+ exp

(
− ϵ2|I|+N log

(21
16

))
− 1.

Thus by noting that |I| = |I|, we have

TVD
(
PN
1 ,PN

2

)
≤

√√√√(1 + 5ϵ

8

)N

+ exp

(
− ϵ2|I|+N log

(21
16

))
− 1.

This completes the proof.

D.5 PROOF OF LEMMA 3
Lemma (Restatement of Lemma 3). For any sample size N , we can choose the cardinality of I to
achieve

TVD(PN
1 ,PN

2 ) ≤ 1/2.

This lemma is a direct consequence of Lemma 4.

Proof. From Lemma 4, we have

TVD(PN
1 ,PN

2 ) ≤

√√√√(1 + 5ϵ

8

)N

+ exp

(
− ϵ2|I|+N log

(21
16

))
− 1

≤

√√√√exp

(
5Nϵ

8

)
+ exp

(
− ϵ2|I|+N log

(21
16

))
− 1.

Taking 0 < ϵ ≤ 8
5N log(9/8) and |I| = |I| ≥

(
N log

(
21
16

)
+log 8

)
ϵ2 yields that

TVD(PN
1 ,PN

2 ) ≤1/2.

This completes the proof.

D.6 PROOF OF THE COROLLARIES

We can prove Corollary 1 by constructing the density ratio class from the state transition kernel
class.
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Proof of Corollary 1. For each state transition kernel, there is a S-sequence {s0, s1, s2, . . . , si, . . . }
such s0 ∼ µ0, si+1 ∼ PS(· | si). We can compute the state distribution of a state transition kernel
PS as

µ(s) = (1− γ)

∞∑
i=0

γiP(si = s).

If PS is the state transition kernel of π, µ is the induced state distribution of π (i.e., µπ). Moreover,
µ is consistent if PS is only accurate under µπ, i.e., have the same value with the real one on the
support of µπ. The induced distribution of π would be dπ(s, a) = µ(s) · π(s, a), and the density
ratio wπ follows that

wπ(s, a) =
dπ(s, a)

dD(s, a)
=

µ(s)π(s, a)

dD(s, a)
.

We can take the above process as a mapping from state transition kernels and policies to density ratios,
and denote it as O. We can construct the density ratio class as W = {O(PS , π) | PS ∈ PS , π ∈ Π}.

For any M ∈ M, due to the existence of exploratory-accurate state transition kernel of ξ(M) in PS ,
W must contain the density ratio of ξ(M).

Since the function in Corollaries 2 and 3 are derived from trajectories, the proofs for them are
mainly devoted to construct a set of functions mapping from S ×A (or S) to the trajectories (or the
S-trajectories) thereby.13 Specifically, we want a function class H such that

for all M ∈ M, there exists h ∈ H that can return accurate trajectories of ξ(M) in certain level.

This is true due to the fact that we can calculate trajectories directly from the transition kernel.

Proof of Corollary 2. Exploratory-accuracy requries that for any entry reachable from µ0 by a non-
stationary policy, the value of a function is the same with the target. For any entry reachable from the
inital distirbution distribution by a specific non-stationary policy πnon, we can denote the state of this
entry as se ∈ S. Given a state transition kernel PS , there is a S-sequence

se, se+1, se+2, . . . , se+i, . . .

such that se+i+1 ∼ PS(·|se+i). The S-trajecroty from this entry can be caculated with the S-
sequence and policy π as

se, re, . . . , se+i, re+i . . . (14)

such that re+i = Ea∼π(·|se+i)

[
R(se+i, a)].

Given policy π, Eqn. (14) is the S-trajectory from se induced by π if PS has the same value with
Pπ on the states of real S-trajectory from se induced by π. This can always be achieved if PS is
exploratory-accurate w.r.t. Pπ .

We can take the above process as a mapping from state transition kernels and policies to a function
from S to trajectories, and denote it as O.

We then construct a set as {O(PS , π) | PS ∈ PS , π ∈ Π}. For any M ∈ M, any (ξ(M),S)-related
function can be derived from one element from this class with exploratory-accuracy.

Proof of Corollary 3. Behaviour-accuracy w.r.t. a policy π requries that for any entry reachable from
µ0 by π, the value of a function is the same with the target. For any entry reachable from the inital
distirbution distribution by π, we can denote this entry as se or (se, ae) depending on the context.
Given a transition kernel P and a policy π, there is a trajectory

se, ae, re, se+1, ae+1, re+1, . . . , se+i, ae+i, re+i . . .

for the se entry such that ae+i ∼ π(·|se+i), re+i = R(se+i, ae+i) and se+i+1 ∼ P (·|se+i, ae+i) for
all i ≥ 0. For the (se, ae) entry, there is also a trajectory

se, ae, re, se+1, ae+1, re+1, . . . , se+i, ae+i, re+i . . .

13Probability of trajectories, to be more accurate.
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such that ae+i ∼ π(·|se+i), re+i = R(se+i, ae+i), and se+i+1 ∼ P (·|se+i, ae+i) for all i ≥ 0,
except that we fix the value of ae.

The trajectory above is the trajectory from se (or (se, ae) respectively) induced by π if P has the
same value with the real transition kernel on the state-action pairs of the real trajectory from se (or
(se, ae) respectively) induced by π. This can always be achieved if P is behaviour-accurate w.r.t. π.

We can take the above process as a mapping from transition kernels and policies to a function from
S (or S ×A) to trajectories, and denote it as O. We can construct a set as {O(P̃ , π) | π ∈ Π}.

For any M ∈ M, any ξ(M)-related function can be derived from one element from this class with
behaviour-accuracy.

E THE DETAILED PROOF OF THEOREM 2

Y

Z

1 − θ

0

(1 − γ)/γ0

Figure 3: The changes in state Y . By selecting action 1, agents would transfer to state Z. Selecting
actions in state Z will only cause a self-loop, through which we can receive a reward (1− γ)/γ with
action 1 (resp. 2) for MDP in M1 or M2 (resp. M3 or M4). The dataset does not cover state Z.

Compared to the counterexamples in Theorem 1, we introduce the following changes:

1. we modify state Y to introduce the insufficient data-coverage for selecting action 1 in state
Y (see Figure 3 for more details),

2. we introduce state Z with variable rewards between MDPs,

3. the cardinalities of I and I increase to 7|I|/8,

4. there are two transition kernels such that

P1(· | s, a) =



Unif(I) if s = s and a = 1

Unif(I \ I) if s = s and a = 2

7Unif({X})/8 + Unif({Y })/8 if s ∈ I
Unif({X}) if s ∈ I

Unif({Y }) if s ∈ I \ I
Unif({Z}) if s = Y and a = 1

Unif({s}) otherwise,

P2(· | s, a) =



Unif(I \ I) if s = s and a = 1

Unif(I) if s = s and a = 2

7Unif({X})/8 + Unif({Y })/8 if s ∈ I
Unif({X}) if s ∈ I

Unif({Y }) if s ∈ I \ I
Unif({Z}) if s = Y and a = 1

Unif({s}) otherwise.

5. there are two reward functions such that

R1(s, a) =


1− γ if s ∈ {X,X} and a = 2

(1− γ)/γ if s = Z and a = 1

0 otherwise,
R2(s, a) =


1− γ if s ∈ {X,X} and a = 2

(1− γ)/γ if s = Z and a = 2

0 otherwise.
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There are four MDP classes denoted as M := {M1,M2,M3,M4} and M = M1 ∪M2 ∪M3 ∪
M4. They share the same state space and action space, but differ in the following perspectives:

• the transition kernels for MDPs from M1 and M2 follow P1, while those for MDPs from
M3 and M4 follow P2,

• the reward functions for MDPs from M1 and M3 follow R1, while those for MDPs from
M2 and M4 follow R2.

This structure allows the optimal value function to be the same in I or I, breaking the barrier of
Q⋆-realizability. However, as we can receive 1 return by selecting action 1 in state Y with some
policies, the dataset only covers suboptimal policies.

E.1 FUNCITON CLASSES AND DATA DISTRIBUTION

Policy function class The policy function class Π contains two policies π1 and π2, which are given
by

π1(s) =

{
2 if s = X or s = Y

1 otherwise,
π2(s) =

{
1 if s = X or s = Z

2 otherwise.
ξ maps MDPs from M1 ∪M2 to π1, and maps MDPs from M3 ∪M4 to π2.

Value function class Q contains functions as summaried in Table 2.

Table 2: Functions in Q.
Qπ1 for M1/M2 Qπ2 for M3/M4 Q⋆ for M1/M2 Q⋆ for M3/M4

s = s & a = 1 7γ2/8 0 γ2 γ2

s = s & a = 2 0 7γ2/8 γ2 γ2

s ∈ I 7γ/8 0 γ γ

s ∈ I 0 7γ/8 γ γ

s = X & a = 1 γ 0 γ γ

s = X & a = 2 1 1− γ 1 1

s = X & a = 1 0 γ γ γ

s = X & a = 2 1− γ 1 1 1

s = Y & a = 1 0 0 1 1

s = Y & a = 2 0 0 γ γ

s = Z & a = 1 1/γ − 1 or 0 1/γ − 1 or 0 1/γ or 1 1 or γ/1

s = Z & a = 2 0 or 1/γ − 1 0 or 1/γ − 1 1 or 1/γ 1/γ or 1

Partially accurate transition kernel We set P̃ as

P̃ (· | s, a) =



Unif(I) if s = s and a = 1

Unif(I) if s = s and a = 2

7Unif({X})/8 + Unif({Y })/8 if s ∈ I
7Unif({X})/8 + Unif({Y })/8 if s ∈ I
Unif({Z}) if s = Y and a = 1

Unif({s}) otherwise.

State transition kernels with exploratory-accuracy The set PS contains two elements described
below:

PS,1(· | s) =


Unif(I) if s = s

7Unif({X})/8 + Unif({Y })/8 if s ∈ I
Unif({Y }) if s ∈ I
Unif({s}) otherwise,
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PS,2(· | s) =


Unif(I) if s = s

7Unif({X})/8 + Unif({Y })/8 if s ∈ I
Unif({Y }) if s ∈ I
Unif({s}) otherwise.

Reward function class We set R as {R1, R2}.

Data distribution dD follows that

dD =
1

2
Unif

(
{X,X, Y, s} × A

)
+

1

2
Unif

(
(I ∪ I)×A

)
.

E.2 PROOF SKETCH OF THEOREM 2
This subsection proves Theorem 2 through some high-level lemmas. The proof of these lemmas are
deferred to the remainder of this section.

We denote the event of selecting action 1 in state s as E1, and the event of selecting action 1 in state
Z as E2. For an algorithm A, policies behave suboptimally under MDP classes from M if events
from Table 3 happen (which we denote as EA

M for M ∈ M) correspondingly. The exact value of this
suboptimality follows Lemma 5.

Lemma 5. Algorithm A that outputs π̂ behaves suboptimally compared with ξ(M) if EA
M happens,

i.e., for all M ∈ M,

JM (ξ(M))− E
[
JM (π̂)

]
≥ γ2P(EA

M )− γ2

8
. (15)

Table 3: When policies behave suboptimally for MDPs in each MDP class. ✓: the event happens. ✗:
the event does not happen.

M1 M2 M3 M4

E1 ✗ ✗ ✓ ✓

E2 ✓ ✗ ✗ ✓

Constructing a distribution over MDP classes M as

dM := Unif
(
M
)
,

we can transfer the minimax lower bound into a Bayesian bound,

inf
A

sup
M

[
JM (ξ(M))− E

[
JM (π̂)

]]
≥ inf

A
EM∼dM

[
JM (ξ(M))− E

[
JM (π̂)

]]
(16)

≥γ2 inf
A

EM∼dM

[
P(EA

M )
]
− γ2/8. (17)

We define P(E | M) as the averaged probability under M with sample size N , but omit N for
simplicity,

P(E | M) := EM∼Unif(M)[PN
M (E)].

Eqn. (17) could be bounded with the total variation distance between some MDP families from
M.

Lemma 6. The fail probability is bounded by the total variation distances between certain MDP
families from M.

inf
A

EM∼dM

[
P(EA

M )
]
≥1

4
− 1

4
max

{
TV
(
P(·|M1),P(·|M3)

)
,TV

(
P(·|M1),P(·|M4)

)
,

TV
(
P(·|M2),P(·|M3)

)
,TV

(
P(·|M2),P(·|M4)

)}
− 1

2
max

{
TV
(
P(·|M1),P(·|M2)

)
,TV

(
P(·|M3),P(·|M4)

)}
.
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For notational convience, we abbreviate the total variation distance as

TV(M′,M′′) := TV
(
P(·|M′),P(·|M′′)

)
.

Intuitively, the difference in the reward function in state Z does not matter since it is not covered by
the dataset, and the difference in the transition kernel follows the same argument of Theorem 1. Thus,
the total variation distance is small enough.

Lemma 7. For any sample size N , we can choose the cardinality of I to ensure that the total variation
distance is bounded between MDP classes from {M1,M2} and MDP classes from {M3,M4},

max
M′∈{M1,M2},M′′∈{M3,M4}

TV(M′,M′′) ≤ 1/4.

Lemma 8. The total variation distance between M1 and M2, as well as the one between M3 and
M4, satisfies,

TV(M1,M2) = TV(M3,M4) = 0.

Combining the above arguments yields that

sup
M

inf
A

[
JM (ξ(M))− E

[
JM (π̂)

]]
≥ γ2/16.

This completes the proof.

E.3 PROOF OF LEMMA 5

Lemma (Restatement of Lemma 5). Algorithm A that outputs π̂ behaves suboptimally compared
with ξ(M) if EA

M happens, i.e., for all M ∈ M,

JM (ξ(M))− E
[
JM (π̂)

]
≥ γ2P(EA

M )− γ2

8
. (18)

Proof. If EA
M happens, π̂ can have 0 return in the best case. Since the optimal return from s is γ2,

we have

EEA
M

[
JM (π̂)

]
≤ γ2P(EA

M ) ≤ γ2 − γ2P(EA
M ).

Thus, we have

JM (ξ(M))− E
[
JM (π̂)

]
≥7γ2/8− γ2 + γ2P(EA

M )

≥γ2P(EA
M )− γ2

8
.

This completes the proof.

E.4 PROOF OF LEMMA 6

Lemma (Restatement of Lemma 6). The fail probability is bounded by the total variation distances
between certain MDP families from M.

inf
A

EM∼dM

[
P(EA

M )
]
≥1

4
− 1

4
max

{
TV
(
P(·|M1),P(·|M3)

)
,TV

(
P(·|M1),P(·|M4)

)
,

TV
(
P(·|M2),P(·|M3)

)
,TV

(
P(·|M2),P(·|M4)

)}
− 1

2
max

{
TV
(
P(·|M1),P(·|M2)

)
,TV

(
P(·|M3),P(·|M4)

)}
.

28



Published as a conference paper at ICLR 2024

Proof. Due to the definition of dM,

inf
A

EM∼dM

[
P(EA

M )
]

=
1

4
inf
A

[
P(EA

1 and EA
2 |M1) + P(EA

1 and E
A

2 |M2) + P(EA
1 and E

A

2 |M3) + P(EA
1 and EA

2 |M4)
]

≥1

4
inf
A

[[
P(EA

2 |E
A

1 , M1) + P(EA

2 |E
A

1 , M2)
]
·min

{
P(EA

1 |M1),P(E
A

1 |M2)
}

+
[
P(EA

2 |E
A

1 , M3) + P(EA
2 |E

A

1 , M4)
]
·min

{
P(EA

1 |M3),P(EA
1 |M4)

}]

≥1

4
inf
A

[[
1− TV

(
P(·|EA

1 , M1),P(·|E
A

1 , M2)
)]

·min
{
P(EA

1 |M1),P(E
A

1 |M2)
}

+
[
1− TV

(
P(·|EA

1 , M3),P(·|E
A

1 , M4)
)]

·min
{
P(EA

1 |M3),P(EA
1 |M4)

}]
.

We can use Lemma 2 to simplify the total variation distance of conditional probabilities,

inf
A

EM∼dM

[
P(EA

M )
]

≥1

4
inf
A

[
min

{
P(EA

1 |M1),P(E
A

1 |M2)
}
− TV

(
P(·|M1),P(·|M2)

)
+min

{
P(EA

1 |M3),P(EA
1 |M4)

}
− TV

(
P(·|M3),P(·|M4)

)]

≥1

4
inf
A

[
min

{
P(EA

1 |M1) + P(EA
1 |M3),P(E

A

1 |M1) + P(EA
1 |M4),

P(EA

1 |M2) + P(EA
1 |M3),P(E

A

1 |M2) + P(EA
1 |M4)

}]

− 1

2
max

{
TV
(
P(·|M1),P(·|M2)

)
,TV

(
P(·|M3),P(·|M4)

)}
.

The first term again can be transferred into the total variation distance,

inf
A

EM∼dM

[
P(EA

M )
]

≥1

4
inf
A

[
min

{
1− TV

(
P(·|M1),P(·|M3)

)
, 1− TV

(
P(·|M1),P(·|M4)

)
,

1− TV
(
P(·|M2),P(·|M3)

)
, 1− TV

(
P(·|M2),P(·|M4)

)}]

− 1

2
max

{
TV
(
P(·|M1),P(·|M2)

)
,TV

(
P(·|M3),P(·|M4)

)}
.
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Rearranging terms yields that

inf
A

EM∼dM

[
P(EA

M )
]

≥1

4
inf
A

[
1−max

{
TV
(
P(·|M1),P(·|M3)

)
,TV

(
P(·|M1),P(·|M4)

)
,

TV
(
P(·|M2),P(·|M3)

)
,TV

(
P(·|M2),P(·|M4)

)}]

− 1

2
max

{
TV
(
P(·|M1),P(·|M2)

)
,TV

(
P(·|M3),P(·|M4)

)}
≥1

4
− 1

4
max

{
TV
(
P(·|M1),P(·|M3)

)
,TV

(
P(·|M1),P(·|M4)

)
,

TV
(
P(·|M2),P(·|M3)

)
,TV

(
P(·|M2),P(·|M4)

)}
− 1

2
max

{
TV
(
P(·|M1),P(·|M2)

)
,TV

(
P(·|M3),P(·|M4)

)}
.

This completes the proof.

E.5 PROOF OF LEMMA 7

Lemma (Restatement of Lemma 7). For any sample size N , we can choose the cardinality of I to
ensure that the total variation distance is bounded between MDP classes from {M1,M2} and MDP
classes from {M3,M4},

max
M′∈{M1,M2},M′′∈{M3,M4}

TV(M′,M′′) ≤ 1/4.

Proof. Denote M′ ∈ {M1,M2}, and M′′ ∈ {M3,M4}, we first transfer the algorithm-dependent
total variation distance into the dataset version through the data processing inequality,

TV(M′,M′′) =TV
(
P(·|M′),P(·|M′′)

)
≤TVD

(
P(· | M′),P(· | M′′)

)
.

We take P(· | M′) as PN
1 and take P (· | M′′) as PN

2 . We then construct the dominating MDPs M0

as done in Lemma 4, whose transition kernel follows that

P0(· | s, a) :=



Unif(I) if s = s and a = 1

Unif(I) if s = s and a = 2

7Unif({X})/8 + Unif({Y })/8 if s ∈ I
7Unif({X})/8 + Unif({Y })/8 if s ∈ I
Unif({Z}) if s = Y and a = 1

Unif({s}) otherwise,

and whose reward is R1. We can follow exactly the same argument from Lemma 4 until Eqn. (13).
By definition,

Φ1(θ|I|) =
1/8− (7/8− θ)

(1/8)2
= 64θ − 48, Φ2(θ|I|) =

7

8
· θ

(7/8)2
+ (1− 7/8)

1/8− (7/8− θ)

(1− 7/8)2
=

64θ

7
− 6.

Both of them are monotonic.
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Since T ∼ Hyper(7|I|/8, |I|, 7|I|/8),

ET∼Hyper(7|I|/8,|I|,7|I|/8)

[(
11

16
+

1

16
Φ1(T ) +

1

4
Φ2(T )

)N]

=

7|I|/8∑
t=0

(
7|I|/8

t

)( |I|/8
7|I|/8−t

)
( |I|
7|I|/8

)
(
11

16
+

1

16
Φ1(t) +

1

4
Φ2(t)

)N

=

7(7/8+ϵ)|I|/8∑
t=0

(
7|I|/8

t

)( |I|/8
7|I|/8−t

)
( |I|
7|I|/8

)
(
11

16
+

1

16
Φ1(t) +

1

4
Φ2(t)

)N

+

7|I|/8∑
t=(7/8+ϵ)|I|/8

(
7|I|/8

t

)( |I|/8
7|I|/8−t

)
( |I|
7|I|/8

)
(
11

16
+

1

16
Φ1(t) +

1

4
Φ2(t)

)N

(0 ≤ ϵ ≤ 49
64 |I|)

≤
(
11

16
+

1

16
Φ1(7(7/8 + ϵ)|I|/8) + 1

4
Φ2(7(7/8 + ϵ)|I|/8)

)N

︸ ︷︷ ︸
(1)

+ P(T ≥ 7(7/8 + ϵ)|I|/8)
(
11

16
+

1

16
Φ1(7|I|/8) +

1

4
Φ2(7|I|/8)

)N

︸ ︷︷ ︸
(2)

.

For term (1), we can rewrite it as(
11

16
+

1

16
Φ1(7(7/8 + ϵ)|I|/8) + 1

4
Φ2(7(7/8 + ϵ)|I|/8)

)N

=

(
11

16
+

1

16
· 64 ·

(49
64

+
7ϵ

8

)
− 3 +

1

4
·
(64
7

· 7(7/8 + ϵ)/8− 6
))N

=

(
1 +

7ϵ

2

)N

.

For term (2), we rewrite its latter part as(
11

16
+

1

16
Φ1(7|I|/8) +

1

4
Φ2(7|I|/8)

)N

=

(
11

16
+

1

16
· (56− 48) +

1

4
·
(64
7

· 7
8
− 6
))N

=
(27
16

)N
.

The probability part of term (2) is exponentially small because of the hypergeometric tail bound
(Lemma 1), which yields that

P(T ≥ 7(7/8 + ϵ)|I|/8)
(
27

16

)N

≤ exp(−2ϵ2 · 7|I|/8)
(27
16

)N
=exp

(
− 7

4
ϵ2|I|+N log

(27
16

))
.
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Thus, the total variation distance is bounded as

TVD
(
PN
1 ,PN

0

)
≤1

2

√√√√(1 + 7ϵ

2

)N

+ exp

(
− 7

4
ϵ2|I|+N log

(27
16

))
− 1

≤1

2

√√√√exp
(7ϵN

2

)
+ exp

(
− 7

4
ϵ2|I|+N log

(27
16

))
− 1.

Taking 0 < ϵ ≤ 2
7N log(33/32) and |I| = |I| ≥

4

(
N log

(
27
16

)
+log 32

)
7ϵ2 yields that

TVD(P(·|M′),PN
0 ) ≤1/8.

Following the same argument, we also have

TVD(P(·|M′′),PN
0 ) ≤1/8.

Therefore,

max
M′∈{M1,M2},M′′∈{M3,M4}

TV(M′,M′′) ≤TVD(P(·|M′),PN
0 ) + TVD(P(·|M′′),PN

0 )

≤1/4.

This completes the proof.

E.6 PROOF OF LEMMA 8

Lemma (Restatement of Lemma 8). The total variation distance between M1 and M2, as well as
the one between M3 and M4, satisfies,

TV(M1,M2) = TV(M3,M4) = 0.

Proof. We can first transfer the total variation distance between M1 and M2 into the total variation
distance of the dataset via data processing inequality,

TV(M1,M2) ≤TVD
(
P(· | M1),P(· | M2)

)
.

Under the data distribution dD, the dataset generating principle of M1 and M2 is exactly the same
since their different part is not covered by dD. This means that

TVD
(
P(· | M1),P(· | M2)

)
= 0.

One can also prove TV(M3,M4) = 0 in a similar manner.

F COMPARING THE ASSUMPTIONS FROM THIS PAPER AND PRIOR
WORKS

This section reviews assumptions in offline RL with general function approximation and presents
a comparison of these assumptions across different studies (including ours). Note that our results
are lower bounds so the strength of assumptions should be viewed inversely in some cases. We first
elaborate data assumptions in Appendix F.1, and then function assumptions in Appendix F.2. A
summary of their usage in the literature can be found in Table 4.

A worth-mentioning point is that model-based assumptions are aligned with the toy assumptions (such
as tabular MDPs), since they assume that the possible underlying models are “small.” Model
realizability implies most function class assumptions. For the stringency of model realizability, we do
not discuss the model-based assumptions that appears in other works (Uehara & Sun, 2021; Bhardwaj
et al., 2023) in this section,
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Table 4: Summary of major assumptions in Offline RL with general function approximation.
Realizability-type means that the results in the papers only require realizability-type assumptions,
and completeness-type means that the results in the papers make completeness-type assumptions.
The rows summarize the data assumptions made in the papers. We mark papers with model-based
assumptions with M superscript.

Realizability-type Completeness-type

Single Coverage
Theorem 2 (ours); Zhan et al. (2022);

Uehara & Sun (2021)M ;
Bhardwaj et al. (2023)M

Liu et al. (2020); Xie & Jiang (2020b);
Xie et al. (2021a); Cheng et al. (2022);

Rashidinejad et al. (2022); Zhu et al. (2023)

Exploratory Coverage Chen & Jiang (2019)

The data assumptions
made by Xie & Jiang (2020a) Theorem 1 (ours); Xie & Jiang (2020a)

F.1 DATA ASSUMPTIONS

Data assumption are the cornerstones of offline RL—they essentially determine what we can access
as empirical facts. When comparing to online RL, data assumptions are always considered as an
alternative of the frameworks in general function approximation (Xie et al., 2022). As discussed in
Chen & Jiang (2019), data assumptions can also be viewed as implicit model assumptions.

As briefly introduced in Section 2.2, bounds on the coverage coefficient are the main stream of data
assumptions. An interesting alternative for the ratio of distributions is to involve loss functions, as
done in works such as Xie et al. (2021a); Cheng et al. (2022); Bhardwaj et al. (2023). This approach
takes the form of

C := max
f∈F

Eν

[
L(f)

]
EdD

[
L(f)

] , (19)

where ν is the distribution we want to shift to (e.g., the induced distribution of the optimal policy),
F is the function class, L is the loss function in the algorithm, and C is the refined concentration
coefficient. This refined notion of coverage is yet no-surprising since in most cases we only use the
coverage assumptions for loss-shifting, or namely, distribution rescaling.

Concentration w.r.t. P and A The coverage assumptions in Xie & Jiang (2020a) require
that

• µD (the state margin of dD) should scale at the same level as the transition kernel P (·|s, a)
and the initial state distribution, namely, there exists a constant C > 0 such that for all
s, s′ ∈ S, a ∈ A,

P (s′|s, a)/µD(s′) ≤ C and µ0(s)/µ
D(s) ≤ C.

• for every state s ∈ S, the behavior policy πb(·|s) should be lower-bounded for all actions
a ∈ A (thus covers all possible actions).

These assumptions are remarkably strong, exploiting the access of the dataset and making strong
restrictions on the possible MDPs. Conditions 2 and 3 in Theorem 1 are specifications of these
assumptions, and the data assumptions in Theorem 1 are thus stronger than the ones in Xie & Jiang
(2020a).

One can also verify that the data assumptions in Theorem 1 are stronger than almost all those made
in offline RL literature (e.g., Chen & Jiang (2019); Xie & Jiang (2020b); Xie et al. (2021a); Cheng
et al. (2022); Ozdaglar et al. (2022); Zhu et al. (2023); Uehara et al. (2023)).

F.2 FUNCTION ASSUMPTIONS

Function assumptions in offline RL can be approximately characterized in three aspects: the loss to
be minimized, the number of loss presented in the assumption, and the complexity of the function
class. The last aspect is used to analysis the generalization property of the function class, and its
treatment in offline RL does not differ from its use in the one in empirical processes (Pollard, 1990;
Vaart & Wellner, 1996). We therefore only elaborate the first two aspects in the reminder of this
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section. A summary of function assumptions is presented in Table 5. It is worth mentioning that this
treatment is primarily aimed at real-world applications. Much of the analysis in RL still focuses on
simpler scenarios such as tabular MDPs and linear MDPs, in which cases most function assumptions
are naturally met, since the university of all possible functions is simple enough.

F.2.1 ON THE LOSS TO BE MINIMIZED

Functions classes, or approximators, are designed to minimize losses, and the quality of a function
class can be determined by the scale of the minimum loss of the function class. We would like to
mention that, the assumptions described below can often be converted to weaker ones by modifying
the proofs without loss of generality.

Strictly Containing One may assume that the function exactly contains certain desired elements, or
can optimally minimize a loss function. For instance, we may assume a value function class containing
the optimal value functions, or equally, have a function minimize the Bellman optimal equation.
From the perspective of loss, we can interpret it as having a function class F satisfying

min
f∈F

∥f − f⋆∥∞︸ ︷︷ ︸
the loss

= 0.

This approach has more stringent requirements but also offers greater flexibility in application,
possibly easing the proof process. Taking the optimal value function as an example, we can use the
function class to minimize the optimal Bellman error, as well as to serve as a discriminator for the
density ratio in MIS.

Approximately Containing A refined approach is to measure the violation of an assumption by an
constant and then state the final result as a function of this constant. For instance, we may assume
having a function class F satisfying

min
f∈F

∥f − f⋆∥∞,dD︸ ︷︷ ︸
the loss

≤ ϵ,

by including a constant ϵ > 0 to measure the sub-optimality. We can also replace the loss above with
more refined ones such as the Bellman error (Zhu et al., 2023).

F.2.2 ON THE NUMBER OF LOSSES

The number of losses required to be minimized measures another aspect of function assumptions.
Having exponentially many losses to minimize versus having just a few are completely different,
which forms the fundamental difference between realizability-type assumptions and completeness-
type assumptions. In real-world applications, completeness-type assumptions may not always be met,
leading to instability in the training process that could potentially destroy the final result.

Realizability-type Realizability-type assumptions are the assumptions that there are only a few
losses to minimize. For example, we may assume that we have a function class F such that

max{min
f∈F

L1(f),min
f∈F

L2(f)} = 0,

where L1 and L2 are two loss functions. These assumptions are natural extension of the ones in
supervised learning, and are typically considered standard and relatively mild.

Completeness-type Completeness-type assumptions are the assumptions in which the number of
objective losses are exponentially many, or are approximately the same as the cardinality of a function
class. For example, we may assume that we have a function class F such that

max
f∈F

min
f ′∈F

L(f, f ′) = 0,

where L : F × F → R is a certain loss function, e.g., the Bellman residual,

L(f, f ′) := ∥f − T f ′∥2,dD .

These assumptions arise from the requirements of iterative algorithms such as FQI. Concretely, taking
FQI as an example, let F ⊆ S ×A → R be the value function class. In each step of the algorithm,
denoted as t, we assign a new function ft+1 based on the previous one ft, as

ft+1 = min
f∈F

∥f − T ft∥2,dD . (20)
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FQI aims for the assignment to follow ft+1 = T ft, which corresponds to the Bellman update. The
assumption above is famously addressed as the Bellman completeness.

Table 5: Summary of the Function Assumptions in the offline RL literature. Realizability-type means
that the results in the papers only require realizability-type assumptions, and completeness-type
means that the results in the papers make completeness-type assumptions. The rows correspond to
two different types of losses used in the assumption. The superscript ‘+’ means that there are some
accompanying assumptions (e.g., the gap assumption (Chen & Jiang, 2022)) for the function classes
in this paper. We mark papers with model-based assumptions with a superscript ‘M’.

Realizability-type Completeness-type

Strictly Containing

Uehara & Sun (2021)M ;
Chen & Jiang (2022)+;Uehara et al. (2023)+;
Bhardwaj et al. (2023)M ; Zhan et al. (2022);

Theorem 1 (ours)

Approximated Containing Chen & Jiang (2019); Rashidinejad et al. (2022);
Theorem 2 (ours)

Liu et al. (2020); Xie et al. (2021a);
Cheng et al. (2022); Zhu et al. (2023);

Xie & Jiang (2020b)

F.2.3 COMPARING THE FUNCTION ASSUMPTIONS WITH OURS

Our function class assumptions in Theorem 1 are weaker than those made in model-based analy-
ses (Uehara & Sun, 2021). When specifying to concrete functions such as the value function and
the density ratio, one can show that our function class assumptions are weaker than those with
completeness-type assumptions (Chen & Jiang, 2019; Liu et al., 2020; Xie et al., 2021a; Rashidine-
jad et al., 2022), and are comparable (and sometimes the same) with the works that make only
realizability-type assumptions (Xie & Jiang, 2020a; Zhan et al., 2022). We aim to demonstrate that
completeness-type assumptions are particularly challenging to be mitigated.
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