
Published in Transactions on Machine Learning Research (09/2025)

Appendix for Differentially Private Clustered Federated Learning

A Notations

Table 1 summarizes the notations used in the paper.

Table 1: Used notations.
n number of clients, which are indexed by i
xij , yij j-th data point of client i and its label
Di, Ni local train set of client i and its size
Di,aug augmented local train set of client i
Be,t

i the train data batch used by client i in round e and at the t-th gradient update
be

i batch size of client i in round e: |Be,t
i | = be

i

b1
i batch size of client i during the first round e = 1
b>1

i set of batch sizes of client i during the rounds e > 1
ϵ, δ desired DP privacy parameters
E total number of communication rounds in the DPFL system, indexed by e
θe

m model parameter for cluster m, at the beginning of global round e
K number of local train epochs performed by clients during each global round e
ηl the common learning rate used for DPSGD
h predictor function, e.g., CNN model, with parameter θ
ℓ cross entropy loss
s(i) the true cluster of client i
Re(i) the cluster assigned to client i in round e

θe,0
i the starting model parameter of client i at the beginning of round e

∆θ̃e
i (be

i) the noisy update of client i at round e, starting from θe,0
i , with batch size be

i

(σe
i (be

i))2 conditional variance of the update ∆θ̃e
i of client i: Var(∆θ̃e

i (be
i)|θe,0

i)
µ∗

m(b1) the center of the m-th cluster (when all use batch size b1 in the first round)
Σ∗

m(b1) the covariance matrix of the m-th cluster (when all use batch size b1 in the first round)
α∗

m the prior probability of the m-th cluster

B Background

B.1 Rényi differential privacy (RDP)

We have used a relaxation of Differential Privacy, named Rényi DP (RDP) for tight privacy accounting of
different algorithms (Mironov, 2017). It is defined as follows:
Definition B.1 (Rényi Differential Privacy (RDP) (Mironov, 2017)). A randomized mechanism M : A → R
with domain D and range R satisfies (α, ϵ)-RDP with order α if for any two adjacent inputs D, D′ ∈ A, which
differ only by a single record (by replacement),

Dα

(
M(D)||M(D′)

)
≤ ϵ,

where Dα(P ||Q) is the Rényi divergence between distributions P and Q:

Dα(P ||Q) := 1
α− 1 logEx∼p

[(
P (x)
Q(x)

)α−1]
. (6)

For α = 1, we have D1(P ||Q) := Ex∼p

[
log

(P (x)
Q(x)

)]
, which is the KL divergence between P and Q. RDP is

conveniently linearly composable, as explained in the following theorem.

18

Published in Transactions on Machine Learning Research (09/2025)

Theorem B.2 (Linear Composition of RDP (Mironov, 2017)). If mechanism Mi satisfies (α, ϵi)−RDP for
i = 1, . . . , k, then the composed mechanism M1 ◦ . . . ◦Mk satisfies (α,

∑k
i=1 ϵi)−RDP.

Therefore, if an algorithm has E steps (e.g., E batch gradient update steps) and each satisfies (α, ϵ)-RDP, the
algorithm will satisfy (α,Eϵ)-RDP. RDP can also be used for composition of heterogeneous private mechanisms,
e.g., for accounting privacy of R-DPCFL, which uses different batch sizes in the first and the subsequent rounds.
The following lemma is about conversion of (α, ϵ)-RDP to standard (ϵ, δ)-DP (Definition 3.1).
Lemma B.3 (Converting RDP (Bun & Steinke, 2016; Canonne et al., 2020)). If a mechanism M satisifes
(α, ϵ(α))-RDP, then for any δ > 0, it satisfies (ϵ(δ), δ)-DP, where

ϵ(δ) = inf
α>1

ϵ(α) + 1
α− 1 log

(1
αδ

)
+ log

(
1− 1

α

)
. (7)

The Gaussian mechanism satisfies (α, ϵ)-RDP, based on the following Proposition from (Mironov, 2017):
Proposition B.4. If f : A → R has sensitivity c, then its randomization with a Gaussian mechanism with
noise variance σ2

DP satisfies (α, αc2

2σ2
DP

)-RDP.

Some accounting routines have been implemented in open source libraries for accounting privacy of RDP
mechanisms. We use TensorFlow Privacy implementation (McMahan et al., 2019) in this work.

B.2 Zero concentrated differential privacy (z-CDP)

Another relaxed definition of differential privacy is zero concentrated differential privacy (z-CDP) (Bun &
Steinke, 2016). Being ρ z-CDP is equivalent to being (α, ρα)-RDP simultaneously for all α > 1. Therefore,
standard RDP accountants, e.g., the aforementioned TensorFlow Privacy RDP accountant (McMahan et al.,
2019), can be use for accounting mechanism satisfying z-CDP as well.

B.3 Exponential mechanism for private selection

Exponential Mechanism is a standard for private selection from a set of candidates. The selection is based
on a score, which is assigned to every candidate (Rogers & Steinke, 2021). Let us assume there is a private
dataset D and a score function s : D × [M]→ R, which evaluates a set of M candidates on the dataset D.
The goal is to select the candidate with the highest score, i.e., arg maxm∈[M] s(D,m). Exponential mechanism
performs this selection privately as follows. It sets the probability of choosing any candidate m ∈ [M] as:

Pr[m] =
exp(ϵselect

2∆ · s(D,m))∑
m′∈[M] exp(ϵselect

2∆ · s(D,m′)) , (8)

where ∆ is the sensitivity of the scoring function s to the replacement of a data sample in D. It can be
shown that the private selection performed by exponential mechanism satisfies 1

8ϵ
2
select z-CDP with respect to

D (Bun & Steinke, 2016), which from the last paragraph, we know satisfies (α, α
8 ϵ

2
select)-RDP for α > 1. We

implement exponential mechanism by noisy selection with Gumbel noise: we add independent noises from
Gumbel distribution with scale 2∆

ϵselect
to candidate scores s(D,m), for m ∈ [M], and select the candiate with

the maximum noisy score. The larger the sensitivity ∆ of score s to replacement of a single sample in D, the
required larger noise scale. For further details about how we implement exponential mechanism for IFCA and
R-DPCFL, see Appendix C.6.

B.4 Privacy budgeting

In order to have a fair comparison between our algorithm and the baselines, we align them all to have the same
“total” privacy budget ϵ and satisfy (ϵ, δ)-DP for a fixed δ. In order to account the privacy of an algorithm, we
compose the RDP guarantees of all private operations in the algorithm and then convert the resulting RDP

19

Published in Transactions on Machine Learning Research (09/2025)

guarantee to approximate (ϵ, δ)-DP using Lemma B.3. The DPSGD performed by different algorithms for local
training benefits from privacy amplification by subsampling (Mironov et al., 2019). Algorithms that have
privacy overheads, e.g., IFCA and R-DPCFL which need to privatize their local clustering as well, will have less
privacy budget left for training. In other words, for the same total privacy budget ϵ, IFCA and R-DPCFL will
use a larger amount of noise when running DPSGD, compared to MR-MTL that has zero privacy overhead.

C Experimental setup

C.1 Datasets

Data split: We use three datasets MNIST, FMNIST and CIFAR10, and consider a distributed setting with
21 clients. In order to create majority and minority clusters, we consider 4 clusters with different number of
clients {3, 6, 6, 6} (21 clients in total). The first cluster with the minimum number of clients is the “minority”
cluster, and the last three are the “majority” ones. The data distribution P (x, y) varies across clusters. We
use two methods for making such data heterogeneity: 1. covariate shift 2. concept shift. In covariate
shift, we assume that features marginal distribution P (x) differs from one cluster to another cluster. In order
to create this variation, we first allocate samples to all clients in an uniform way. Then we rotate the data
points (images) belonging to the clients in cluster k by k ∗ 90 degrees. For concept shift, we assume that
conditional distribution P (y|x) differs from one cluster to another cluster, and we first allocate data samples
to clients in a uniform way, and flip the labels of the points allocated to clients: we flip yij (label of the j-th
data point of client i, which belongs to cluster k) to (yij + k) mod 10, The local datasets are balanced–all
users have the same amount of training samples. The local data is split into train and test sets with ratios
80%, and 20%, respectively. In the reported experimental results, all users participate in each communication
round.

Table 2: CNN model for classification on MNIST/FMNIST datasets
Layer Output Shape # of Trainable Parameters Activation Hyper-parameters

Input (1, 28, 28) 0
Conv2d (16, 28, 28) 416 ReLU kernel size =5; strides=(1, 1)
MaxPool2d (16, 14, 14) 0 pool size=(2, 2)
Conv2d (32, 14, 14) 12,832 ReLU kernel size =5; strides=(1, 1)
MaxPool2d (32, 7, 7) 0 pool size=(2, 2)
Flatten 1568 0
Dense 10 15,690 ReLU

Total 28,938

C.2 Models and optimization

We use a simple 2-layer CNN model with ReLU activation, the detail of which can be found in Table 2 for
MNIST and FMNIST. Also, we use the residual neural network (ResNet-18) defined in (He et al., 2015),
which is a large model. To update the local models allocated to each client during each round, we apply
DPSGD (Abadi et al., 2016) with a noise scale z which depends on some parameters, as in Lemma 4.1.

Table 3: Details of the used datasets in the main body of the paper. ResNet-18 is the residual neural networks
defined in He et al. (2015). CNN: Convolutional Neural Network defined in Table 2.
Datasets Train set size Test set size Data Partition method # of clients Model # of parameters

MNIST 48000 12000 covariate shift {3, 6, 6, 6} CNN 28,938
FMNIST 48000 12000 covariate shift {3, 6, 6, 6} CNN 28,938
CIFAR10 40000 10000 covariate and concept shift {3, 6, 6, 6} ResNet-18 11,181,642

In order to simulate a FL setting, where clients (silos) have large local datasets and there is a structured data
heterogeneity across clusters, we split the full dataset between the clients belonging to each cluster. This way,

20

Published in Transactions on Machine Learning Research (09/2025)

each client gets 8, 000 train and 1, 666 test samples for MNIST and FMNIST. Also, each client gets 10, 000
and 1, 666 train and test samples for CIFAR10 dataset (both covariate shift and concept shift).

C.3 Baseline selection

When extending existing model personalization and clustered FL algorithms to DPFL settings, we are mostly
interested in those with little to no additional local dataset queries to prevent extra noise for DPSGD under
a fixed total privacy budget ϵ. For instance, the family of mean-regularized multi-task learning methods
(MR-MTL) (Evgeniou & Pontil, 2004; Hanzely et al., 2020; Hanzely & Richtárik, 2021; Dinh et al., 2022)
provide model personalization without an additional privacy overhead. Despite this, it is noteworthy that
MR-MTL relies on optimal hyperparameter tuning which leads to a potential privacy overhead (Liu et al.,
2022a; Liu & Talwar, 2018; Papernot & Steinke, 2022). While resembling MR-MTL, Ditto (Li et al., 2021)
has extra local computations, which makes it a less attractive personalization algorithm. Hence, we adopt
MR-MTL (Liu et al., 2022a) as a baseline personalization algorithm. Similarly, multi-task learning algorithms
of Smith et al. (2017) and Marfoq et al. (2021) as well as gradient-based clustered FL algorithm of Sattler
et al. (2019) benefit from additional training and training restarts, which lead to high privacy overhead
for them, making them less attractive. In contrast, the aforementioned loss-based clustered FL algorithms
(Mansour et al., 2020; Ghosh et al., 2020; Ruan & Joe-Wong, 2021) can be managed to have a low privacy
overhead (see Appendix C.6), and we use it as a clustered DPFL baseline.

C.4 MR-MTL formulation

The objective function of Mean-Regularzied Multi-Task Learning (MR-MTL) can be expressed as:

min
θi,i∈{1,··· ,n}

n∑
i=1

gi(θi) with gi(θi) = fi(θi) + λ

2 ∥θi − θ̄∥2
2, (9)

where θ̄ = 1
n

∑n
i=1 θi is the average model parameter across clients and fi(θi) is the loss function of

personalized model parameter θi of client i on its local dataset Di. With λ = 0, MR-MTL reduces to local
training. A larger regularization term λ encourages local models to be closer to each other. However, MR-MTL
may not recover FedAvg (McMahan et al., 2017) as λ→∞. See algorithm A1 in (Liu et al., 2022a) for more
details about MR-MTL.

C.5 Tuning hyperparameters of baseline algorithms

Appendix C.3 explains our criteria for baseline selection. We compare our R-DPCFL algorithm, which benefits
from robust clustering, with four baseline algorithms, including: 1) DPFedAvg (Noble et al., 2021), which
learns one global model for all clients, and is called Global in the paper 2) Local, in which clients do not
participate FL and run DPSGD locally to train a model solely on their local dataset 3) MR-MTL personalized
FL algorithm (Liu et al., 2022a), which learns a global model and one personalized model for each client
4) A DP extension of the clustered FL algorithm IFCA (Ghosh et al., 2020) to DPFL systems enhanced with
exponential mechanism (see Appendix C.6) 5) An oracle algorithm, which has the knowledge of the true
underlying clients’ clusters, which we call O-DPCFL.

For all algorithms and all datasets, we set total number of rounds E to 200 and per-round number of local
epochs K to 1. Following (Abadi et al., 2016), we set the batch size of each client such that the number of
batches per epoch is in the same order as the total number of epochs: Ni/b

e
i = E ·K = 200. For MNIST and

FMNIST, this leads to batch sizes be
i = 32 for all clients i and every round e for the baseline algorithms. For

CIFAR10 (covariate shift and concept shift), this leads to batch size be
i = 64 for all clients i and every round

e for the baseline algorithms. As explained in Section 4.2.1, While R-DPCFL uses full batch sizes in the first
round (i.e., b1

i = Ni for all i), it needs to use small batch sizes in the next rounds (small b>1
i).

Having determined the batch size for all algorithms, clipping threshold c and learning rate ηl are determined
via a grid search on clients’ validation sets. For each algorithm and each dataset, we find the best learning rate

21

Published in Transactions on Machine Learning Research (09/2025)

from a grid: the one which results in the highest average accuracy at the end of FL training on a validation
set with size 1666 samples for each client. We use the grid ηl ∈{5e-4, 1e-3, 2e-3, 5e-3, 1e-2, 2e-2,
5e-2, 1e-1} for all datasets and all algorithms. Similarly, we use the grid c ∈ {1, 2, 3, 4, 5} for setting
the clipping threshold for all datasets and all algorithms based on the clients’ validation sets.

C.6 Implementation of private local clustering for IFCA and R-DPCFL

In every round of IFCA and during the rounds e > Ec of R-DPCFL, the server sends M cluster models to all
clients, and they evaluate them on their local datasets. Then, each client i selects the model with the lowest
loss on its local dataset Di, trains it for K local epochs and sends the result back to the server. This model
selection performed by each client can lead to privacy leakage w.r.t its local dataset, if it is not privatized.
In order to protect data privacy, clients need to privatize their local cluster selection by using exponential
mechanism and accounting its privacy using z-CDP, explained in Appendix B.3. Assuming a total privacy
budget ϵ for a client i, it has to split the budget between private clustering and DPSGD. Naive split of privacy
budget can lead to very noisy DPSGD steps or very noisy local cluster selection by clients. Following Liu et al.
(2022a), we use two strategies to mitigate the privacy overhead of local clustering performed by IFCA and
R-DPCFL:

• Clients use models’ train accuracy, instead of loss, as the score function for model
selection: clients use train accuracy as score function s(Di,m) evaluating cluster model m on client
i’s dataset. The reason is that while, loss function has practically an unbounded sensitivity to
individual samples in the clients’ datasets, model accuracy is a low-sensitivity function, espcially in
cross-silo FL settings with large local datasets. More specifically, let us assume client i with local
dataset Di (which has size Ni) uses models’ accuracy on Di for model selection. It can be shown
that under all add/remove/replace notions of dataset neighborhood, sensitivity of model accuracy
(as score function) is bounded as follows (Liu et al., 2022a):

∆acc = max
m∈[M]

max
Di,D′

i

|s(Di,m)− s(Di,m)| ≤ 1
Ni − 1 · (10)

Since local dataset sizes are usually large, especially in cross-silo FL, the sensitivity of model accuracy
is much smaller than that of model loss. Therefore, following Liu et al. (2022a), we set the per-round
privacy budget of private model selection to a very smalle value ϵselect = 0.03 · ϵ (3% of the total
privacy budget). Yet, the cost of private selection by clients can grow quickly if clients naively run
local clustering for “many” rounds. Therefore, we use the following strategy as well. It is noteworthy
that in our experiments, we observed that IFCA baseline algorithm performs better when clients use
model train accuracy (instead of train loss) for cluster selection.

• Reduce the number of rounds with local clustering on clients’ side: Clients run local
clustering for less rounds. Following Liu et al. (2022a), we let clients run local clustering for the
10% of the total number of rounds E. For example, IFCA runs local clustering during the first ⌊ E

10⌋
rounds, and fixes clients’ cluster assignments afterwards. Similarly, R-DPCFL lets clients run local
clustering during rounds Ec ≤ e ≤ Ec + ⌊ E

10⌋, and fixes clients’ cluster assignments afterwards.

The privacy overhead of private model selection can still grow and leave a low privacy budget for training
with DPSGD. Choosing a small selection budget ϵselect leaves most of the total privacy budget ϵ for training
with DPSGD, but leads to noisy and inaccurate cluster selection by clients. Similarly, a large ϵselect leads to
more noisy gradient steps by DPSGD.

C.7 DP privacy parameters

For each dataset, 5 different values of ϵ (the total privacy budget) from set {3, 4, 5, 10, 15} are used. We fix δ
for all experiments to 10−4, which satisfies δ < N−1

i for every client i. We use the Rényi DP (RDP) privacy
accountant (TensorFlow privacy implementation (McMahan et al., 2019)) during the training time. This

22

Published in Transactions on Machine Learning Research (09/2025)

accountant is able to handle the difference in the batch size of R-DPCFL between the first round e = 1 and the
next rounds e > 1 by accounting the composition of the corresponding heterogeneous private mechanisms.

C.8 Gaussian mixture model

We use the Gaussian mixture model of Scikitlearn, which can be found here: https://scikit-learn.
org/dev/modules/generated/sklearn.mixture.GaussianMixture.html. The GMM model has three hyper-
parameters:

1) parameter initialization, which we set to “k-means++”. This is because this type of initialization leads to
both low time to initialize and low number of EM iterations for the GMM to converge (Arthur & Vassilvitskii,
2007; Biernacki et al., 2003).

2) Type of the covariance matrix, which we set to “spherical”, i.e., each component has a diagonal covariance
matrix with a single value as its diagonal elements. This is in accordance with Equation (24) and that we
know the covariance matrices should be diagonal.

3) Finally, the number of components (clusters) is either known or it is unknown. In the latter case, we have
explained in Appendix C.9 how we can find the true number of clusters by using the confidence level (MSS) of
the GMM model learned at the end of the first round.

C.9 Finding the number of clusters M when it is unknown

Knowing the number of clusters is broadly accepted and applied in the clustered FL literature (Ghosh et al.,
2020; Ruan & Joe-Wong, 2021; Briggs et al., 2020). The used baseline algorithms have also made this
assumption. Yet, techniques to determine the number of clusters can enable our approach to be more widely
adopted. In this section, we show that how we can find the true number of clusters (M) when it is not given.
Our method relies on the MSS score (confidence level): MSS = minm,m′ ŜS(m,m′) ∈ [0,+∞). Consider the
Figure 5 right as an example. There is a good separation between the M = 4 existing clusters, thanks to
clients using full batch sizes in the first round. Fitting a GMM with 4 components to the model updates results
in the highest MSS for the learned GMM model: remember that MSS was the maximum pairwise separation
score between the different components of the learned GMM. In contrast, if we fit a GMM with 3 components
(less than the true number of components) to the same model updates in the figure, then two clusters will
be merged into one component (for examples clusters 0 and 1) leading to a high radius for one of the three
components of the resulting GMM. This leads to a low MSS (confidence level) for the resulting GMM. Similarly, if
we fit a GMM with 5 components, one of the four clusters (for example cluster 1) will be split between two
of the 5 components (call them m and m′), which leads to a low inter-component distance (∆m,m′) for the
pair of components. This also leads to a low MSS for the resulting GMM. However, fitting a GMM with M = 4
components leads to a well separation between all the true components and maximizes the
resulting MSS. Based on this very intuitive observation, we propose the following method for setting m at
the end of the first round: We select the number of clusters/components, which leads to the maximum MSS
for the resulting GMM. More specifically:

M = arg max
m∈S

MSS
(

GMM(∆θ̃1
1, . . . ,∆θ̃1

n;m)
)
, (line 10 of Algorithm 1) (11)

where S is a set of candidate values for M : at the end of the first round and on the server, we learn one
GMM for each candidate value in S on the same received model updates {∆θ̃1

i }n
i=1. Finally, we choose the

value resulting in the GMM with the highest MSS (confidence). Therefore, this method is run on the server and
does not incur any additional privacy overheads. It is also noteworthy that we know from Lemma 4.2 that
learning the GMM does not incur much computational cost when large enough (and small enough) batch sizes
are used in the first round (subsequent rounds).

We have evaluated this method on multiple data splits and different privacy budgets (ϵ) on CIFAR10, MNIST
and FMNIST. The method could predict the number of underlying clusters with 100% accuracy for the
MNIST and FMNIST datasets for all values of ϵ. Results for CIFAR10 are shown in Figure 10. As can be

23

https://scikit-learn.org/dev/modules/generated/sklearn.mixture.GaussianMixture.html
https://scikit-learn.org/dev/modules/generated/sklearn.mixture.GaussianMixture.html

Published in Transactions on Machine Learning Research (09/2025)

Figure 10: The minimum pairwise separation score (MSS) or confidence of the GMM learned on {∆θ̃1
i }n

i=1 peaks
at the true cluster number, which is equal to 4 in all the plots above. Each figure is for a different value
of ϵ (mentioned on top of each figure), and are obtained on CIFAR10 with covariate shift (rotation) across
clusters, and 5 different random data splits (5 seeds). All the results are obtained with full batch sizes in
the first round and b>1

i = 32 for all i. We can use this observation as a method to find the true number of
clusters (M) when it is not given. For larger ϵ, this method work perfectly and even when ϵ is too small, e.g.,
ϵ = 3, this method works well and predicts the true number of clusters correctly most of the times: 3 out
of the 5 curves in the bottom right plot have a peak at M = 4 (the true cluster number). and the other 2
curves predict 5 as the true number, which is the closest and the best alternative for the true value M = 4.

observed, the method has made only one mistake for ϵ = 4 (seed 1) and two mistakes for ϵ = 3 (seeds 0 and
1), out of 20 total experiments. Even in those three cases, it has predicted M as 5, which is closest to the true
value (M = 4) and does not lead to much performance drop (because having M = 5 splits an existing cluster
into two and it is better than predicting for example M = 3, which results in “mixing” two clusters with
heterogeneous data). Even in this cases, we can improve the prediction accuracy further by using smaller
values of b>1

i (simultaneously with full batch sizes b1
i = Ni), e.g., b>1

i = 16 or b>1
i = 8, instead of b>1

i = 32 in
the figure above. This improvement happens as reducing b>1

i constantly enhances the separation between the
underlying components (See Figure 8), which leads to higher accuracy in prediction of the true M .

Finally, note that none of the existing baseline algorithms has such an easy and applicable strategy for
finding M . This shows another useful feature of the proposed R-DPCFL, which makes it more applicable to DP
clustered FL settings.

D More experimental results

The results shown in Figure 11 and Figure 12 include the results for the Global baseline and are the more
complete versions of the figures in the paper (Figure 6 and Figure 7).

24

Published in Transactions on Machine Learning Research (09/2025)

Figure 11: Average test accuracy across clients for different total privacy budgets ϵ (results are obtained from
4 different random seeds). 10% means performing loss-based clustering by clients only in 10% of the total
rounds (E).

Figure 12: Average test accuracy across clients belonging to the minority cluster for different total privacy
budgets ϵ (results are obtained from 4 different random seeds). 10% means performing loss-based clustering
by clients only in 10% of the total rounds (E).

Figure 13 shows how the MSS score of the learned GMM at the first round can be indicative of whether the
true clients’ clusters will be detected correctly or not. An MSS score above 2 almost always yields to correct
detection of all clusters.

Figure 13: The MSS score of the learned GMM is indicative of whether the true underlying clusters will be
detected or not: an MSS score above 2 always leads to correct detection of clusters. Each point is the result of
one independent experiment.

25

Published in Transactions on Machine Learning Research (09/2025)

E Proofs

E.1 Proof of Lemma 4.1

Lemma 4.1. Let us assume θe,0
i is the starting model parameter for client i at the beginning of round e.

After K local epochs with step size ηl, the client generates the noisy DP model update ∆θ̃e
i (be

i) at the end of
the round. The amount of noise in the resulting model update can be quantified as:

(σe
i (be

i))2 := Var(∆θ̃e
i (be

i)|θe,0
i) ≈ K ·Ni · η2

l ·
pc2z2

i (ϵ, δ, b1
i , b

>1
i , Ni,K,E)

(be
i)3 . (2)

Proof. The following proof has some common parts with similar results in (Malekmohammadi et al., 2024).
We consider two illustrative scenarios:

Scenario 1: the clipping threshold c is effective for all samples in a batch: in this case we have:
∀j ∈ Be,t

i : c < ∥gij(θ)∥. Also, we know that the two sources of randomness (i.e., stochastic and Gaussian
noise) are independent, thus their variances can be summed up. Let us assume that E[ḡij(θ)] = Gi(θ) for all
samples j. From Equation (1), we can find the mean of each batch gradient g̃e,t

i (θ) (of client i in round e and
gradient step t) as follows:

E[g̃e,t
i (θ)] = 1

be
i

∑
j∈Be,t

i

E[ḡij(θ)] = 1
be

i

∑
j∈Be,t

i

Gi(θ) = Gi(θ). (12)

Also, from Equation (1), we can find the variance of each batch gradient g̃e,t
i (θ) (of client i in round e and

gradient step t) as follows:

σ2
i,g̃(be

i) := Var[g̃e,t
i (θ)] = Var

[
1
be

i

∑
j∈Be,t

i

ḡij(θ)
]

+
pσ2

i,DP

(be
i)2

= 1
(be

i)2

(
E

[∥∥∥∥ ∑
j∈Be,t

i

ḡij(θ)
∥∥∥∥2]
−

∥∥∥∥E[∑
j∈Be,t

i

ḡij(θ)
]∥∥∥∥2)

+ pc2z2
i (ϵi, δi, b

1
i , b

>1
i , Ni,K,E)

(be
i)2

= 1
(be

i)2

(
E

[∥∥∥∥ ∑
j∈Be,t

i

ḡij(θ)
∥∥∥∥2]
−

∥∥∥∥ ∑
j∈Be,t

i

Gi(θ)
∥∥∥∥2)

+ pc2z2
i (ϵi, δi, b

1
i , b

>1
i , Ni,K,E)

(be
i)2

= 1
(be

i)2

(
E

[∥∥∥∥ ∑
j∈Be,t

i

ḡij(θ)
∥∥∥∥2]

︸ ︷︷ ︸
A

−(be
i)2∥∥Gi(θ)

∥∥2
)

+ pc2z2
i (ϵi, δi, b

1
i , b

>1
i , Ni,K,E)

(be
i)2 , (13)

where:

A = E
[∥∥∥∥ ∑

j∈Be,t
i

ḡij(θ)
∥∥∥∥2]

=
∑

j∈Be,t
i

E
[∥∥ḡij(θ)

∥∥2
]

+
∑

m ̸=n∈Be,t
i

2E
[
[ḡim(θ)]⊤[ḡin(θ)]

]

=
∑

j∈Be,t
i

E
[∥∥ḡij(θ)

∥∥2
]

+
∑

m ̸=n∈Be,t
i

2E
[
ḡim(θ)

]⊤

E
[
ḡin(θ)

]

= be
i c

2 + 2
(
be

i

2

)∥∥Gi(θ)
∥∥2
. (14)

26

Published in Transactions on Machine Learning Research (09/2025)

The last equation has used Equation (12) and that we clip the norm of sample gradients ḡij(θ) with an
“effective” clipping threshold c. By replacing A into eq. 13, we can rewrite it as:

σ2
i,g̃(be

i) := Var[g̃e,t
i (θ)] = 1

(be
i)2

(
E

[∥∥∥∥ ∑
j∈Be,t

i

ḡij(θ)
∥∥∥∥2]
− (be

i)2∥∥Gi(θ)
∥∥2

)
+ pc2z2

i (ϵi, δi, b
1
i , b

>1
i , Ni,K,E)

(be
i)2

= 1
(be

i)2

(
be

i c
2 +

(
2
(
be

i

2

)
− (be

i)2
)∥∥Gi(θ)

∥∥2
)

+ pc2z2
i (ϵi, δi, b

1
i , b

>1
i , Ni,K,E)

(be
i)2

=
c2 −

∥∥Gi(θ)
∥∥2

be
i

+ pc2z2
i (ϵi, δi, b

1
i , b

>1
i , Ni,K,E)

(be
i)2 ≈ pc2z2

i (ϵi, δi, b
1
i , b

>1
i , Ni,K,E)

(be
i)2 (15)

The last approximation is valid because p≫ 1 (p is the number of model parameters). For instance, p ≈ 2×107

for ResNet-34 for CIFAR100, and c = 3, which results in pz2(ϵi, δi, qi,Ki, E)/bi ≫ 1.

Scenario 2: the clipping threshold c is ineffective for all samples in a batch: when the clipping
is ineffective for all samples, i.e., ∀j ∈ Be,t

i : c > ∥gij(θ)∥, we have a noisy version of the batch gradient
ge,t

i (θ) = 1
be

i

∑
j∈Be,t

i
gij(θ), which is unbiased with variance bounded by σ2

i,g(be
i) (see Assumption 3.2). We

note that σ2
i,g(be

i) is a constant that depends on the used batch size be
i . The larger the batch size be

i used
during round e, the smaller the constant. Hence, in this case:

E[g̃e,t
i (θ)] = E[ge,t

i (θ)] = ∇fi(θ), (16)

and

σ2
i,g̃(be

i) = Var[g̃e,t
i (θ)] = Var[ge,t

i (θ)] +
pσ2

i,DP

(be
i)2 ≤ σ

2
i,g(be

i) +
pσ2

i,DP

(be
i)2

= σ2
i,g(be

i) + pc2z2
i (ϵ, δ, b1

i , b
>1
i , Ni,K,E)

(be
i)2

≈ pc2z2
i (ϵ, δ, b1

i , b
>1
i , Ni,K,E)

(be
i)2 . (17)

The approximation is again valid because p ≫ 1 (number of model parameters). Also, note that σ2
i,g(be

i)
decreases with be

i . Therefore, we got to the same result as in Equation (15).

As observed in Figure 4, zi grows with b1
i and b>1

i sub-linearly (especially with b1
i). Therefore, the variance of

the client i’s DP batch gradients g̃e,t
i (θ) during communication round e, decreases with be

i fast. The larger the
batch size be

i , the less the noise existing in its batch gradients during the same round.

With the findings above, we now investigate the effect of batch size be
i on the noise level in clients’ model

updates at the end of round e. During the global communication round e, a participating client i performs
Ee

i = K · ⌈Ni

be
i
⌉ batch gradient updates locally with step size ηl:

θe,k
i = θe,k−1

i − ηlg̃i(θe,k−1
i), k = 1, . . . , Ee

i . (18)

Hence,

∆θ̃e
i = θ

e,Ee
i

i − θe,0
i (19)

In each update, it adds a Gaussian noise fromN (0, c2z2
i (ϵ,δ,b1,b>1,Ni,K,E)

(be)2 Ip) to its batch gradients independently
(see Equation (1)). Hence:

Var[∆θ̃e
i |θ

e,0
i] = Ee

i · η2
l · σ2

i,g̃(be
i), (20)

27

Published in Transactions on Machine Learning Research (09/2025)

where σ2
i,g̃(be

i) was computed in Equation (15) and Equation (17), and was a decreasing function of be
i .

Therefore:

Var[∆θ̃e
i |θ

e,0
i] ≈ K ·Ni · η2

l ·
pc2z2

i (ϵ, δ, b1
i , b

>1
i , Ni,K,E)

(be
i)3 . (21)

E.2 Proof of Lemma 4.2

Lemma 4.2. Let ∆m,m′(b1) := ∥µ∗
m(b1) − µ∗

m′(b1)∥ when ∀i : b1
i = b1. The overlap between com-

ponents N
(
µ∗

m(b1),Σ∗
m(b1)

)
and N

(
µ∗

m′(b1),Σ∗
m′(b1)

)
is Om,m′ = 2Q(

√
p∆m,m′ (b1)

2σ1(b1)), where (σ1(b1))2 :=
Var[∆θ̃1

i |θinit, b1
i = b1] and Q(·) is the Q function. Furthermore, if we increase b1

i = b1 to b1
i = kb1 ≤ N (for

all i), we have Om,m′ ≤ 2Q(
√

kp∆m,m′ (b1)
2ρσ1(b1)), where 1 ≤ ρ ∈ O(1) is a small constant.

Proof. We first find the overlap between two arbitrary Gaussian distributions. Without loss of generality, lets
assume we are in 1-dimensional space and that we have two Gaussian distributions both with variance σ2

and with means µ1 = 0 and µ2 = µ (∥µ1 − µ2∥ = µ), respectively. Based on symmetry of the distributions,
the two components start to overlap at x = µ

2 . Hence, we can find the overlap between the two gaussians as
follows:

O := 2
∫ ∞

µ
2

1√
2πσ

e− x2
2σ2 dx = 2

∫ ∞

µ
2σ

1√
2π
e− x2

2 dx = 2Q(µ2σ), (22)

where Q(·) is the tail distribution function of the standard normal distribution. Now, lets consider the
2-dimensional space, and consider two similar symmetric distributions centered at µ1 = (0, 0) and µ2 = (µ, 0)

(∥µ1 − µ2∥ = µ) and with Σ1 = Σ2 =
[
σ2 0
0 σ2

]
. The overlap between the two gaussians can be found as:

O = 2
∫ ∞

−∞

∫ ∞

µ
2

1
2πσ2 e

− x2+y2

2σ2 dxdy = 2
∫ ∞

µ
2

1√
2πσ

e− x2
2σ2 dx ·

∫ ∞

−∞

1√
2πσ

e− y2

2σ2 dy = 2Q(µ2σ). (23)

If we compute the overlap for two similar symmetric p-dimensional distributions with ∥µ1 − µ2∥ = µ and
variance σ2 in every direction, we will get to the same result 2Q(µ

2σ).

In the lemma, when using batch size b1, we have two Gaussian distributions N
(
µ∗

m(b1),Σ∗
m(b1)

)
and

N
(
µ∗

m′(b1),Σ∗
m′(b1)

)
, where

Σ∗
m(b1) = Σ∗

m′(b1) =


(σ1(b1))2

p 0
. . .

0 (σ1(b1))2

p

 . (24)

Therefore, from Equation (23), we can immediately conclude that the overlap between the two Gaussians,
which we denote with Om,m′(b1), is:

Om,m′(b1) = 2Q(
√
p∆m,m′(b1)
2σ1(b1)), (25)

28

Published in Transactions on Machine Learning Research (09/2025)

which proves the first part of the lemma.

Now, lets see the effect of increasing batch size. First, note that we had:

∆θ̃1
i = θ

1,E1
i

i − θ1,0
i ,

θ1,k
i = θ1,k−1

i − ηlg̃i(θ1,k−1
i), k = 1, . . . , E1

i , (26)

where E1
i = K · ⌈N

b1 ⌉ is the total number of gradients steps taken by client i during communication round
e = 1. Therefore, considering that DP batch gradients are clipped with a bound c, we have:

∥E[∆θ̃1
i (b1)]∥ ≤ E1

i · ηl · c. (27)

When we increase batch size b1
i for all clients from b1 to kb1, the upperbound in Equation (27) gets k times

smaller. In fact by doing so, the number of local gradient updates that client i performs during round e = 1,
which is equal to E1

i , decreases k times. As such, we can write:

∆θ̃1
i (b1) = k ·∆θ̃1

i (kb1) + υi, (28)

where υi ∈ Rp is a vector capturing the discrepancies between ∆θ̃1
i (b1) and k ·∆θ̃1

i (kb1). Therefore, we have:

µ∗
m(b1) = E[∆θ̃1

i (b1)|s(i) = m] = E[k ·∆θ̃1
i (kb1) + υi|s(i) = m]

= k · E[∆θ̃1
i (kb1)] + E[υi|s(i) = m] = k · µ∗

m(kb1) + E[υi|s(i) = m]. (29)

Therefore, we have:

∥µ∗
m(b1)− µ∗

m′(b1)∥ =
∥∥∥∥kµ∗

m(kb1)− kµ∗
m′(kb1) +

(
E[υi|s(i) = m]− E[υi|s(i) = m′]

)∥∥∥∥. (30)

Based on our experiments, the last term above, in parenthesis, is small and we can have the following
approximation for the equation above:

∥µ∗
m(b1)− µ∗

m′(b1)∥ ≈ ∥kµ∗
m(kb1)− kµ∗

m′(kb1)∥, (31)

or equivalently:

∥µ∗
m(kb1)− µ∗

m′(kb1)∥ ≈ ∥µ
∗
m(b1)− µ∗

m′(b1)∥
k

. (32)

Figure 14 (left) shows the validity of the approximation above with some experimental results. On the other
hand, from Equation (2) and also noting that a client, with dataset size N and batch size b1, takes N

b1 gradient
steps during each epoch of the first round, we have:

∀m ∈ [M] : (σ1
m(b1))2 = (σ1(b1))2 ≈ K ·N · η2

l ·
pc2z2(ϵ, δ, b1, b>1, N,K,E)

(b1)3 . (33)

29

Published in Transactions on Machine Learning Research (09/2025)

Figure 14: Left: Distance between the centers of different clusters, i.e., the distance between µ∗
m(b1) and

µ∗
m′(b1), decreases k times as b1 increases k times. The three curves in the plot are obtained on CIFAR10

with 4 clusters m ∈ {0, 1, 2, 3} obtained from covariate shift (rotation). The curves are overlapping all with
slope 0.95, which is very close to 1. This shows the validity of the approximation in Equation (32). Right:
Effect of changing batch size b1 to full batch size in the first round on the noise scale z. In the denominator,
b1 is equal to b>1. Results are obtained from Rényi-DP accountant (Mironov et al., 2019) with N = 50000,
K = 1 and E = 200. For each value of ϵ, we have shown the results for seven values of b>1.

When we change the batch size used during the first communication round e = 1 from b1 to kb1 and
we fix the batch size of rounds e > 1, then the noise scale z changes from z(ϵ, δ, b1, b>1, Ni,K,E) to
z(ϵ, δ, kb1, b>1, Ni,K,E). Confirmed by our experimental analysis (see Figure 14, right), the amount of
change in z due to this is small, as we have changed the batch size only in the first round e = 1 from b1 to
kb1, while the batch sizes in the other E − 1 rounds are unchanged and E ≫ 1. Therefore, supported by the
results in Figure 14, we can always establish an upper bound on the amount of change in z as b1 increases:
z(ϵ, δ, kb1, b>1, N,K,E) ≤ ρz(ϵ, δ, b1, b>1, N,K,E), where ρ is a small constant (e.g., ρ = 2.5 in Figure 14).
So we have:

∀m ∈ [M] : (σ1
m(kb1))2 = (σ1(kb1))2 ≈ K ·N · η2

l ·
pc2z2(ϵ, δ, kb1, b>1, N,K,E)

(kb1)3

≤ K ·N · η2
l ·

pc2ρ2z2(ϵ, δ, b1, b>1, N,K,E)
(kb1)3

= ρ2(σ1(b1))2

k3 . (34)

From Equation (32) and Equation (34), we have:

Om,m′(kb1) = 2Q
(√

p∆m,m′(kb1)
2σ(kb1)

)
≤ 2Q

(√
p

∆m,m′ (b1)
k

2 ρσ(b1)
k

3
2

)
= 2Q(

√
kp∆m,m′(b1)

2ρσ(b1)), (35)

which completes the proof.

E.3 Proof of Theorem 4.3

Theorem 4.3. (Ma et al., 2000) Given model updates {∆θ̃1
i (b1)}n

i=1, as samples from a true mixture of
Gaussians ψ∗(b1) = {N

(
µ∗

m(b1),Σ∗
m(b1)

)
, α∗

m}M
m=1, if Omax(ψ∗(b1)) is small enough, then:

30

Published in Transactions on Machine Learning Research (09/2025)

lim
r→∞

∥ψr+1 − ψ∗(b1)∥
∥ψr − ψ∗(b1)∥ = o

([
Omax(ψ∗(b1))

]0.5−γ
)
, (5)

as n increases. ψr is the GMM parameters returned by EM after r iterations. γ is an arbitrary small positive
number, and o(x) means it is a higher order infinitesimal as x→ 0 : limx→0

o(x)
x = 0.

Proof. The proof directly follows from the proof of Theorem 1 in Ma et al. (2000) by considering {∆θ̃1
i (b1)}n

i=1
as the samples of Gaussian mixture {N

(
µ∗

m(b1),Σ∗
m(b1)

)
, α∗

m}M
m=1.

E.4 Proof of Theorem 5.1

Theorem 5.1. The set of model updates {∆θ̃e
i }E

e=1, which are uploaded to the server by each client i ∈
{1, · · · , n} during the training time, as well as their private local model cluster selections satisfy (ϵ, δ)-DP,
where the parameters ϵ and δ depend on the DP noise variance σ2

i,DP used by the client for DPSGD (Equation (1))
and the parameter ϵselect used for its private cluster selections using exponential mechanism (Equation (8)).

Proof. The sensitivity of the batch gradient in Equation (1) to every data sample is c. Therefore, based
on Proposition B.4, each of the batch gradient computations by client i (in the first round e = 1 as well
as the next rounds e > 1) is (α, αc2

2σ2
i,DP

)-RDP. Therefore, if the client runs E tot
i total number of gradient

updates during the training time, which results in the model updates {∆θ̃e
i }E

e=1 uploaded to the server, the
set of model updates will be (α, E tot

i αc2

2σ2
i,DP

)-RDP, according to Theorem B.2. Finally, according to Lemma B.3,

this guarantee is equivalent to (E tot
i αc2

2σ2
i,DP

+ log(1/δ)
α−1 , δ)-DP (for any δ > 1). The RDP-based guarantee can be

computed over a bunch of orders α and the best result among them is chosen as the privacy guarantee.
Therefore, the set {∆θ̃e

i }E
e=1 satisfies (ϵ, δ)-DP, with ϵ = E tot

i αc2

2σ2
i,DP

+ log(1/δ)
α−1 derived above, and δ > 0. On the

other hand, clients’ local cluster selections are also privatized by exponential mechanism and satisfy (ϵ, δ)-DP.
Therefore, the overall training process for each client is private and satisfies (ϵ, δ)-DP. Tighter bounds for ϵ
can be derived by using the numerical procedure, proposed in (Mironov et al., 2019), for accounting sampled
Gaussian mechanism.

F The relation between Lemma 4.1 and the law of large numbers

We first state the weak law of large numbers and then explain how Lemma 4.1 is closely related to it.
Theorem F.1 (Weak law of large numbers (Billingsley, 1995)). Suppose that {Xi}b

i=1, is an independent
sequence (of size b) of i.i.d random variables with expected value µ and positive variance σ2. Define

X̄b =
∑b

i=1
Xi

b as their sample mean. Then, for any positive number ∆ > 0:

lim
b→∞

Pr[|X̄b − µ| > ∆] = 0. (36)

In fact, the weak law of large numbers states that the sample mean of some i.i.d random variables converges
in probability to their expected value (µ). Furthermore, we can see that Var[X̄b] = σ2

b , which means that the
variance of the sample mean decreases as the sample size b increases.

Now, remember from Equation (1) that when computing the DP stochastic batch gradients in round e (with
batch size be

i), we add DP noise with variance σ2
i,DP/b

e
i to each of the be

i clipped sample gradients in the batch
and average the resulting be

i noisy clipped sample gradients. The sampled noise terms added to the clipped
sample gradients in a batch are i.i.d with mean zero. Therefore, based on the above theorem, the variance of
their average over each batch should approach zero as the batch size be

i grows. The same discussion applies
to all the K ·Ni/b

e
i gradient updates performed by client i during a communication round e (whose noises

will be summed up), which results in Lemma 4.1.

31

Published in Transactions on Machine Learning Research (09/2025)

G Gradient accumulation

When training large models with DPSGD, increasing the batch size results in memory exploding during training
or finetuning. This might happen even when using ordinary SGD. On the other hand, using a small batch size
results in larger stochastic noise in batch gradients. Also, in the case of DP training, using a small batch size
results in fast increment of DP noise (as explained in Lemma 4.1 in details). Therefore, if the memory budget
of devices allow, we prefer to avoid using small batch sizes. But what if there is a limited memory budget? A
solution for virtually increasing batch size is “gradient accumulation”, which is very useful when the available
physical GPU memory is insufficient to accommodate the desired batch size. In ordinary SGD, we set the
gradient w.r.t every parameter to zero at the beginning of each back propagation and compute the gradient
w.r.t each parameter. Finally, the computed batch gradients are used for updating the parameters at the end
of the back propagation. In contrast to this, gradient accumulation accumulates gradients w.r.t parameters
over multiple smaller batches. When the accumulated gradients reach the target logical batch size, the model
weights are updated with the accumulated batch gradients. This method simulates a large batch size with
zero overheads. The page in https://opacus.ai/api/batch_memory_manager.html explains more details.

H Can clients use data augmentation in the first round to simulate a large dataset
size?

Based on the findings in Section 4.2, and noting that b1
i ≤ Ni, a question about R-DPCFL is that can the

clients use data augmentation in the first round to simulate a large dataset size and consequently improve
the upperbound Ni on b1

i ? The short answer is negative, due to potential privacy leakage caused by data
augmentation. Let us focus on a client i and let u = (x, y) ∈ Di be a train “sample” in its local data.
Let τ be the set of all possible transformations and let T (u) = {t(u), t ∈ τ} be the set of all augmented
“instances” of the sample u. Hence, after augmentation, we get the |τ | times larger augmented dataset
Di,aug = ∪u∈Di

T (u). Di,aug makes the upper bound on batch size b1
i , |τ | times larger, which seems desirable.

However, the augmentation leads to an extra privacy leakage for the client, as explained below.

Let us first assume client i uses batch size b1
i and no data augmentation in the first round. Remembering

Equation (1), at the gradient step t during the first round, it computes the noisy clipped batch gradient

g̃1,t
i (θ) = 1

b1
i

[(∑
u∈B1,t

i

ḡiu(θ)
)

+N (0, σ2
i,DPIp)

]
, (37)

where the batch B1,t
i has size b1

i and also σi,DP = c · zi(ϵ, δ, b1
i , b

>1
i , Ni,K,E) is fixed. In the literature, there

have been some methods for “differentially private data augmentation” (Hoffer et al., 2019; De et al., 2022).
These methods propose to use “batch augmentation” by replicating the samples present in a batch with their
augmented instances (e.g., replicating u ∈ B1,t

i with T (u)). Furthermore, the gradients across the augmented
instances T (u) of a sample u ∈ B1,t

i are clipped and averaged (De et al., 2022) before the DP noise addition.
More specifically, instead of the noise batch gradient above, the following noisy batch gradient is computed
for DP batch augmentation:

g̃1,t
i (θ) = 1

b1
i

[∑
u∈B1,t

i

(1
τ

∑
j∈T (u)

ḡij(θ)
)

+N (0, σ2
i,DPIp)

]
. (38)

In this way, the sensitivity of the batch gradient “to each sample u ∈ B1,t
i ” does not change. So when we use

the same noise variance σ2
i,DP as before augmentation, we still get the same DP privacy guarantee w.r.t each

sample u in the dataset Di.

In contrast to the batch augmentation discussed above, using “dataset augmentation” and full batch size
simultaneously in the first round leads to an extra privacy leakage, if client i keeps using the same DP noise
variance σ2

i,DP. In this case, b1
i = τNi, and the single noisy gradient in the first round can be written as:

32

https://opacus.ai/api/batch_memory_manager.html

Published in Transactions on Machine Learning Research (09/2025)

g̃1,t
i (θ) = 1

τNi

[(∑
j∈Di,aug

ḡij(θ)
)

+N (0, σ2
i,DPIp)

]
= 1
Ni

[∑
u∈Di

(1
τ

∑
j∈T (u)

ḡij(θ)
)

+N (0,
σ2

i,DP

τ2 Ip)
]
, (39)

which is the same private “batch augmentation” in Equation (38) with b1
i = Ni (i.e. full batch size) but with

τ2 times smaller effective DP noise variance. This means that the privacy guarantee that we get after
using “dataset augmentation” and full batch size is not the same as the guarantee for using only full batch
size (with the actual dataset size). Therefore, one should be cautious when using dataset augmentation in DP
settings.

In the following, we have also mentioned the recent findings about the effect of data augmentation on
membership inference attacks (MIA) to ML models, which generally supports the discussion above from another
point of view.

It is widely believed that the capacity of MIA (Shokri et al., 2017; Yeom et al., 2017; Salem et al., 2019; Jia
et al., 2019; Zarifzadeh et al., 2024) to ML models is largely attributed to the models’ generalization gap: the
difference between their average loss on train and test sets (Shokri et al., 2017; Yeom et al., 2017; Li et al.,
2020a). Searching for the root causes of model’s vulnerability to MIA, some works proposed overfitting as
one factor (Yeom et al., 2017). Following this, some works suggested that data augmentation, as well as
improving the utility, may also reduce the privacy risk to MIA by mitigating overfitting to train data (Shokri
et al., 2017; Sablayrolles et al., 2019). However, the extensive experimental results in (Kaya & Dumitras,
2021) shows that when data augmentation is applied with low-intensity for boosting the model’s accuracy,
it fails to achieve substantial protection against MIA. On the other hand, high intensity augmentation, e.g.,
cropping 90% of an image, which often results in a utility drop, reduces the privacy risk of the model and
its vulnerability to MIA. These findings suggest that a smaller generalization gap, which is usually provided
by low-intensity data augmentation, does not necessarily translate to a lower privacy risk. This along with
the findings in (Shokri et al., 2017; Yeom et al., 2017; Li et al., 2020a) suggests that overfitting might be a
sufficient but not necessary condition for the success of MIA.

Similar to Kaya & Dumitras (2021), the work in (Yu et al., 2021) challenges the observations in (Shokri et al.,
2017; Sablayrolles et al., 2019) that data augmentation improves the vulnerability to MIA. The work considers
ϵ-DP definition and shows that when the attacker has access to one “single instance” in T (u), where u is a
data sample and T (u) is its all augmented instances, its ability for inferring membership of u decreases with
data augmentation (this is in contrast with some of the experimental results in (Kaya & Dumitras, 2021)).
On the other hand, when the attacker has access to all the augmented instances of u (i.e., it has access to
all the instances in T (u)), the situation is different. In this case, they formulate MIA as a “set classification”
problem to classify the set of augmented instances T (u) as being used during training or not. They show
that, this approach can infer the membership of T (u) with more success rate, compared to the attacks which
have access to only one instance in T (u). Whether an attacker has access to all the augmented instances in
T (u) for a sample u or not depends on the problem in hand and the considered security model. Yet, the
findings by Yu et al. (2021) suggests that MIA to models trained with data augmentation could be largely
underestimated, if the attacker has access to a single instance at the attack time.

I Further related works

Performance parity in FL: Performance parity of the final trained model across clients is an important goal
in FL. Addressing this goal, Mohri et al. (2019) proposed Agnostic FL (AFL) by using a min-max optimization
approach. TERM (Li et al., 2020b) used tilted losses to up-weight clients with large losses. Finally, Li et al.
(2020c) and Zhang et al. (2023) proposed q-FFL and PropFair, inspired by α-fairness (Lan et al., 2010) and
proportional fairness (Bertsimas et al., 2011), respectively. Generating one common model for all clients,
these techniques do not perform well when the data distribution across clients is highly heterogeneous or a
structured data heterogeneity exists across clusters of clients. While model personalization techniques (e.g.,
MR-MTL (Liu et al., 2022a)) are proposed for the former case, stronger personalization techniques, e.g., client
clustering, are used for the latter.

33

Published in Transactions on Machine Learning Research (09/2025)

Differential privacy, group fairness and performance parity: Gradient clipping and random noise
addition used in DPSGD disproportionately affect underrepresented groups. Some works tried to address
the tension between group fairness and DP in centralized settings (Tran et al., 2020) (by using Lagrangian
duality) and FL settings (Pentyala et al., 2022) (by using Secure Multiparty Computation (MPC)). Another
work tried to remove the disparate impact of DP on model performance of minority groups in centralized
settings (Esipova et al., 2023), by preventing gradient misalignment across different groups of data. Unlike
the previous works on group fairness, our work adopts cross-model fairness, where the utility drop after
adding DP must be close for different groups (Dwork et al., 2012), including minority and majority clients. As
we consider a structured data heterogeneity across clients, the mentioned approaches are not appropriate,
due to generating one single model for all.

34

	Notations
	Background
	Rényi differential privacy (RDP)
	Zero concentrated differential privacy (z-CDP)
	Exponential mechanism for private selection
	Privacy budgeting

	Experimental setup
	Datasets
	Models and optimization
	Baseline selection
	0.90plus0.90minus0.90100.90MR-MTL formulation
	Tuning hyperparameters of baseline algorithms
	Implementation of private local clustering for 0.90plus0.90minus0.90100.90IFCA and 0.90plus0.90minus0.90100.90R-DPCFL
	DP privacy parameters
	Gaussian mixture model
	Finding the number of clusters M when it is unknown

	More experimental results
	Proofs
	Proof of lemma:updatesnoise
	Proof of lemma:localdp
	Proof of theorem:convrate
	Proof of thm:localdp

	The relation between lemma:updatesnoise and the law of large numbers
	Gradient accumulation
	Can clients use data augmentation in the first round to simulate a large dataset size?
	Further related works

