
Appendix

A The Anti-Poaching Game Model

In this section, we fully develop the POSG model of the Anti-Poaching Game.

A.1 Agents and game states

The game is played between a team of cooperative rangers R = {1, . . . , I} and some
independent poachers P = {I + 1, . . . , I + J} (note that |R| = I and |P| = J) on a grid
of size ℓ × ℓ over a finite horizon [H] = {1 . . . , H}. Let I be the set of agents defined as
I = R ∪ P. Each poacher has a finite number of traps that she can place and remove. A
trap τ catches an animal at each time-step with a probability pCA. Lastly, we remark that
since the game is a POSG, all agents receive their observations, choose their next actions
and obtain rewards simultaneously.
The state at a time step t is defined as a tuple of agent and trap states st = (σt, τ t) ∈ S,
where

σt =
�

σt
1, . . . , σt

|R|, . . . , σt
|R|+|P|

�
(3a)

τ t =
�
τ t

j,m,n

�
∀m, n ∈ [ℓ], j ∈ P (3b)

Here, σt defines the states of the Ranger and Poacher agents as

σt
i =

�
(m, n), ∀i ∈ R
(m, n, ηtrap, ηprey), ∀i ∈ P (4)

where m, n indicates an agent’s position on the grid, ηtrap is the number of traps currently
carried by the poacher, and ηprey is the number of currently carried prey. Furthermore, the
state of active/placed traps is described as a tuple over each cell of the grid, capturing the
number of empty, i.e. ηE,j , and full traps, i.e. ηF,j , for each Poacher j ∈ P as

τ t
j,m,n = (ηE,j , ηF,j) ∈ N2 (5)

A.2 Actions

The action space for each ranger i ∈ R is Ai = {∅, ↑, ←, ↓, →}. Similarly, each poacher j ∈ P
has the action space Aj = {∅, ↑, ←, ↓, →, place − trap}. The joint action for each timestep t

is denoted as at =
�

at
1, . . . , at

|R|, . . . , at
|R|+|P|

�
, at ∈ A.

A.3 Transition Model

Environment Transition Model

Receives
(at

i)i∈R∪P
Sends
(ot+1

i , Rt
i)i∈R∪PRangers

Move

Poachers
Move and
Detect
Traps

Rangers
Detect
Traps

Remaining
Traps
Capture
Prey

Rangers
Detect and
Capture
poachers

Remaining
Poachers
Place
Traps

Figure 5: Transition Model for the Anti-Poaching Game. At each step, only the state
variables of agents who apply or are affected by an action change value.

The transition probability function T : S × A × S → [0, 1] can be expressed as the probability
T (st, at, st+1) = P(st+1|st, at).

Order of Transitions Since each action is chosen simultaneously, an order for simulating
the actions must be established to avoid ambiguities. For example, the environment will
simulate all capture − poacher events before all place − trap events. The complete transition
model is defined in multiple steps, as shown in Figure 5. Note that the final state of each
step is taken as the input of the next.

13

1. Each rangers moves deterministically generating a new individual state.
σ′

i ← Movi(σi, ai), ∀i ∈ R. (6)
where Movi is a function that executes the movement action, which will be fully
detailed in Section A.3.1.

2. Each poacher moves and reclaims only her traps from the new cell, if any.
(σ′

j , τ ′
j) ← PRTj(Movj(σj , aj), τj), ∀j ∈ P. (7)

where PRTj is a function that executes the Poacher-Remove-Trap action, which will
be fully detailed in Section A.3.2.

3. All rangers now detect traps in their new cell and all remaining empty traps then
independently capture an animal with probability pCA. A ranger may detect each
trap independently with probability pDT .
Suppose that poacher j ∈ P has τj,m,n = (ηE,j , ηF,j) empty and full traps in cell
(m, n). Then, P RRT

j,m,n gives the probability of rangers detecting her traps in this
cell, which gives the new trap state τ ′

j,m,n = (η′
E,j , η′

F,j). After this phase, P CA
j,m,n

measures the probability of the remaining η′
F,j empty traps to capture an animal

and thus reach the trap state τ ′′
j,m,n = (η′′

E,j , η′′
F,j). Both updates to the trap state

can be written concisely as

P RRT,CA
j,m,n (τ ′′

j,m,n|τj,m,n, σ) =
X

η′′
E,j≤η′

E,j≤ηE,j

0≤η′
F,j≤ηF,j

P CA
j,m,n(τ ′′

j,m,n|τ ′
j,m,n)×P RRT

j,m,n(τ ′
j,m,n|τj,m,n, σ)

(8)
4. Rangers detect poachers in their new cell. A ranger detects a poacher with probability

pDP , and detected poachers are assigned the terminal state (−1, −1, 0, 0). For a
poacher j, P DP gives the probability of being captured in this transition, thus
transitioning her state from σj to σ′

j as P DP (σ′
j |σj). If j chose to place a trap and

was not captured, she does so now. This changes the game state as (σ′′
j , τ ′′

j) =
PTj(σ′

j , τj , aj). Since PTj is deterministic, we condense the two steps as

P DP,P T
j (σ′′

j , τ ′′
j |σj , τj , aj) =

X

σ′
j
,P Tj(σ′

j
,τj ,aj)=(σ′′

j
,τ ′′

j
)

P DP
j (σ′

j |σj), ∀j ∈ P. (9)

Let us now describe these transition steps in detail.

A.3.1 Movement

For each agent that has chosen a movement action, or the null action ∅, their state evolves
deterministically as expected. We can define this using a Mov function defined on each
agent as

σ′ ← Mov(σ, a) = (Movi(σi, ai))i∈I , (10)
where σ is the current state of all agents, a ∈ A is their joint action, and Movi only processes
action ai of agent i. Let (mt

i, nt
i) be the location of agent i at time t. Then, we can specify

the movement function Movi explicitly as follows

�
mt+1

i , nt+1
i

�
=





(−1, −1) if (mt
i, nt

i) = (−1, −1)
(max(0, mt

i − 1), nt
i) if ai =↑

(mt
i, max(0, nt

i − 1)) if ai =←
(min(ℓ, mt

i + 1), nt
i) if ai =↓

(mt
i, min(ℓ, nt

i + 1)) if ai =→
(mt

i, nt
i) if ai ∈ {∅, place − trap}

(11)

where the new state of agent i is σt+1
i =

�
mt+1

i , nt+1
i , . . .

�
. Movi does not update the position

of the agent that chose an illegal action e.g. a movement beyond the grid border. Lastly,
Mov does not modify the number of traps and prey of poachers i.e.

�
ηt+1

trap,j , ηt+1
prey,j

�
=

(ηt
trap,j , ηt

prey,j), ∀j ∈ P.

14

A.3.2 Removing Traps

We define the trap removal step similarly. We assume that each poacher can only detect
and thus remove her own traps. This implies that poachers removing their own traps is a
deterministic action. However, trap removal by rangers is still stochastic since they detect a
trap with probability pDT .

1. Poachers Remove Traps Since poachers remove only their traps, their action does
not affect other agents or their traps, the transition Poacher-Remove-Trap (PRT)
can be considered independently for each poacher as

(σ′, τ ′) = PRT (σ, τ) = (PRTj(σj , τj))j∈P (12)

Let σt
j = (mt

j , nt
j , ηt

trap,j , ηt
prey,j) be the state of poacher j at time t, and τ t

j,mj ,nj
=

(ηt
E,j , ηt

F,j) the number of her empty and full traps in this cell. The number of traps
poacher j has at t + 1 is the sum of the traps she has at time t, and the number
of empty and full traps she found in her new cell. Furthermore, Poachers store the
prey taken from the full traps in their new cell.

ηt+1
trap,j ← ηt

trap,j + ηt
E,j + ηt

F,j (13a)
ηt+1

prey,j ← ηt
prey,j + ηt

F,j (13b)

2. Rangers Remove Traps Rangers also remove traps only in their new cell after a
potential move. Detected traps are directly removed from the game and the reward
obtained from removal is equally shared between rangers.
Suppose km,n = | {i ∈ R, σi = (m, n)} | ≥ 1 rangers are in cell (m, n) ∈ [ℓ]2. Each
ranger searches the cell independently and detects a trap with probability pDT . Let
poacher j have placed ηE,j (resp. ηF,j) empty traps (resp. full traps) in this cell
i.e. τj,m,n = (ηE,j , ηF,j). Since each ranger detects each trap independently, we can
define the probability that a trap is detected by at least one of the km,n rangers as

pDT,km,n
:= P (trap is detected) = 1 − (1 − pDT)km,n (14)

Thus, for cell (m, n) and traps of poacher j, the probability that there remains
η′

E,j ≤ ηE,j undetected empty traps (resp. η′
F,j ≤ ηF,j undetected full traps) placed

by poacher j is

P RRT
E,j (η′

E,j |ηE,j , σ) =
�

ηE,j

η′
E,j

�
p

ηE,j−η′
E,j

DT,km,n

�
1 − pDT,km,n

�η′
E,j (15a)

P RRT
F,j (η′

F,j |ηF,j , σ) =
�

ηF,j

η′
F,j

�
p

ηF,j−η′
F,j

DT,km,n

�
1 − pDT,km,n

�η′
F,j (15b)

Thus, the probability of reaching the new trap state τ ′
j,m,n = (η′

E,j , η′
E,j), ∀(m, n) ∈

[ℓ]2, ∀j ∈ P is

P RRT
j,m,n(τ ′

j,m,n|τj,m,n, σ) = P RRT
E,j (η′

E,j |ηE,j , σ) × P RRT
F,j (η′

F,j |ηF,j , σ), (16)

Taking the product over all cells and all poachers, we can define the probability of
reaching trap state τ ′, given a current state (σ, τ) as

P RRT (τ ′|σ, τ) =
Y

j∈P,(m,n)∈[ℓ]2

P RRT
j,m,n(τ ′

j,m,n|τj,m,n, σ) (17)

A.3.3 Rangers Remove Poachers

In this step, all the rangers search their current cell independently, similar to their search for
traps in Section A.3.2. A detected poacher is removed from the grid along with the traps
and prey they were carrying. Formally, their state evolves to σj = (−1, −1, 0, 0) i.e. they are
placed outside the grid with neither traps nor prey.

15

Let poacher j be located at cell (m, n), and suppose km,n rangers are located in the same
cell. Then, the probability that poacher j ∈ P is not detected (resp. detected) is:

P DP
j (σ′

j = σj |σ) = (1 − pDP)km,n (18a)
P DP

j (σ′
j = (−1, −1, 0, 0)|σ) = 1 − (1 − pDP)km,n (18b)

where pDP is the probability that a ranger detects a poacher located in his own cell. Therefore,
the probability that state σ transitions to σ′, where some poachers are detected (and therefore
captured) is the product

P DP (σ′|σ) =
Y

j∈P
P DP

j (σ′
j |σ) (19)

A.3.4 Traps Capture Animals

Each empty trap independently captures an animal with probability pCA. Consider poacher
j’s traps in cell (m, n), denoted by the trap state τ t

j,m,n = (ηt
E,j , ηt

F,j). We first observe that
the number of traps must be conserved at this step since no agent places or removes them
during this step. Formally, states that do not conserve the number of traps are unreachable
i.e.

P CA
j,m,n(τ ′

j,m,n|τj,m,n) = 0 if (ηt
E,j + ηt

F,j) ̸= (η′
E,j + η′

F,j) (20)

Thus, the probability that for each poacher j, η′
E,j ≤ ηE,j empty traps do not capture

animals is

P CA
j,m,n

�
τ ′

j,m,n = (η′
E,j , ηF,j + ηE,j − η′

E,j)|τj,m,n

�
=

�
ηE,j

η′
E,j

�
p

ηE,j−η′
E,j

CA × (1 − pCA)η′
E,j . (21)

The transition function over trap states is the product of these probabilites over all poachers
and all cells

P CA(τ ′|τ) =
Y

j∈P,(m,n)∈[ℓ]2

P CA
j,m,n(τ ′

j,m,n|τj,m,n). (22)

A.3.5 Poachers Place Trap

Finally, the action to place a trap is deterministic and independent for each poacher.
Naturally, this action is considered only if the poacher has not been captured yet. In this
case, an empty trap is subtracted from the stock of poacher i (if her stock of empty traps is
non-empty, i.e. ηtrap > 0) and added to the stock of the cell, whenever valid action place-trap
is performed. For poacher j with state σj = (m, n, ηtrap, ηprey) and associated trap state
τj,m,n = (ηE,j , ηF,j) at this cell,

σ′
i ← (m, n, max(ηtrap − 1, 0), ηprey) (23a)

τ ′
j,m,n ← (ηE,j + min(1, ηtrap), ηF,j) (23b)

The max and min operators handle the case where ηtrap = 0. The new state for all poachers
is simply the tuple

(σ′, τ ′) ← PT (σ, τ, a) = (PTj(σj , τj , aj))j∈P , (24)

where PTj is given by Eqns. 23a and 23b when aj = place-trap and is the identity otherwise.

A.4 Agent Observations

We detail the calculation of the observation ot+1
i using the transition ⟨st, at, st+1⟩.

Suppose that ranger i is located at σt+1
i = (m, n), and observes ot+1

i =�
trem, σt+1

i , sR, ηP , ηcapt, ηcell

�
. Here, trem is the remaining time till the end of the game

(i.e. H − t) and σt+1
i is her new state at time t + 1. sR = {i′ ∈ R, σt+1

i′ = σt+1
i } lists all

the rangers located in ranger i’s new cell and ηP counts the poachers captured in this cell
at t + 1. Let Pt

capt(m, n) = {j ∈ P : σt
j = (m, n, ηt

trap,j , ηt
prey,j) ̸= (−1, −1, 0, 0) = σt+1

j } .

16

Rangers Poachers
Ranger detects 1 pDP

Poacher detects pDP pDP

Table 3: Probabilities with which an agent detects another type of agent.

Clearly, ηP = |Pt
capt(m, n)|. The tuple ηcapt =

�
ηE

capt, ηF
capt

�
counts the number of Empty

and Full traps recovered from these captured poachers and can be specified as

ηcapt =
�
ηE

capt, ηF
capt

�
=


 X

j∈Pt
capt(m,n)

ηt
trap,j ,

X

j∈Pt
capt(m,n)

ηt
prey,j


 (25)

The pair ηcell =
�
ηE

cell, ηF
cell

�
counts the number of empty and full traps picked up by rangers

in the arrival cell (m, n). Since all rangers in the same cell search collectively, they all receive
the total number of traps detected in this cell as an observation. Recall that a ranger picks up
traps only after the arriving poachers retrieve all of their traps in their new cell. Therefore,
the traps recovered by rangers from the cell can only be owned by poachers not in this cell
at time t + 1.
Let Pt+1(m, n) denote this set of poachers in cell (m, n) at time t + 1. The number of full
and empty traps picked up by rangers in (m, n) is then

ηF
cell =

X

j∈P\Pt+1(m,n)

�
ηt

F,j,m,n − ηt+1
F,j,m,n

�
(26a)

ηE
cell =

X

j∈P\Pt+1(m,n)

�
ηt

E,j,m,n − ηt+1
E,j,m,n

�
(26b)

where τ t
j,m,n = (ηF,j,m,n, ηE,j,m,n) denotes the number of full and empty traps of poacher j

in this cell.
Poacher j observes oj =

�
trem, σt+1

j , ηR, ηP

�
, where trem is the remaining time, σt+1

j =
(m, n, ηtrap, ηprey) is her new state, and ηR (respectively ηP) is the number of rangers (resp.
poachers) that she detects in her new cell. A poacher independently detects any agent, ranger
or poacher, with probability pDP . Suppose there are km,n rangers (similarly, qm,n poachers)
in poacher j’s current cell. Therefore, the probability that poacher j detects ηR ≤ km,n

rangers (similarly, ηP ≤ qm,n poachers) is simply

P P DR
j (ηR; km,n) =

�
km,n

ηR

�
pηR

DP (1 − pDP)km,n−ηR (27a)

P P DP
j (ηR; qm,n) =

�
qm,n

ηP

�
pηP

DP (1 − pDP)qm,n−ηP (27b)

A.5 Rewards

We assume that the stochastic game is zero sum, and that rewards/penalties are obtained
through interactions between poachers and rangers. Suppose poacher j has the state σt

j =
(m, n, ηtrap, ηprey), with associated trap state τ t

j = (ηE,j , ηF,j). Her reward Rj(st, at, st+1)
obtained when transition ⟨st, at, st+1⟩ occurs is

Rj(st, at, st+1) = rj(σt
j , σt+1

j) + cj(σt
j , σt+1

j) + c̄j(τ t
j,m,n, τ t+1

j,m,n) (28)

where she obtains a reward rj(σt
j , σt+1

j) whenever she picks up a prey, but incurs the penalty
cj(σt

j , σt+1
j) if she is captured and the penalty c̄j(τ t

j,m,n, τ t+1
j,m,n) whenever a full trap (prey)

17

is picked up by some ranger. Formally,

rj(σt
j , σt+1

j) = Rprey ×
�
ηt+1

prey − ηt
prey

�
(29a)

cj(σt
j , σt+1

j) =
�−Crem − Ctrap × ηtrap if σt

j ̸= (−1, −1, 0, 0) = σt+1
j

0 else (29b)

c̄j(τ t
j,m,n, τ t+1

j,m,n) = Ctrap ×
�
Trapst+1(j) − Trapst(j)

�
(29c)

where Trapst(j) counts the number of active (not captured) traps that j has at time t, whether
she is carrying them or if they are placed in the grid. Noting τ t

j,m,n =
�
ηt

E,j,m,n, ηt
F,j,m,n

�
,

this is defined as

Trapst(j) = ηt
trap +

X

(m,n)∈[ℓ]2

�
ηt

E,j,m,n + ηt
F,j,m,n

�
. (30)

Since the game is zero-sum and the rangers share rewards equally, we can define ranger i’s
reward function as

Ri(st, at, st+1) = − 1
|R|

X

j∈P
Rj(st, at, st+1). (31)

A.6 Joint policies and values

Consider for agent i playing a POSG, the history of actions and observations upto time
t ≤ T : ht

i := ht
i = (a0

i , o1
i , a1

i , . . . , at−1
i , ot

i) (and h0
i = ∅). A policy π = (π0, . . . , πT) for this

agent is a function that assigns each history at each time step a probability distribution
over his action space, denoted πt(ht

i) ∈ ∆(Ai). The joint policy is the tuple formed by the
policies of all agents i.e. π = (πi)i∈I . The set of all policies except agent i’s is denoted as
π−i = (πj)j∈I\{i}.

To each policy, agent i can attribute a value to a history ht
i as

vπ,i(ht
i) = Eρ

"
HX

t′=t

γt′−tRi(σt′
, τ t′)

�����π, ht
i

#
(32)

For given π−i and history ht
i, note v∗

i,π−i
(ht

i) = maxπi
v(πi,π−i),i(ht

i). The set of individual
policies π′

i which attain this value is called the set of Best Responses to π−i and is denoted
as BR(π−i). A joint policy π∗ is called a Nash Equilibrium if for each agent i ∈ I,
π∗

i ∈ BR(π∗
−i). The value of this Nash equilibrium policy to any player i in history ht

i is7

v∗
π∗,i(ht

i) ≡ v∗
π∗

−i
,i(ht

i).

B Exploitability

As discussed in Section 4, we calculate the AEXPL to obtain lower bounds on the distance
of a joint strategy π from the Nash Equilibrium. This quantifies the robustness of a joint
strategy since sub-optimal strategies are highly exploitable, and thus incite agents to deviate
from their current strategy. The authors are not aware of a generic implementation of this
method for RLlib-compatible algorithms. It is, however, implemented for other MARL
libraries such as OpenSpiel [9].

Implementation The implementation ExploitabilityCallback is provided at examples/rllib/
callbacks .py in the supplied source code. It is implemented as an RLlib callback which runs
after each evaluation iteration.
When called, it creates one algorithm instance for each agent i by reusing the environment
parameters and the current policies of all agents. In the instance corresponding to agent i,
the policies π−i are fixed, and agent i trains against these. An optimal policy for agent i in
this restricted environment is the Best Response BR(π−i).

7Both notations are thus equivalent.

18

It trains each algorithm instance in parallel for 100 iterations by default to obtain this
approximate Best Response and then measures the ARR over 100 episodes to estimate
v∗

π−i,i(h0
i). This is then used with the evaluation ARR, which estimates vπ,i(h0

i), to calculate
AEXPL(π).

C Experiments

This section gives further details on the experimental setup used for the results in Section 5.
This includes the hyperparameter tuning for each algorithm and the default models used by
each algorithm to train individual agent policies. It also includes additional experiments
exploring the algorithms’ sensitivity to the probability pCA of a game.

Resources and Packages All experiments were conducted on an Intel Xeon processor
with 24 cores and no GPU acceleration. Training an algorithm for a particular scenario
used as few as 4 CPU cores. While training for a competitive scenario, ExploitabilityCallback
replicates all policies (even for non-learning agents) once per agent to train them in parallel
instances, which multiplies resource consumption by |I|.
All experiments were run using python>=3.8 and the package ray[rllib]==2.8.0 with compat-
ible versions of pettingzoo and gymnasium. These dependencies have been specified within
the supplied source code.

Hyperparameter Tuning Each algorithm was tuned for both training scenarios, Coop-
erative and Competitive, using the Ray Tune tool. To train an algorithm for a scenario,
100 algorithm instances with randomly chosen hyperparameters were launched in parallel.
Each instance was trained for 250,000 SETs and was evaluated at the end. This evaluation
iteration measured the ARR over 100 game episodes for the Cooperative scenario, and
additionally calculated AEXPL for the Competitive scenario. The best instance in the
Cooperative scenario maximised the ARR, and the best one in the Competitive setting min-
imised AEXPL. The parameters’ values of the best trials were chosen for the experiments,
and these are reported in Table 4 for IL-PG, Table 5 for IL-PPO, and Table 6 for QMix8.

Training Batch Size 128
Discount Factor (γ) 0.97

Learning Rate 3e-05
(a) Hyperparameters values for Cooperative
Scenario

Training Batch Size 512
Discount Factor (γ) 0.99

Learning Rate 3e-05
(b) Hyperparameters values for Competitive
Scenarios

Table 4: Hyperparameters values for IL-PG

Default Models A Model refers to the neural network that parametrises the policy of
a learning agent. APE agents require models that implement action masking, since some
actions may be illegal based on the agent state. For example, an agent cannot cross the
borders of the grid, or place a trap when she has already placed all her traps. For IL-PG and
IL-PPO, we used the TorchActionMaskModel provided by RLlib with its default parameters.
The default model used by QMix already implements action masking and was hence used
with its default parameters.

C.1 Sensitivity to the pCA parameter

Here, we discuss the effect of changing the probability pCA (i.e. the probability that an empty
trap captures an animal within a timestep) in a Cooperative-Competitive scenario. This is
necessary since the Poachers must learn to exploit this change in the environment, which is
not possible with heuristics. It is varied in two different ways, named random and kernel.

8All hyperparameters’ values are stored in examples/rllib/hyperparams.json, and can be used
with both the tuning and main scripts using the −−use−hyper flag.

19

Training Batch Size 256
Discount Factor (γ) 0.9

Learning Rate 0.004
Generalised Advantage Estimation Yes

GAE Parameter (λ) 0.95
SGD Iterations 30

SGD Mini-batch Size 128
Value Function Loss Coefficient 0.01

Clipping Parameter 0.2
Gradient Clipping 1.0

(a) Hyperparameters values for Cooperative Sce-
narios

Training Batch Size 256
Discount Factor (γ) 0.999

Learning Rate 0.001
Generalised Advantage Estimation Yes

GAE Parameter (λ) 0.95
SGD Iterations 30

SGD Mini-batch Size 128
Value Function Loss Coefficient 1.0

Clipping Parameter 0.3
Gradient Clipping No

(b) Hyperparameters values for Competitive Sce-
narios

Table 5: Hyperparameters values for IL-PPO

Training Batch Size 2048
Discount Factor (γ) 0.9

Learning Rate 3e-05
Mixer QMix

Gradient Clipping 10.0
Target Network Update
Frequency (Per SETs) 500

Table 6: Hyperparameters values for QMix in Cooperative Scenarios

(a) 2R2P instance with pCA varied in kernel
mode

(b) 2R2P instance with pCA varied in random
mode

Figure 6: Illustration of a 2R2P APE instance with varying pCA in kernel and random modes
between [0.2, 0.3]. Darker cells correspond to higher pCA, red dots are poachers, blue dots
are rangers, hollow grey dots are empty traps and full grey dots are full traps.

In the random pCA mode, the probability pCA for each cell is sampled uniformly randomly
between a given upper and lower bound. In the kernel mode, the pCA changes linearly from
an upper bound in the center to a given lower bound at the edges. This gives a hotspot near
the center, making it more profitable (and riskier) to place a trap there. In our experiments,
pCA was bounded by the range [0.2, 0.3]. Since we execute in the cooperative-competitive
mode, we only compare Independent Learners.
Changing pCA affects the learned policies, and notably the ARRs - it is on average better for
the rangers than the comparable experiments in Figure 4. Interestingly, the best performing
policies on ARR are more exploitable and hence sub-optimal for at least one subset of agents.

20

Figure 7: Comparison of Algorithm Performance in the Cooperative-Competitive Training
Scenario where pCA is varied in both random and kernel modes. The black line represents
the reward for capturing all poachers.

A fall in ARR and AEXPL suggests that the rangers are more exploitable, while a high
ARR and high AEXPL indicates that the poachers may be following a sub-optimal strategy.

21

