A REDUCING EMPIRICAL AND CERTIFIED ERRORS THROUGH
PHYSICS-INFORMED ADVERSARIAL TRAINING

The goal of reducing the solution errors obtained by PINNs has been the research focus of several
previous works [Kim et al.|(2021); Krishnapriyan et al.[(2021);|Shekarpaz et al.|(2022). To observe the
effects of one of these different training schemes on the verified correctness certification of PINNSs,
we consider Physics-informed Adversarial Training (PIAT) (Shekarpaz et al.,[2022)). The procedure
consists in replacing the residual loss term from Raissi et al.| (2019b) with an adversarial version
inspired by Madry et al. (2017). While this procedure leads to improvements in the example PINNs
from |Shekarpaz et al.|(2022) and using our own implementation in Burgers’ equation, we were unable
to stably train Schrodinger’s equation using PIAT. Since Schrodinger’s equation is not considered in
Shekarpaz et al.|(2022), we only show PIAT results for Burgers’ equation.

We solve the inner optimization problem using 5 PGD steps (Madry et al.,[2017), and for e = 0.05
and a step size of 1.25¢. To improve convergence, we warm start PIAT training using a standard
training solution after 6,000 L-BFGS iterations. The results in Table g show that as expected PIAT
improves both empirical and certified residual bounds.

Table 2: PIAT on Burgers’ equation: Monte Carlo sampled maximum values (10° samples in 0.21s)
and upper bounds computed using 9-CROWN with N, branchings for @ initial conditions (¢t = 0,
x € D, Ny = 5k), @ boundary conditions (¢t € [0,T],z = =1V z =1, N, = 5k), and @ residual
norm (t € [0,T], x € D, N, = 125k), for a PINN trained using PIAT from Shekarpaz et al. (2022).

MC - max 0-CROWN - uy (time [s])

D |ug(0,) — uo(z)|? 7.40-1076 8.18 - 1079 (90.9)
PIAT Burgers |ug (t, —1)|2 2.31-107" 3.32-107" (49.4)
(Shekarpaz et al., [2022) @ |u9(t,1)\2 8.41-1078 1.39-1077 (48.5)

B |fo(x)? 3.60-1073 2.39-107% (2.8 x 10°)

Certification convergence in PIAT vs. stan-
dard training The regularization provided by
adversarial training often leads to verification al-
gorithms converging faster to tighter lower and
upper bounds. We investigate whether this is
the case with 0-CROWN’s greedy branching
strategy by comparing the relative convergence =100
(i.e., the deviation between the upper bound and
the empirical maximum, |fs|Y — maxp/ |fo]) 10¢ 10°
for the first 125k splits of PINNs trained in the log(IVy)

standard and PIAT cases. The results presented

in Figure[5 show that adversarial training leads ~Figure 5: Certification Convergence: log-log plot
to quicker convergence, requiring a lower num- ©f the relative convergence of 0-CROWN certifi-

ber of branches to reach the same error when ~cation for a standard trained PINN (in blue) and
compared to standard. This suggests that our PIAT (in orange).

method, while already efficient, would benefit from smarter training strategies that lead to lower
residual errors.

10%
== Standard

PIAT

- maxp | fy|)

10!

log(| fol”

B 0-CROWN vs. IBP (GOWAL ET AL.,[2018;MIRMAN ET AL., 2018)

To the best of our knowledge, 9-CROWN is the first framework designed to bound the errors of
PINNs. However, for the sake of completeness of analysis we extend Interval Bound Propagation
(IBP) (Gowal et al., [2018; [Mirman et al.| 2018) — known for its simplicity and trading-off bound
tightness for speed — to this setting. Table [3 presents the performance of IBP and 9-CROWN on
the initial, boundary and residual errors for a fixed runtime limit in Burgers’ equation. This is a fair
comparison which takes into account the runtime/tightness trade-off of the two methods. We observe
that -CROWN is significantly more efficient than IBP, achieving bounds that are 165 — 1, 566 x

13

Table 3: 9-CROWN vs. IBP: comparison of the -CROWN and Interval Bound Propagation (IBP)
bounds for the initial, boundary and residual errors in Burgers’ equation for fixed runtime limits.

Runtime limit [s] 0-CROWN uy, (INy) IBP uy, (Ny)
lug (0,)| 150 2.63 x 107° (10%) 4.12 x 1073 (10%)
lug (t, —1)]2 100 6.63 x 1077 (10%) 1.23 x 107° (10%)
lug(t, 1) 100 9.39 x 1077 (10%) 5.69 x 1075 (10%)
|fo(z,t)|? 10* 13.0 (1.3 x 10°) 2.78 x 10® (5 x 10°)

Table 4: Failure identification using residual bounds: empirical analysis of the connection between
the residual bounds obtained by -CROWN and the maximum solution error computed with respect
to a numerical solver, u, over a sampled dataset D’. The range of the solution values over the samples
in D’ are included for ease of comparison.

Residual Max solution error Solution range
0-CROWN uy, (maxpr |ug — ul) (min / maxps ug)
Burgers 1.80 x 1072 3.78 x 1073 [-1,1]
Schrodinger 7.67 x 1074 7.05 x 107° [1.82 x 1074, 15.98]
Allen-Cahn 10.76 0.86 [—1,1]
Diffusion-Sorption 21.09 0.99 [0, 1]

tighter than the baseline given the same total runtime — this is despite the fact that IBP is able to
branch more in total.

C 0-CROWN FOR FAILURE IDENTIFICATION

In Section[6.2 we establish the empirical correlation between residual and solution errors for PINNs at
different training stages (Figure[3). While comparing PINN errors for different PDEs is not easy due
to residual scaling factors, note from Table I] that the errors obtained for Burgers’ and Schrodinger’s
equations are orders of magnitude lower than the ones for the Allen-Cahn and Diffusion-Sorption
equations. Even with different residual tolerances, this would suggest the maximum solution error of
the latter, harder to train PINNs should be higher.

Table 4| presents the residual bounds obtained using 9-CROWN as well as the maximum solution error
with respect to a numerical solver for each of the four PINNs studied, which empirically reinforces
that correlation. E.g., Burgers’ equation has a maximum solution error of 3.78 x 10~2, which is
significantly lower than the trained Allen-Cahn PINN at 0.86, as expected from the residual bounds
of 1.80 x 1072 and 10.76, respectively. This contextualizes the results of Tableand showcases our
framework can identify weaker models.

D ABLATION ON N,

We use N, = 2M for all the PINNs evaluated in this paper. A high number of branchings is
required to obtain the tight bounds presented in Table[I. To justify that need, we have added plots
of the variation of the obtained residual bound for Burgers’ and Schrodinger’ equations in Figure[§
Generally for both these PINNs we only get closer than one order of magnitude from the empirical
estimates (considering the empirical MC sampled errors from Table([T)) by using around 2M branches.

14

250000
= 200000

- 150000 &
)

time (s)

=

= 100000 -
_ 100 - \

- 50000 —02

-0 -0.0

O-CROWN

9-CROWN w,
e

107 =

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 L5 2.0
N, x10° N, %100

(a) (b)

Figure 6: Ablation on Ny,: comparison of the residual error bounds (| fp|?) and runtime performance
of our framework, 9-CROWN on (a) Burgers’ equation and (b) Schrodinger’s equation.

E PROOFS OF PARTIAL DERIVATIVE COMPUTATIONS

E.1 PROOF OF LEMMA : COMPUTING Ox, Ug

Let us now derive Oy, ug(x) for a given i € {1, ...,ng}. Starting backwards from the last layer and
applying the chain rule we obtain:

oy 9z(L=1) 2 ox

Ox,; up(x) = 220 9,09 " ox onl
Given that Ox,z = e; and % = W(L), all that’s left to compute to obtain the full expression is

92 (k)

oo k€ {L —1,...,1}. Note that, for simplicity of the expressions, 2(0)

= x. For every element

j €{1,...,dy} of 2(¥) denoted by z(-k), we have:

920
/ (k) _(k—1) (k) (k)
5.0 = (sz +b;)Wm

where W) denotes the j-th row of W) and b(k) the j-th element of b. Thus, the final expression
can be obtained by stacking the columns of the prev1ous expression to obtain the full Jacobian:

% _ diag [0/ (W(mz(k—l) L b(k))} Wk

This concludes the proof.

E.2 PROOF OF LEMMA : COMPUTING Oy 2ug

Given the result obtained in Appendix let us now derive Oy 2up(x) for a given i € {1,...,dp}.
Starting backwards from the last layer of Ox,u and applying the chain rule we obtain:

L L—1 1
Dy2ug = 0 (oyH 0= 0z1) 8X> =W(L)(9x?z(L_1)

Ox; \0zL-D 92(L=2) """ 9x O,

Now the same can be applied to 0,22“~1), and in general to d,>2(*) to obtain:
0 9z 9?2 2%
(€)Y e k-1 o _“Z <~ ° (k=1) ;. 72 "~ (k=1)
%2 = o, (azu«—n Oxi2 > = It ox T g et
forming a recursion which can be taken until the first layer of Ox, ug, i.e.,:

o (021 9?2
L 9 o) — .
Oz Ox; (0x el) Or;0x ©

15

*)
With the computation of dy, ug, both 9y, (¥~ and 7 (k 1y are known. As such, the only missing
)
pieces in the general recursion is the computation of W. Recall from the previous section

that 6(k i = diag |0 [(W(’“)z(kfl) + b(k))] W) As such:

922k 0
83’21‘82%71) N 37%

Following the element-wise reasoning from above, we have that:

(diag [0 (W® =00 40)| W)

0%z W L ®\ 9 (wk) ®) w k)
J " k—1 k—1
dz,0-0-0 7 (5 2570 4B)8@(s 2570 4) i
(k1)
() (k=1) | p(k) (k) 02 (k)
o" <Wj,: 2+ b) (Wj,: 8@) Wi.:

Stacking as in the previous case, we obtain:

92 2(F)
856@(92’06_1)

completing the derivation of d,2ug(x).

— diag {Un (Wac),z(kfl) T b(k)) (W<k>axiz(’f*1>)} W),

E.3 THEOREM[I} FORMAL STATEMENT AND PROOF

Theoreml(8 CROWN: linear lower and upper bounding Ox,ug). For every j€{l,...,dp} there
exist two functions Ox,ul j and Ox, uk j such that, Vx € C it holds that Ox Juk < 8xbu9 j < O, uf 7
with:

1),U 1),U
Dl = 04 +Z¢ L x+ ol
r=1

(1) L (1),L (1),L
Oxytg ;= ¢o 55 + Z¢1 jor X+ s

where for p € {0,1,2}, qﬁ(l)-’U and d>(1)-’L are functions of W) y(F).L 4, (k). U A (K).L = A (k),U

Pdir podir
a®-L and a®)-U and can be computed using a recursive closed-form expression in O(L) time.

Proof: Assume that through the computation of the previous bounds on ug, the pre-activation layer
outputs of ug, y*¥), are lower and upper bounded by linear functions defined as A *)-Lx 4+ a(F).l <
y®*) < AR Ux 4 a®)Uand yF)L < yF) < y()U for ¢ € C.

Take the upper and lower bound functions for Oy, ug as dx,u§ and Oy, uk, respectively, and the upper
and lower bound functions for dy,2(*) as 0,2}V and 8,2, respectively. For the sake of
simplicity of notation, we define B®+ =1 (B(k) > 0) OB® and BF):— =1 (B(’“) < O) ®BW®),

Working backwards from 0y, ug, we apply the same idea from CROWN (Zhang et al.,|2018):

O ul = WHitg L-DU L (=g (L-1).L

O il = WDt (=1L L W)= (L-1.U @)

We continue to apply this backwards propagation to axiz(Lfl) to obtain 8xiz(L’1)7U and

Ox, 2 L_l)’L. Recall that dy,2(*) = 0, - 1)z(k)8 21 that is, for j € {1,...,d} we have
0,2\ = 0,00 2M 0 21 :de F Oz O, Y.

X%
We resolve the bilinear dependencies of each Ok, Z; (k) by relaxing it using a convex combination of
the upper and lower bounds obtained by the McCormick envelopes of the product. Assuming that

82(19—1)25')]27[/ < az(k—l)zj(',};)l < 8Z<k71>zj(»”2’U and 8xiz£k_l)’L < 8,(1.27(1}“_1) < 8xiz7(lk_1)’U, we have

16

that:
di—1
axizj(‘k) Saxizj(‘k)7U Z(X((Jk) Ox Z(k 1)+0£(k) aZ(A 1)2’ +Oéékj)7

®)

dkl

R D D e

i

for:

aé{?m = n;f“gaz(kfl)z](ﬁZ’U + (1 — 77;132) k- 1)2’()L

jin
agkj)n _ (kgax%(lkq),L i (1 ﬁj(,k)) By, 2B
0 = MO 2 O 2T — (1—77§,’2> RTSE W N
Bt = Gt Oun 2 + (1= (1) Dut 227

=l (-
ﬁékj)n =)8 (k- 1)2 6xzz,(f L (1 — C;EZ) Oytk-1)Z(k) 8,(1.27(1’“71)’[],

where 1]) and C (k) are convex coefficients that can be set as hyperparameters, or optimized for as in
o- CRO%VN (Xu et al., [2020b).

To continue the backward propagation, we now need to bound the components of 9, .—1) z(*). Recall
from LemmaEthat D -1 2*) = diag [a’ (y(k’l))] W) and 82(;671)2;{?) =o' (yj(k 1)) W§k)
forj e {1,...,dg}.

J
such that ’y(k) b (ygk) + 5J(»k)’L) <o (yj(k)) < (k).U ((k) 4 5(k) U) With this, we can proceed
to bound az(k—l)zj('f)

B 2 S((U (1) (0 Loy (1), =) (k>+(Vg Wﬁf?’*+y§k>’L5§’“)’LW§fﬁ)")

Since y(.k)’L < y(,"”') < yj(.k)’U, we can obtain a linear upper and lower bound relaxation for ¢’ (yj(-k)),

as:

z

(k) (k)
Lo, 4, L1,5,

(k) (k)
0,3, 1,7,

©))

At this point, one could continue the back-substitution process using the bounds from CROWN
(Zhang et al.,|2018). However, for the sake of efficiency, we use instead the pre-computed inequalities
from propagating bounds through wug: A¥)Ux 4 alk)U < (k) < AK):-Lx 1 a(k):L Substituting
this in Equation[9} we obtain:

3z<k 1)Z

k), U k), + & (k),U k),— x (k),L k), + (k),U k),— (k),L k
D = (A A O)

(k)
Lgk] L3, 3Js

(10)
Do % (AL AT e N

: (k)
25 A

In practice, we can use Equatlonto compute the required 0,,x—1) z]()L and 0, (k-1 z()'U for the
McCormick relaxation that leads to Equation[8. By back- substituting the result of Equatlon[jln

17

Equation we obtain an expression for the upper and lower bounds on 0. 2% that only depends on

*xi%y
8xiz(’“’1 and x:
di_1
sV = 37) D 1 ol¥)),
n=t (11)
dr—1
k),L k k k
8XL 5) = Zﬂ(()])naxz 'Slk 1)+B§,j),nx+ﬁé(1,j),n’
where:
k k k k k k),+ k),—\(k k
ag])n_a(lj)nng)n+a1jnAgj)n7 aé(lj)n_agj)nng)n+a§j)nAgJ)n+aé)
k k), 4+ (k k k
/ng’n_/Blj 2jn+61jn g])n’ ﬁ4 _B§J)n>\g3n+ﬂ§J)nL33n+ag)

Given Equation [IT, we now have a recursive expresswn for each of the blocks that compose the
computation of Jy,ug, which allows us to obtain a closed form expression for Oy, uj and O, uf
by applying recursive back-substitution starting with Equation [7, Let us begin by performmg
back-substitution to the result in Equation[TT]for layer L — 1:

dr—2
O, 25T =Nl Doy D 4 ol Vx oY (12)
n=1
dr_2 dr_3
=Y b | D0 el ok A 4 s Dx+ |+ af x ol
n=1 r=1
(13)
dr—2 dr—3 dr_s
L—1 L—1 L—2 L—1
= a(()7j1n) Z /.L n,r axLZSL % +a((J,j,n) /'Li(’)nT)X—i_Hé(ln'r) —"_aé)
n=1 r=1 r=1
(14
dr_3 [dp_2
= g b D | 2B+ (15)
r=1 n=1
dr 2 1
{2 g (e) + o (ol x4l) (16)
n=1 -3
dL,3 dL—2 1
L—2 _ L—1) (L-2 L—1
=3 b A | 30 a5 Y+ el e a7)
r=1 n=1 -
dr 1 1
+ g i P+ ——alf)l (18)
= 3Js 3Ty dL73 3T
dr_3
L—2 L 2 L—2
=3 85D 0k, 2 4 o P oY (19)
r=1
where:
(=)
L—2 L—1 L—2
Poj,r)= Z Q0,5,n)/Jé,n,r
n=1
dr—2 1
(L-2) _ (L-1), (L—2) (L-1)
P1j,r nz_:l @0,5,n H3,n,r + dr_o Q3 5n
-2 _ = ey @-n, 1 @
L—2 L—1 L—2 L—1
pQ,j,r = aO,j,n M4,n,r + d a4]n)
n=1 -

18

X+«

(L—1)
4]n

and:

(L-2) (L 1)
apn,. ifo >0
MZ(%LWZ) = { (7 (i 1) S {07374}

(L—2
ﬁpm,:) if g, <0

As in CROWN (Zhang et al., 2018)), given we have put Equation @Lin the same form as Equation [I2]
we can now apply this argument recursively using the p(*) and ;%) coefficients to obtain:

L— 1U 1 1
axz]() (()])z—’_ngj)r +p2]r7

where:
SE=D) _ o) ifk=L
0,5,m dr—1 k k—1 .
T St ud Y itke {2, L1}
k
1) _ ag;, ifk =1L
Lir k k .
" a2 ifkef2,.. L1}
k .
oy Jol) ifk=L
jr d k k—1 k .)
29 anllp((),g)nué(lnr)+dk12pgj)n 1fk€{2,...7L—1}
and:
(k—1) (k)
(k— 1) Qpon, lfpo n—O c{0.3.4
o {é’fn,}> it <o PEOSY

And following the same recursive argument:

axizg(L R _T(glj)z+z X+T2j’l‘7

where:
Sh=1) _ ﬂé’?r ifk=1"L
O St WiV itke(2,..., L1}
e = 635 " e o)
1,5,r — 1 .
> anlTOJn 3,n,r +dk12 1,4,n 1fk€{2,...,L*1}
(k=1) _ B itk =
2,5, Zi}c:ll é@)nwi . r) + dkl - 2(’“])n ifk ¢ {2, el L — 1})
and:

Py (
Qpn,:’ I 7

o [HD D, o
v =000y W T e ef0,3,4
0,7,n

1),L (k—1),U

With these expressions, we can compute the required Oy, zﬁf and Ox, zn, which we assumed

to be known to derive Equation [§]

19

Finally, by back-propagating the bounds starting from Equation[7] we get:

dL 1 dL 2
axi“@ \J Z W Z agLn 71 xi % (L ? + aZ(%Ln 71)X + aé(an 71) +
dr—2

Wi Z B Oyl + B %+ B

drp—2 fdp-1

=3 ZW”* S wih gl oy 2

dLl dLl

ZWL)Jr 37”) W= g=1 | o o ZW(L)+ (Lfl)_’_W(L 64Ln7‘1)

7,mn 3,n,r Qy ,n,T

dr—2
L—-1 U L-1),U
= Z¢6]T) x”LZ(L 2)U+¢17JT‘ X+¢g,j77’))

where:
dr -1
L-1),U L),+ (L 1 (L),— 5(L—1
((),jr) Z W(On r) +Wj,n) (g,n,r)
L0 _),))= g(L-1)
L—1),U L)+ (L—1 L),— o(L—1
1,51 = Z W i(%nr +W§,n 3,n,r
n=1
dr—1
L—1),U L)+ (L—1 L),— 5(L-1
é,jﬂ‘) = Z W(! é(lnr) +W§7n) Zfl,n,r)'

From this, using the same back-propagation logic as in the derivations of Ox, z,(f* UL and Ox; z,(kal)’U,
we can obtain:

%05 + Z%” Cx) (20)
where:
d : k), + (k—1 k),— o(k—1) .
(Z)(kil)’U Z e W(; (()n 'r') + W_E,'rz ((),n,r) ifk=1L
A B oD itk e {2, L—1
ook ¢0]n 0. ifke{2..., }
</>(k71) U de ' W(k) ! g’»kn i) + W('k)’i igkr:rl) itk =1L
Ljr = di 1 (k) U (k=1 KU .
DD S YR 2¢§}n ifke{2,...,L—1}
pU—DU) Dty W(k) i z(Lkn R W 54knr1 ifk=1L
2,4, (k k), U .
S B v 4ni>+m¢;};ﬂ ithe{2,...,L-1}
and:
(k—1) k) U
ph=1) —) Opn f¢ >0
o b1 ,p €{0,3,4}
P {](37"71) if ¢O ,Jsm 0
And similarly for the lower bound:
8Xz 1)L+Z¢1,jr 2,j7‘) (21)

20

where:

d k), + p(k—1 k),— (k=1) .
¢(k71),L _ Z iy Wé 73 ﬁ[()nr) +W§ 73 a(()nr) itk=1
0,5,r -

de l(b(()]fj)rfxgknvl") 1fk€{2,,L—1}
de 1 W(k ngn 7-1) W§‘{€,,3’7Oé(k71,) k=1

(k—1),L _ 3,m,7

(bl - d k),L_ (k—1 B.L .
S Gogin Xy + G O ik € {2 L 1)
k), k k .
(bk 0.L Dt IW(54kn1)+W() aflni) ifk=1
2 - 1 (k)L (k E),L .
SN g ke {2,..., L - 1)
and:
(h=1) 4 o)L <
(o) P 1000 2 e {0,3,4}.
XPJL, {Oégj?n—l) lfdj(()kj):, » D {) }

E.4 THEOREM[2FORMAL STATEMENT AND PROOF

Theorem (0-CROWN: linear lower and upper bounding O, z2ug). Assume that through a previous
computation of bounds on Ox,ug, the components of that network required for 8,{% ug, i.e., axiz(k_l)

and 0,1 2F), are lower and upper bounded by linear functions. In particular, C*)-Lx 4 c(F).L <
Oy, 21 < CFUx 4 BV gnd D) Lx 4 dR)L < 90y 2F) < DEUx 4 dR)U,

Forevery j € {1,...,d} there exist two functions 8x§ ué{j and ax? ueLJ such that, Vx € C it holds
L U ; ; .
that Oy2ug ; < Oy2ug,j < Oy2ug ;. These functions can be written as:

1),U 1),U 1),U
Ol ; = U5 +Zw§}ﬂ-x+wé,}ﬂ»

,L
2u6j_w0]z +Zw(1) X+w2]7

r=1
whereforp e {0,1,2}, q/)(l)g and w(l)’T are functions of W), y(k).L -y (k).U = A (k)L = A (K),U
alk)L gk U k)L C(k (k),L, (WU DELL DELU gL gpg d(k)’U, and can be com-

puted using a recursive closed-form expression in (9() time.

Proof: Assume that through the computation of the previous bounds on ug, the pre-activation layer
outputs of ug, y*¥), are lower and upper bounded by linear functions defined as A *)-Lx 4+ a(®).L <
y®) < ARUx 4 ak)U and (k)L < (k) < (.U for x e C. Additionally, we consider also
that through a previous computation of bounds on Jx,ug, the components of that network required
for Oy2ug, i.e., Ox,2* =1 and 0, -1 2*) are lower and upper bounded by linear functions. In
particular, Ch)Lx k)L < 8xiz(k*1) < CHEUx4 U agnd D)Ly dk)L < 8Z<k_1>z(k) <
DEUx 4+ gV

Take the upper and lower bound functions for 0, 2Ug as 19) 2u9 and O 2“0 , respectively, and the upper
and lower bound functions for 22" as 9, zz(’“) Y and 0,2 2%, respectively. For the sake of
simplicity of notation, we define B(bt =1 (B() > 0) © B(k) and B(F)— =1 (B() < 0) oB®),
Note that, unless explicitly mentioned otherwise, the non-network variables (denoted by Greek
letters, as well as bold, capital and lowercase letters) used here have no relation to the ones from

Appendix[E.3.
Starting backwards from O, 2(F)we have that:
di—1

Zax (k- 1)2 a 2(k=1) +8Z<k71>z§ﬁ26xgz,(f‘1).

Xi“n

21

Given the transitive property of the sum operator, we can bound 0,2 zj(-k) by using a McCormick enve-

lope around each of the multiplications. Assuming that forall j € {1...,dix},n € {1...,dx_1}:
Bzte-n 2" < By izt < O Lan Y 0 AT < 02T < By a &0

X 7,n —_

0, (- 1)2’() < Oyh- 1)2() < O,k 1),2](72, and 6x227(lk D.L < 8xgz,(f_1) < axzz;k b, U, we ob-

tain:
dp—1

8xfz;k) < axlzzj(-k)’U = Z (()k]) naxlz(k b + UL) nax 2(E=1)Z -‘rOé(Ij]) nax an 2 + (Ij]) 00, (k- 1)ZJ(,,2 + ai’f}m
n=1
dp—1

k k),L k k— k k k— k k k
O0y2 2 () > 0y Z<), Z /Bév.])v xIZSL b +ﬂ§,J),n ;2 (k= 1)Z +ﬁ§’;n 2 Z(b +ﬁéd)n Z(k—1)ZJ(-7,,3 +6£,j),n
(22)

for:

k k U k k),L k k k—1),L k k—1),U
Océ])n —773(gax (k= 1)Z(), + (1 77; 73) 6x S(k— 1)25,2 Oé(yj)n = 7]](g@xlz(D + (77](,2) axlz(v
o s+ (1) Bt o =B (1) g
B ST (1 n;f“)) 0 o Vo DY

- 73(28 (k=1) Z(k) Uaxilizibk_l)ﬂL o (1 Vi, n) 9,k I)Z(>LaximriZ£Lk_1)7U

K K k k), U k K , k ,
/B((),j),n C](m)ax n 71)2,](72 (C()) e 71)2](72 ij), C()3xl 2L (C()) .2 S 1)U
52 ,gm T]krzaz(k—1)Z ('n), + (1 -) a 2(k— 1)Z(k> v élfj), - §(k)8 (k v L (1 - 6;,’2) ax?ZSLk71)7U
B4{cjyn - CJ nUx; 2(k *1)Z(k> LaXiZSCil)YL B (1 o C(vkﬂz) ax:z(k’l)ZJ(‘,krz’UaxiZT(lkil)’U+

s gaz(k* k) Lax%ZSLkil)!L - (1) 8 2(k—1)Z() Uax?’z%kil)’(]a
where 17(,2, 7] n, Cin (k) and ¢; (k) are convex coefficients that can be set as hyperparameters, or
optlmlze(f for as in a- CROWN (Xu et al.,[2020b).
For the next step of the back-propagation process, we now need to bound Oy, z(k b Bx z(k 1) zj(kg,
and 0,k 1) z](n), so as to eventually be able to write O 2z](k) as a function of simply 0. 2zn ~D and x.

As per our assumptions at the begmnmg of this section, for the sake of computatlonal efficiency we

take Oy z k=1 and 9 (ki 1>zj("

have a linear upper and lower bound function of x. This leaves us with d,_, -1 zj(Tz to bound as a
linear function of x.

Note that, as per LemmaE 8x_z<k71)z(-k) = 0’”(§k)) (W(-k‘)(‘) .z(k_l)) WEkg Since
(Wﬁ)@xiz(k_l)) = Zd" 1W 8xlz(k b , and C(k) Yx + c(’C < Ox, (kfl) < Cgf:)’Lx+

CS,’“>=L (from the assumptions above), we can write:

from the computation of the bounds of Ox,ug ;, and thus assume we

di—1 dk—1
Wﬁ)asz(kfl) < Z W(k +C k) U JrW(k), C(k) x + Z W§27+c(k),U JrW‘gchz,—c(k),L
n=1
Eék),U e§k),U
dr—1 dk—1
W, 200 > [3 W« Wi ol | i [3 Wen 4 Wit
n=1 —
E;k),L e;k),L
We define 9<.’“>’U = maXxec EMUx + egk) and Hj(.k)’L = mingec E§.k) Fx+ e(k) L As with the
first derivative case, since y()L yj(»k) < yj(»k)’U, we can obtain a linear upper and lower bound

22

relaxation for o’ (yj(»k)) such that)\gk)’L ((k) 4 u;k) L) <" (yj(»k)) <)\gk)’U ((k) 4 u(k) U),

as well as the values L(»L < (yj(k)) < Lgk)’U. By considering the assumption that Agﬁ)’Ux +

ag.k)’ <y < Agﬁ) x + ag.k)’L, we can obtain:

" (ygk)) < (/\‘gk),U,-&-A;‘ﬁ),U I)\gk),U,—A‘gfc:),L) x4 (Agk),U,+a§k),U)\(k) U,— (k) L 4)\ (k), Uﬂ;k),U)

H(k),U h;k),U
o (y](k)) > ()\;k),L,JrAgc:),L)\(k) L,— A(k) U) x + (A(k) L+ §k) L >\§k),L,7a§_k),U +)\gk),Lugk),L) '
Hﬁ.k)"L h](_k),L

This allows us to relax o’/ (y](-k)) (Wg.ﬁ)@xiz(k’_l)) using McCormick envelopes:

o (4) (W20, 20-) < 00 (W, 20-1) 140V (40 4 0

k 1)
I (y}(k)) (W§ﬁ)8xiz<kf1)> > V((){cj),L (Wﬁ)@xz_z(kfl)) +V§Z‘)’LU”((k)) tu (k) L’

for:
Vék) U _ p§k)b§k),U n (1 _ p;k)) L§k),L (kj)n _ pgk)9§k),L I (1 B p;k)) L;k),U
VZ(fcj),U _ _p;k)L;k),U9§k),L _ (1 _ pg_k)) L;k , 9§k),U
AT A0 (1 0) WU g (1 0) g
Vékj) _ _T;k)b§_k),L9J(_k),L _ (1 . T;k)) Lg_k),Uej(_k),U’

where p§) and 7¥) are convex coefficients that can be set as hyperparameters, or optimized for as in
a-CROWN (Xu et al.| 2020b). By replacing this multiplication in the expression from Lemma 2] we

bound 0, , .- 1)z(k) as:

jun
o) < 0 (W o) 4 B0 (4 0) 4
ax S(— 1>Z() > Uék])nL (W](-ﬁ')é)xiz(kfl)) +v (IZ{LOJ, ((k)> Jrfuék) L,

for:

o0 = O Rty By) v§,’“j);f =)’LWE,’Z7+ +rUWRm e {0,1,2).
By replacing the lower and upper bounds for o’/ (y:"’) and (WEﬁ)axiz(kfl)) in the previous in-
equality, we obtain the expression:

O, 1)2() <M(k)Ux+ ()U
Do, 1>z() > M(k) X+ m (k) L
for:
M(k) U —U((JJ)TIL]+E(W (()kj)g, E(k) L gj)TlLJJrH(»U §kJ)TTLJ H(k) L
gkg U _U(()kj)g+ (k) + ’U(()k) U, — e(k) L + U§j) U+h(k) U + gkj)n, h(k) L + ék) U
M§2 L —’U(()])i‘ +E(k:) + (()kj)nL E(k) U + gkj)f +H(k) + gk])nL H(k:)
i off L e g e L L OTOY

23

Finally in the derivation of O, zj(-k)
quantities in Equationlz (recalling from the assumptions that C*)-Ux + ¢(F).U < 8,{1.2(’“*1) <

Ck)lx 4 ¢l and DR Ux + dFV <9, o1y 2F) < DE)Lx 4 dF)-L) to obtain:

as a function of x and 0,2 2(*~1), we just have to replace all the

dr—1
Ox2) < B2 =37 0l 02V o) x b agl),
e 23

07 2 Bt = 30)02l + B x + B,

where:
agkj)n - aék] :C(’f) U4 a C(k) Ly (k?’+M§2’U a(lk])gM(k) L gkj) :D(»U gkj)n nggL
aé’f}m - 04(()]2: (k),U | a() glk) Loy a() mgkg U agkj),n (k) Ly a;]):d(k) Uy a:(skj)’n d(k)’L + aé(l’,cj),n
é{@j),n _ ék]):C +Bék])7n ¢ +B§k]):_ (k) L Jrﬂysj),n (k) U Jrﬁ;(),k]): (k) L +ﬂ§k])7n (kg,U
) = B elE 4 eV gt (’“) =4 g m (’“) U1 gl iy A VR
This forms a recursi(on gf exactly the same forrgC)as Equatlonﬂ;fl from Appendlz(l€ \?/gl)ere onl}(/kt)he

coefficients of O,z znk

and x are different (o
(%)

;.n In this case is referred by vy, a3 by o s
(k)

and Qg jn by Qg i o and similarly for the 3 values). This yields:
L—-1 U 1 U 1),U 1),U
axmz§), () +—§:p(grx—+p;37,
where:
p(k U _ ozé)w ifk=1L
o S I e (o, L - 1)
k .
pE=DU aé%r ifk=1L
ro d k), U (k-1 KU .
" S P ué DU L B e (o, L -1}
k .
pE=DU g, ifk =
j,r - di— k),U (k-1 k), U . ;
> St pl ué DU OV e (o, L 1)

and:

Hpon,: (k—1) f (k),U ’p€{27536}’

k—1
(k—1),U _{aén) lfpgg)n >0
pyn,: Ojn <0

And following the same argument:

L-1).L _ (1).L (1),L
O,y 3#2/)1” P8

where:

(k=1),L ékir iftk=L
0,5,r de 1p(k)L (k—1),L 1fk€{2,7L_1}

n=1 ,Jnlj‘2nr

wone [BY . k=L
jor d k)L (k—1),L k)L .
o Sl itk e {2, L 1)

(k—1),L { ((3127‘ ifk=1L

ir di_1 k),L (k—1),L k), L .)
Sl N 1 0L e o L -1}

24

and:

(k—1) (k)L
(k—1),L __ P, lpr,m,—O c{2.56
Hp,mn,: {az()l,cml) 1fp((]k])f <0 .p €{2,5,6}
With these expressions, we can compute the required Oy 2 z,(f D-L and Ox z
to be known to derive Equation 22}

(k—1),U ..
), which we assumed

Finally, with the exact same argument as in Appendix [E.3] we obtain:

(1) U (1),U (1),U
O]z +Z¢1JT 2j,7*7

where:

o de 1 W(lc) + gkn 71) +W k), ngn: I

T St gD e (o, L 1)

(k—1),U _ S Wil i) + WD ik =L

VT Sl e D g ke {2, L - 1)

Gno de 1W(k)+ ékn i) +W§"72‘ ((ikn—:) kL

o) Dy l%,gnwﬁnr +ﬁ1_2¢§’“}ff ifke{2,...,L —1}
and:

Vi = {a%:"i i”"giig =7 pe{2,5,6).
p,n,: wo

And similarly for the lower bound:

O = 03 +Z¢§T},’f x+)
where:
PRI Divce i |4 Aot U o SN g 7
o Sl gLy E ek e f2,..., L -1}
Gonn | T WTB) A W Tl k=L
wr Syt iy gt if g e {2, L 1)
wono TS WG A W el) itk =L
o Sl by Dk 1 gL e o, L - 1)
and:
(k—1)
Yt = {azknn lizzj: o 'PE {2,5,6}.

E.5 FORMULATION AND PROOF OF CLOSED-FORM GLOBAL BOUNDS ON 8xi Uug

Lemma 3 (Closed-form global bounds on Ox,ug). For every j € {1,...,dp} there exist two
values /ijU € R and KJL € R such thatVx € C = {x € R . xI < x < XU} it holds that

25

1.0

—4 -2 0 2 ! —4 -2 0 2 ! —4 -2 0 2 !
y Y y

(a)lp € R1and up € Ra ®)l, € Raand up € R3 ©)lp € R1and up € R3

Figure 7: Relaxing o’ (yy) = 1 — tanh?(y): examples of the linear relaxations of o’ for different sets
of [, and uy.

Kl < Oxugy < KY, with:
do
=BY*x" + B x" +¢0]1 Z 2M
do
L=Blrxt + Bl xY + w(() ; T Z¢2 3o

where BY = Zfozl SJ)-J, Bf = Zfozl 1/f§,1},w and Bt = I(B >0) ® B and B"~ =
I(B <0)®B.

Proof. Take a function f : R% — R defined as f(x) = v x + cfor v € R% and ¢ € R, as well as
a domain C = {x € R% : x* < x < xY}. Given the perpendicularity of the constraints in C, by
separating each component of f we obtain:

max fx) =)%Y + (v7)TxF + ¢, mlgf(x) = (v Txt 4+ (v7)TxY 4 ¢,
PSS Xe
where vt =I(v>0)ovandv =I1(v<0)Ov. O

F CORRECTNESS CERTIFICATION FOR PINNS WITH tanh ACTIVATIONS

0-CROWN allows one to compute lower and upper bounds on the outputs of Ox,ug, O. 2 Ug and fy
as long as we can obtain linear bounds for ug’s activations, o, Ox, ug’s activations, o’, and 15) 2 Up ’S

activations, o’/, assuming previously computed bounds on the input of those activations. In this
section we explore how to compute those bounds when wug has tanh activations.

Throughout, we assume the activation’s input (y) is lower bounded by [;, and upper bounded by u,,
(i.e., Iy <y < up), and define the upper bound line as hV (y) = Y (y + BY), and the lower bound
line as hL (y) = al(y + B%). For the sake of brevity, we define for a function i : R — R, and points
p,d € R the function 7(h, p, d) = (h(p)=h(d))/(p—d) — h'(d). This is useful as for a given h and p, if
there exists a d € [d}, d,,], such that 74, 4, (h,p,d) = 0, then h'(d) is the slope of a tangent line to h
that passes through p and d.

Bounding o(y) = tanh(y) We follow the bounds provided in CROWN (Zhang et al.,[2018), by
observing that tanh is a convex function for y < 0 and concave for y > 0. For [, < u; < 0 we let
AU be the line that connects I, and wuy, and for an arbitrary d € [l,, up] we let h™ be the tangent line
at that point. Similarly, for 0 < I, < u, we let h™ be the line that connects I, and w;, and for an
arbitrary d € [l, up) we let hV be the tangent line at that point. For the last case where [, < 0 < u,
we let hY be the tangent line at d; > 0 that passes through (I, o(15)), and h” be the tangent line at
dy < 0 that passes through (up, o (up)). Given these bounds were given in|Zhang et al. (2018), we
omit visual representations of them.

26

Table 5: Relaxing o’ (y) = 1 — tanh?(y): linear upper and lower bounds for a given [, and uy.

Iy w oV BY ok 3L
Ri Ra (o (up) = (16))/ (uy—1p) ob)/al — I, U'(d), dec [lbﬂl/b] (Do —d
Rz Ras
Rz Ra a'(d), d € [lp, up) o(d)/oV —d (0(ut) =0 (16))/ (uy 1) o) ol — 1
Ri Re U//(dl), ”(lb)/aU — Iy O;/(dQ)’ U(ub)/aL — Up
Tyru (07 1y, d1) = 0 Tl (0, up, d2) =0
g (). : o' (da).)t
R2 Rs Tty s (07 upy di) = 0 o(up) /ol — uy sy (0" U, d2) = 0 als)/al — 1
U U !
af; +(1 -« , o'(ds), —lp > up
aa_/(dl) =+ (1 _ ﬂl (U B)62 ,() ,
Q)U,(dg) (/81 - g (d4), - lb < Up 0'/(ub) u l S
> a(l ’ _ . —up, — Iy > wp
f R T1,,0(0", b, d1) =0, Ve (31)7 b Ty, (07, up, d3) = {fr/((llis)) l l
T0,u, (07, up, d2) = 0 5? = , o7y o —ly <wp
a(ub)/a (d2) — Up Tys s (0/’ ly,ds) =0

Bounding o’ (y) = 1 — tanh?®(y) The derivative of tanh(y), 1 — tanh?(y), is a more complicated
function. By inspecting it’s derivative, 0"’ (y) = —2 tanh(y)(1 — tanh®(y)), we conclude that there
are two inflection points at y; = maxc” (y) and y2 = min ¢’/ (y), leading to three different regions:
y €] — 00, y1] (R4, the first convex region), y €]y1, y2] (R2, the concave region), and y €]ya, +00|
(R3, the second convex region). As a result, there are 6 combinations for the location of [, and wuy
which must be resolved.

The first two cases are the straightforward: if [, € R, and u, € Ry orl, € R3 and up € Rg, i.e., if
both ends are in the same convex region, then we use the same relaxation as in the bounding of tanh
in the convex region - hY is the line that connects [, and u, while 2% is a tangent line at a point
d € [lp, up). Similarly for the case where [, € Ro and u;, € Ro, we take the solution from the tanh
concave side and use h” to be the line that connects I;, and 1y, and hY to be the tangent line at a point
d € [lp, up]. The next case is I, € Ry and up € R, i.e., [, in the first convex region and u in the
concave one. In this case we use the same bounding as in the tanh case when [, < 0 < wy: KU is
the tangent line at d; > y; that passes through (I, 0”(l3)), and h” is the tangent line at dy < %, that
passes through (up, o’ (up)). In a similar fashion, for the case in which I, € R and up € R, i.e., lp
in the concave region and uy in the second convex region, we take the opposite approach: hY is the
tangent line at d; < ys that passes through (up, 0’ (up)), and k' is the tangent line at dy > yo that
passes through (I, o’ (I)). These two cases are plotted in Figures [7a]and [7b]

Finally, we tackle the case where [;, € R and up € Rag, i.e., where [} is in the first convex region
and uy, is in the second convex region. Given there is a concave region in between them, two valid
upper bounds would be the ones considered previously for [, € Ry and up € Ro, and [, € R4 and
up € Rs3. To obtain these bounds, we shift the upper bound in the first case to 0, and the lower bound
in the second case to 0 (see hV in Figure E). As our bounding requires a single AV, we take a convex
combination of the two bounds obtained, h¥>®. For the lower bound, we use a line that passes by
either (up, 0’ (up)), if =l > up, or by (I, 0’(ly)), otherwise, as well as by a tangent point d3 € Ry,
if =l > wp, or by dy € Rs3, otherwise. See the line AV in Figurefor a visual representation.

Bounding ¢”(y) = —2tanh(y) (1 — tanh(y)?) By inspecting the derivative of ¢”, o’ (y) =
—2 + 8tanh?(y) — 6 tanh®(y), we conclude there are three inflection points for this function, one
aty; = argmax, 0’ (y), another at y, = 0, and finally at y3 = —y;. Take also, for the sake of
bounding, Ymax = argmax, o 0" (y) and ymin = argmin, <, o (y). This leads to four different
regions of 0”’: y €] — 00, y1] (R4, the first convex region), y €]y1, y2] (Ra, the first concave region),
Y €]y2, ys] (R3, the second convex region), and y €]ys, +00[(R4, the second concave region). This
leads to 10 combinations for the location of [, and wuy.

The first four are straightforward: if I, € R; and up, € R; fori € {1,...,4}, then we use exactly
the same approximations as for o and ¢”, varying only based on the convexity of R;. Similarly,

27

Table 6: Relaxing o' (y) = —2 tanh(y) (1 — tanhz(y)): linear upper and lower bounds for a given

Iy and uy,.
lb up OéU ﬂU aL ,BL
gl gl (U”(ub)*Ull(lb))/(ub—lb) U”<lb)/aU — 1y G'/”(d), de [lb,ub] U”(d)/aL —d
3 3
R R 1" 17 " "
R2 7; o' (d), d € [ly, us)] o"(@)/aV — d @ @) =" W) fup—1y) " W)fal — 1
4 4
J”/(dl), o‘l”(dg),
Ri Ra Tyu(0” by, di) = a(lb)faV — Ly Ty (07, up, d2) = o) fal —
O'/N(d1), O'/“(dg),
R3 R4 Ty?”ub (0‘”, lb, dl) = U,/(lb)/aU — lb le7y3 (O‘”, Up, d2) = U//(“b)/aL — Up
0
J”/(d1), o‘l”(dg),
RQ RS Tly,y2 (Ul/7 Up, dl) = U//(ub)/aU — Up Tya,up (J//7 lb7 d2) = U//(lb)/aL - lb
ac”'(d1) + (1 — U U
afi +(1—a)By,
Oé)((T”:/(ng),d) {J = ///(d)
R Ra omax Ot QT o) fom gy — 1, 7o ')/l — Iy
) ’ Ty, up\O ,lb,d3 =0
- u (O’H up dz) _ ﬂg = Y1 b()
Ymax ,Up k] El Ull(ub)/o—”’(d2) —up
ao’ (d2) + (1 — L L
afr + (1 —a)By,
///(d) O()(O'",l,(;l:})c,l) lL =
lea 1), 7" Tl e b 2) = 7"
R R o' (up)/oU — bsYmin s YOy o' (1p) /g1t —1 ,
2 ‘ le7y2(al,ub,d1) =0 »/ Ub 0/’/ d b/ﬂg(d:ﬂ ’
Tymin -t (U » Ubs 3) o ‘7//<ub>/0/”(d3) — Up
ac”'(d1) + (1 — U U ac’(d3) + (1 — L L
1- , 1— ,
O()O'/N(dQ), 0561 + ({] 70()62 O[)O'lll(d4), aﬁl + (lL 7@)/32
1" _ = " _ =
Ri Ra Ty ymax (0’0 by, d1) = U”(lb)/a’”(dl) — Ip, Tl Ymin (Uo’lb’ ds) = U”(lb)/a”'(ds) — Iy,
, U _ , L_
Tymax,up (Oﬂvuln d2) = ’ fa = TYmin>Ub (UU, up, da) = p =

() /6! (dg) — Up

cr”(ub>/o'/”(d4) — ub

(@) lp € R1and up € R3

(b) Iy € Roand up € Ra

©)lp € Riand up € R4

Figure 8: Relaxing 0" (y) = —2tanh(y) (1 — tanh®(y)): examples of the linear relaxations of ¢’
for different sets of [;, and wuy,.

ifl, € R; and up, € R;yq fori € {1,2,3}, then we are also in the same situation as the adjacent
regions of different convexity from o’, so we use exactly the same relaxation.

We are left with three cases where [;, and u;, are in non-adjacent regions. For [, € R and up € Rs,
we are in the same scenario as in the bounding of ¢’, since R1 and R3 are convex regions separated
by a concave one. In that case we follow the bounding procedure outlined before for ¢’ - see Figure
for an example of it applied in this setting. For the case where [, € R2 and u;, € R4, we are in
an analogous case where R, and R4 are concave regions separated by a convex one. As such, we

28

1.0 1.0
— —sin(7x) ; :

—-1.0 —0.5 0.0 0.5 1.0 —-1.0 —0.5 0.0 0.5 1.0 —-1.0 —0.5 0.0 0.5 1.0
x x x

(@l <O0andup <0 ®) Iy >0and up >0 @l <O0andup >0
Figure 9: Relaxing — sin(wx): examples of the linear relaxations for different sets of [;, and wy.
% —— 2sech(z)

i
KV

o
'S
|
kS
|
)
o
'S
|
kS
|
)
%)
'S

—4 -2 0

@l <0andup <0 b)lp >0and up >0 ©)lp <Oandup >0

Figure 10: Relaxing 2sech(x): examples of the linear relaxations for different sets of I, and wy,.

consider the two valid lower bounds computed previously for [, € Rs and u, € R3, and [, € R3
and u; € R4. To obtain these bounds, we shift the upper bound in the first case to arg min o’ (y),
and the lower bound in the same case to the same value (see h” in Figure @). As our bounding
requires a single h”, we take a convex combination of the two bounds, 2%*®. For the upper bound,
we simply assume [, is in a concave region while wy, is in a convex region, and take the tangent at d
for arg max o’ (y) > d < 0 (see hY in Figure @). Finally, we are left with the case where I, € R
and up € R4. In that case, we take the upper bound lines from the case where I, € R; and u; € Rs3,
and the lower bound ones from where [, € R2 and u, € R4. As before, given the requirement
of one lower and upper bound functions, we take a convex combination of both in hL and U,
respectively. See Figure [8c|for a visual representation.

G LINEAR LOWER AND UPPER BOUNDING NONLINEAR FUNCTIONS

Throughout, we assume the function’s input (z) is lower bounded by /;, and upper bounded by u; (i.e.,
I, < z < up), and define the upper bound line as h¥ (z) = ¥ (z + 8Y), and the lower bound line
as h*(x) = o (z + BL). For the sake of brevity, we define for a function h : R — R, and points
p,d € R the function 7(h, p, d) = (h(P)=h(d)/(p—d) — h'(d). This is useful as for a given h and p, if
there exists a d € [d;, d,,], such that 74, 4, (h, p,d) = 0, then hA/(d) is the slope of a tangent line to h
that passes through p and d.

G.1 CASE STUDY: —SIN(7z) FOR z € [—1,1]

As in Appendix [F| we observe the convexity of the function —sin(wz) for z € [—1, 1], noticing
that the function is convex for z < 0 and concave for z > 0. For [, < up < 0 we let hV be the
line that connects I, and u;, and for an arbitrary d € [ly,, up] we let K™ be the tangent line at that
point. Similarly, for 0 <[, < u;, we let K™ be the line that connects I, and u, and for an arbitrary
d € [lp, up] we let hY be the tangent line at that point. For the last case where [, < 0 < uy, we let
hY be the tangent line at d; > 0 that passes through (15, o(I3)), and h” be the tangent line at dy < 0
that passes through (up, o(up)). Given the similarity of to the tanh bounds from Zhang et al.|(2018),
we omit a summary table, but present 3 examples of the possible cases in Figure [9]

29

G.2 CASE STUDY: 2SECH(x) FOR & € [—5, 5]

We start by observing that the function 2sech(x) is similar to the derivative of tanh, whose relaxation
we presented in Appendix [F| By inspecting it’s derivative, f'(z) = 2sech(z) tanh(z), we conclude
that there are two inflection points at z; = max f’(x) and £ = min f’(x), leading to three different
regions: = €] — 0o, z1] (R, the first convex region), x €]z, x| (R2, the concave region), and
x €]xa, +00[(R3, the second convex region). As a result, there are 6 combinations for the location of
Iy and up which must be resolved. This is exactly the same case as the first derivative of tanh, simply
with 1 and x» instead of y; and yo. Due to the similarities, we can use exactly the same relaxations
as presented in Table[5] We present visual examples of 3 cases of this relaxation in Figure [I0}

H FURTHER DETAILS ON GREEDY INPUT BRANCHING

In Section[5.3|we motivated and described at a high-level greedy input branching. In the following
we provide a step-by-step analysis of Algorithm

We start by initializing a lower and upper bound list of pairs B (line 3) as well as a list for storing the
maximum error between the empirical and certified bounds B (line 4). To initialize them (line 7 and
8), we first compute the empirical lower and upper bounds across the domain by sampling N, points
within the full domain C using SAMPLE(C, N) and evaluating the function h there (line 5) yielding

leb and ﬁub, as well as the first version of the certified lower and upper bounds using 9-CROWN on
h (line 6) yielding h;p, hyp- Next, we pop from B and Ba as C; the interval which has the maximum
error between the empirical and certified bounds (line 10), which we then proceed to split into Ny
parts following a policy defined by DOMAINSPLIT (line 11). Importantly, DOMAINSPLIT must
be complete, i.e., it must be that C; = U C’. For each of those split subdomains C’ we compute
new bounds using 9-CROWN (line 12) and add this subdomain along with its bounds and error to
the empirical estimates to 3 and B, respectively (line 13 and 14). This process is repeated using
the updated lists until the branching budget is spent, at which point the global lower bound is the
minimum of all of lower bounds in B (defined as the list B), and the global upper bound is the
maximum of all upper bounds in B (defined as the list B;). These are computed in line 17. This
algorithm is greedy as increasing the branching budget is expected to improve the bounds, since
0-CROWN’s bounds are guaranteed to monotonically decrease with smaller input domains.

30

	Introduction
	Related work
	Preliminaries
	Notation
	Physics-informed neural networks (PINNs)
	Bounding neural network outputs using CROWN (Zheng et al., 2018

	Correctness Conditions for PINNs
	∂-CROWN: PINN Correctness Certification Framework
	Bounding Partial Derivatives of u_θ
	Bounding f_θ
	Tighter Bounds via Greedy Input Branching

	Experiments
	Certifying with ∂-CROWN
	Empirical relation of |f_θ| and |u_θ - u|
	On the importance of greedy input branching

	Discussion
	Reducing empirical and certified errors through Physics-Informed Adversarial Training
	∂-CROWN vs. IBP (Gowal et al., 2018; Mirman et al., 2018)
	∂-CROWN for Failure Identification
	Ablation on N_b
	Proofs of partial derivative computations
	Proof of Lemma 1: computing ∂_{x_i} u_θ
	Proof of Lemma 2: computing ∂_{x2̂_i} u_θ
	Theorem 1: Formal Statement and Proof
	Theorem 2 Formal Statement and Proof
	Formulation and proof of closed-form global bounds on ∂_{x_i} u_θ

	Correctness Certification for PINNs with tanh activations
	Linear lower and upper bounding nonlinear functions
	Case study: -sin(pi x) for x in [-1, 1]
	Case study: 2 sech(x) for x in [-5, 5]

	Further details on Greedy Input Branching

