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Abstract
We study data-dependent regret bounds for the Online Portfolio Selection (OPS) problem. As
opposed to worst-case bounds that hold uniformly over all sequence of returns, data-dependent
bounds adapt to the specific sequence of returns seen by the investor. Consider a market of n
assets and T time periods, consisting of the returns r1, . . . , rT ∈ Rn

+. The regret of our proposed
algorithm, Log-Barrier Adaptive-Curvature Online Newton Step (LB-AdaCurv ONS) is bounded
by O(min(nR log T,

√
nT log T )), where R = maxt,i,j

rt(i)
rt(j)

is a data dependent quantity that is
not known to the algorithm. Thus, LB-AdaCurv ONS has a worst case regret of O(

√
nT log T )

while simultaneously having a data-dependent regret of O(nR log T ).
Next, we consider the more practical setting of OPS with predicted returns, where the investor

has access to predictions that can be incorporated into the portfolio selection process. We propose
the Optimistic Expected Utility LB-FTRL (OUE-LB-FTRL) algorithm that incorporates the predic-
tions using a utility function. If the predictions are accurate, OUE-LB-FTRL’s regret is O(n log T )
and even if the predictions are arbitrary, regret is always bounded by O(

√
nT log T ). We provide

a meta-algorithm called Best-of-Both Worlds for OPS (BoB-OPS), that combines the portfolios of
an expected utility investor and a regret minimizing investor. By properly instantiating BoB-OPS,
we show that the regret with respect to the expected utility investor is O(log T ) and the static regret
is O(n log T ).

Finally, we also show new First-Order, Second-Order and Gradual-Variation regret bounds for
OPS. In our analysis, we developed new regret inequalities for optimistic FTRL with convex hint
functions. Our framework extends prior work on optimistic FTRL that only used linear hints, and
so could be of independent interest.
Keywords: Online Portfolio Selection, Data-dependent regret bounds, Online Newton step, Follow
the regularized leader, Optimistic online convex optimization.

1. Introduction

The online portfolio selection problem (OPS), as formulated by Cover (1991), is a repeated game
of sequential investment between an investor (the player) and a market (the environment) consisting
of n assets (stocks). The investor starts with 1 unit of wealth. At the start of each investment period,
indexed by t = 1, 2, . . . , T , the investor distributes her wealth among the n assets according to a
portfolio vector wt belonging to the unit simplex ∆n, which is the set {w ∈ Rn :

∑n
i=1w(i) =

1, w(i) ≥ 0, i ∈ [n]}. At the end of the investment period, the investor observes non-negative
returns rt ∈ Rn

+ from the market and her wealth changes by a multiplicative factor of r⊤t wt. The
wealth after T periods will be

∏T
t=1(r

⊤
t wt).
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Online Portfolio Selection - Interaction Protocol:
for t = 1 to T do

Investor picks the portfolio wt ∈ ∆n based on past returns {r1, . . . , rt−1}
Market revels rt ∈ Rn

+

Investor’s wealth grows by a multiplicative factor of r⊤t wt

end

The wealth of an investor that selects the same portfolio w in each period is
∏T

t=1(r
⊤
t w). We

compare the difference in the log-wealth between the two investors:

log

(
T∏
t=1

(r⊤t w)

)
− log

(
T∏
t=1

(r⊤t wt)

)
=

T∑
t=1

(− log(r⊤t wt))− (− log(r⊤t w))

If we define ft(w) = − log(r⊤t w) as our convex cost function, then the above expression exactly
corresponds to the notion of static regret

∑T
t=1 ft(wt) − ft(w), which is the main object of study

in Online Convex Optimization (OCO) (Hazan, 2016). Prior works on OPS have mainly focused
on bounding the worst-case regret of algorithms for the OPS problem. Instead, we study various
data-dependent regret bounds that bound the regret of the algorithm in terms of the market returns.

In the classical version of the OPS problem, it is assumed that the investor does not have any
prior belief about the future returns. At time t, the investor only uses the returns r1, . . . , rt−1

and possibly prior portfolios w1, . . . , wt−1 to select the portfolio vector wt. However, in practice,
investors do have prior beliefs about future returns. This prior belief is typically expressed as a
distribution Dt over the future returns of assets, i.e., the investor believes that rt would be a random
variable drawn from Dt. Thus the distribution Dt is the investor’s prediction for the current return.
The actual market return rt however, could be arbitrary.

Online Portfolio Selection with Predictions - Interaction Protocol:
for t = 1 to T do

Investor receives prediction Dt distribution.
Investor picks the portfolio wt ∈ ∆n based on past returns {r1, . . . , rt−1} and Dt

Market revels rt ∈ Rn
+

Investor’s wealth grows by a multiplicative factor of r⊤t wt

end

We study algorithms that incorporate the investor’s predictions to further reduce regret. As such,
the specific process by which an investor creates these predictions in each round is not the subject
of our study. Instead, we study how an investor could incorporate such predictions into the online
portfolio selection framework.

1.1. Notation

Let ∆n be the probability simplex {w ∈ Rn :
∑n

i=1w(i) = 1, w(i) ≥ 0, i ∈ [n]}. The all ones
vector are denoted by 1. The set of real numbers is R, non-negative numbers is R+ and positive
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numbers is R++. The Hadamard product of two vectors u, v is represented as u ◦ v. The Bregman
Divergence of function F is BF (x∥y) = F (x)− F (y)−∇F (y)⊤(x− y).

2. Prior Works and Our Contributions

2.1. Worst-Case Regret Bounds

In his seminal work, Cover (1991) proposed the OPS problem and the Universal Portfolio (UP) al-
gorithm. The minimax regret for OPS is Θ(n log T ) and UP obtains this rate. Helmbold et al. (1998)
identified that the OPS can be posed as an OCO problem and propose using the Exponentiated Gra-
dient (EG) (Kivinen and Warmuth, 1997). Since the EG algorithm requires the gradient of ft to be
bounded, it results in a regret bound that is not uniform over the sequence of returns. Their result
states that for any sequence of returns r1, . . . , rt ∈ [c, C]n, the regret of EG is O(C/c

√
T log n).

Here c, C ∈ Rn
++ are assumed to be known apriori by the investor as they are used to tune parame-

ters within the EG algorithm. Helmbold et al. (1998) also propose a technique to “universalize” EG
and obtain a regret of O(n1/2T 3/4) for any sequence of returns r1, . . . , rT ∈ Rn

+. This bound was
later improved to O(n1/3T 2/3) in Tsai et al. (2023a).

Hazan et al. (2007) propose the Online Newton Step(ONS) method. With apriori knowledge
of c, C, ONS has O (C/c n log T ) regret for all sequences of returns in [c, C]n. Using the univer-
salization technique (Helmbold et al., 1998), it is possible to modify ONS to obtain a regret of
O(n

√
T log T ) for all return sequences in Rn

+. There have been several recent works that study
worst case regret-bounds for OPS. We summarize these algorithms in Table 5.

2.2. Data-dependent Regret Bounds

In this paper, we aim to study algorithms with data-dependent regret bounds for OPS. Possibly
the most simple algorithm for OPS is Follow-The-Leader (FTL). The iterates of FTL are wt ∈
argminw∈∆n

∑t−1
s=1 ft(w). Agarwal and Hazan (2006) introduce the Smooth Prediction (SP) al-

gorithm that adds the log-barrier regularizer to FTL. A similar algorithm called Exp-Concave FTL
(Hazan and Kale, 2015), uses the ℓ2-regularizer instead of the log-barrier.

There are no parameters to tune in these algorithms. All three of these can be shown to possess
the following data-dependent regret bound. For any sequence of returns r1, . . . , rT ∈ Rn

+, the regret
of FTL, SP, and Exp-Concave FTL is O(R2n log T ), where R = maxt,i,j

rt(i)
rt(j)

is the data-dependent
quantity. While in the worst-case, R could be unbounded, it nevertheless yields reasonable regret
bounds for benign sequences of returns r1, . . . , rT .

Using an adaptive variant of EG called the AdaHedge algorithm (van Erven et al., 2011; de Rooij
et al., 2014), one can obtain a regret of O(R

√
T log n) for any sequence of returns. Using so-called

universal online convex optimization (UOCO) algorithms such as Metagrad (van Erven et al., 2021)
and Maler (Wang et al., 2019), one can obtain a regret bound of O(Rn log T ). However, UOCO
algorithms function by running O(log T ) instances of ONS instantiated with different parameters
and running a meta experts algorithm to control them.

We show that a simple variant of the ONS algorithm that employs adaptive-curvature surrogate
functions has O(Rn log T ) regret. We term this algorithm AdaCurv ONS. Thus, we can avoid the
use of complicated UOCO algorithms like Metagrad (van Erven et al., 2021) and Maler (Wang
et al., 2019). However, all the above algorithms have unbounded regret in the worst case, due to
the dependence on R. For some sequences of returns, R could be arbitrarily large. To avoid this
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Table 1: Data-dependent Regret Bounds for Online Portfolio Selection
Algorithm Data-dependent Regret Worst-case Regret Run-time
FTL, SP (Agarwal and
Hazan, 2006), Exp-Concave
FTL (Hazan and Kale, 2015)

R2n log(T ) ∞ n2.5T

AdaHedge
(van Erven et al., 2011;
de Rooij et al., 2014)

R
√
T log n ∞ n

Metagrad
(van Erven et al., 2021)
Maler (Wang et al., 2019)

Rn log(T ) ∞ n3 log T

AdaCurv FTAL /ONS
(Theorem 2)

Rn log(T ) ∞ n3

LB-AdaCurv FTAL/ONS
(Theorem 3)

Rn log(T )
√
nT log T n3

issue, we propose adding the log-barrier regularizer along with an adaptivley tuned learning rate to
AdaCurv ONS, obtaining a regret bound of O(min(Rn log T,

√
nT log T )). We term this algorithm

LB-AdaCurv ONS. These prior works, along with our contributions are summarized in Table 1.

2.3. OPS with Predicted Returns

In the OPS with predicted returns framework, the investor could leverage predictions to pick a port-
folio in several possible ways. In his seminal work, which birthed the field of Modern Portfolio The-
ory, Markowitz (1952) proposed using an optimization framework that balances the expected return
of a portfolio with its variance. Given a predicted returns distribution Dt, Markowitz’s approach of
mean-variance optimization can be stated as wt ∈ argmaxw∈∆n Er∼Dt [r

⊤w] − λ
2Varr∼Dt [r

⊤w].
Here λ is the “risk-aversion” parameter. Capital Growth Theory, developed by Kelly (1956); Thorp
(1975), proposes to optimize the “Kelly criteria”, wt ∈ argmaxw∈∆n Er∼Dt [log(r

⊤w)]. Both of
Markowitz’s and Kelly’s approaches are special cases of Expected Utility Theory. Given an in-
vestor with a specified concave utility function U and return prediction Dt, the investor picks wt as
wt ∈ argmaxw∈∆n Er∼Dt [U(r⊤w)].

Unlike OPS techniques, expected utility theory does not provide worst-case or data-dependent
performance guarantee for the investor. On the other hand, an expected utility investor will outper-
form a regret minimizing investor if the predictions are indeed accurate. We hope to combine the
two approaches of expected utility maximization and regret minimization, while maintaining their
advantages. We initiate the study of online portfolio selection algorithms with predicted returns.
At time t, these algorithms not only use the returns r1, . . . , rt−1 and prior portfolios w1, . . . , wt−1,
but also use any available return predictions Dt to select the portfolio vector wt. We introduce
algorithms that aim to optimize portfolio selection by balancing the inherent trade-off between ex-
ploiting these predictions to improve performance and maintaining robustness against prediction
inaccuracies.

Online decision making algorithms that incorporate predictions have been studied under the
name of Online Learning with Predictions (OLP) (Rakhlin and Sridharan, 2013a) in the online
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Table 2: First-Order Regret Bounds for Online Portfolio Selection
Algorithm First-Order Regret Worst-case Regret Run-time
UOCO Yan et al. (2023) Rn logL⋆

T ∞ n3 log T

Tsai et al. (2023b)
√
nL⋆

T log T
√
nT log T n

AdaCurv ONS
(Theorem 6)

Rn log(L⋆
T ) ∞ n3

LB-AdaCurv ONS
( Theorem 7)

min(Rn log(L⋆
T ),
√
nL⋆

T log T )
√
nT log T n3

optimization literature, and Algorithms with Predictions (Mitzenmacher and Vassilvitskii, 2022)
in the online algorithms literature. Algorithms that incorporate predictions seek to achieve some
form of consistency and robustness guarantees. Consistency implies that the algorithm should be
able to improve its performance by taking advantage of the predictions in case they are accurate.
Robustness implies that the algorithm should retain its worst-case performance guarantee in case the
predictions have large errors or are misspecified. In the context of OPS, we present two algorithms
that achieve different consistency and robustness guarantees.

We present the Optimistic Expected Utility LB-FTRL (OUE-LB-FTRL) algorithm that achieves
a worst case static-regret of O(n log T ) when the predictions are exact and O(

√
nT log T ) when

the predictions are completely arbitrary. In other words, we say that this algorithm is O(n log T )-
consistent and O(

√
nT log T )-robust with respect to static regret. In the presence of predictions,

it is important to also consider the regret with respect to the expected utility investor instead of
static regret. We propose the Best-of-Both Worlds for OPS (BoB-OPS) algorithm that combines the
portfolios of an expected utility investor and a regret minimizing investor to achieve simultaneously
a O(log T ) regret against the expected utility investor and O(n log T ) static regret.

2.4. More Data-Dependent Regret Bounds

Finally, we study three more kinds of data-dependent regret bounds that have been previously con-
sidered in the literature.

2.4.1. FIRST-ORDER REGRET BOUND

Let L⋆
T = minw∈∆n

[∑T
t=1 ft(w)

]
−
∑T

t=1 [minw∈∆n ft(w)]. In the worst case, L⋆
T = O(T ).

However, if the returns are not adversarial generated, then L⋆
T could be quite small. Bounds which

depend on L⋆
T instead of T are termed First-Order bounds. These are also called L⋆ bounds or

Small-Loss bounds.
Orabona et al. (2012) show that ONS has the regret bound O((C/c)n logL⋆

T ), when the returns
are known to be in [c, C]n. The recent UOCO algorithm from Yan et al. (2023) has a regret of
O(Rn logL⋆

T ) for any sequence of returns. However, these do not guarantee a bounded worst-case
regret. Tsai et al. (2023b) were able to obtain a bound of O(

√
dL⋆

T log T ) for any sequence of re-
turns, with a run time of O(n). We show that the AdaCurv ONS algorithm achieves O(Rn logL⋆

T )
regret. Moreover, by adding extra regularization via the log-barrier, the LB-AdaCurv ONS algo-
rithm achieves a regret of O(min(Rn log(L⋆

T ),
√
nL⋆

T log T )). These results are summarized in
Table 2.
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Table 3: Second Order Regret Bounds for Online Portfolio Selection
Algorithm Second Order Regret Worst-case Regret Run-time
Exp-Concave FTL (Hazan and
Kale, 2015)

R2n log(QT ) ∞ n2.5T

Tsai et al. (2023b)
√
nQ̃T log T

√
nT log T n log log T

AdaCurv ONS ( Theorem 8) R2n log(QT ) ∞ n3

2.4.2. SECOND-ORDER REGRET BOUND

Second-Order bounds are also known as Quadratic variation bounds. Hazan and Kale (2015) show
that the Exp-Concave FTL algorithm has a regret of O(R2n logQT ), where QT = minx

∑T
t=1 ∥rt−

x∥22. They also proposed an algorithm that uses a quadratic surrogate, called Faster Quadratic-
variation Universal Algorithm (FQUA). This has a regret bound of O((C/c)3n logQT ) when the
returns are known to be in [c, C]n. Recently, Tsai et al. (2023b), showed a second order bound

O(

√
nQ̃T log T ), where Q̃T = minx

∑T
t=1

∥∥∥ rt◦wt

r⊤t wt
− x

∥∥∥2
2

with a run time of O(n log log T ) for

any sequence of returns. Since Q̃T = O(T ), their algorithm has a worst-case regret bound of
O(

√
nT log T ). However, Q̃T has no meaningful interpretation in terms of quadratic variation of

returns rt. We show that AdaCurv ONS has O(Rn logQT ) regret. These results are summarized in
Table 3.

2.4.3. GRADUAL-VARIATION BOUND

Gradual-Variation Bounds are data dependent regret bounds where the regret is bounded as a mea-
sure of variation between consecutive returns. These are also called Path-Length bounds. For the
OPS problem, these bounds were first studied in Chiang et al. (2012), who showed that an optimistic
variant of the ONS algorithm has a regret of O(nC2 log VT ) when the returns are known to be in
[c, C]n. Here VT =

∑T
t=1 ∥rt−rt−1∥22. The UOCO algorithm of Yan et al. (2023) obtains a gradual

variation bound of the form O(nR log VT ). Due to the dependence on R the worst-case regret of
this approach is not bounded.

Tsai et al. (2023b) obtain a regret bound of O(
√
nṼT log T ), where ṼT =

∑T
t=2

∥∥ rt◦wt−1

r⊤t wt−1
−

rt−1◦wt−1

r⊤t wt−1

∥∥2
2
. It implies a worst case O(

√
nT log T ) regret bound. Their algorithm is an instance of

log-barrier FTRL and uses multiplicative-gradient optimism, which is an implicit technique for si-
multaneously guessing the gradient ∇ft(wt) and picking the portfolio wt. Their algorithm does not
allow for specifying a utility function or predicted distribution like our OUE-LB-FTRL algorithm.

We obtain a gradual-variation bound of O(
√
nṼ ′

T log T ) where Ṽ ′
T =

∑T
t=1

∥∥∥ rt◦wt

r⊤t wt
− rt−1◦wt

r⊤t−1wt

∥∥∥2
2

by using OUE-LB-FTRL. We set the current prediction Dt as a delta distribution on rt−1 and using
the logarithmic utility function. Since Ṽ ′

T ≤ 2T , we have a O(
√
nT log T ) worst-case regret bound.

Table 4 summarizes the results on gradual-varioation bounds.

2.5. Online Convex Optimization with Predicted Functions

We develop a general regret inequality for the optimistic FTRL algorithm with convex hint func-
tions. We use our result to obtain the regret bounds of all the algorithms in this paper. Our analysis
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Table 4: Gradual-Variation Regret Bounds for Online Portfolio Selection
Algorithm First-Order Regret Worst-case Regret Run-time

UOCO (Yan et al., 2023) Rn log VT ∞ n3 log T

Tsai et al. (2023b)
√

nṼT log T
√
nT log T n

OUE-LB-FTRL (Theorem 9)
√

nṼ ′
T log T

√
nT log T n3

is a novel extension over the current literature which only considers linear hint functions. These
results and prior works appear in Appendix A.

3. AdaCurv ONS

We first show a new adaptive curvature quadratic surrogate function for − log(r⊤t w).

Lemma 1 For all x, y ∈ ∆n, rt ∈ Rn
+ such that r⊤t x, r

⊤
t y > 0, we have the inequality:

− log(r⊤t x) ≥ − log(r⊤t y)−
r⊤t (x− y)

r⊤t y
+

r⊤t y

2maxi rt(i)

(
r⊤t (x− y)

r⊤t y

)2

Lemma 1 implies the following surrogate function for ft(w) = − log(r⊤t w):

f̃t(w) = ft(wt) +∇ft(wt)
⊤(w − wt) +

r⊤t wt

2(maxi rt(i))
(∇ft(wt)

⊤(w − wt))
2 (1)

Plugging the surrogate function into the ONS algorithm of Hazan et al. (2007), we get the
Adaptive Curvature ONS (AdaCurv ONS) update:

wt ∈ arg min
w∈∆n

t−1∑
s=1

f̃s(w) +
ϵ

2
∥w∥22 (2)

AdaCurv FTAL is obtained by using ϵ = 0 in AdaCurv ONS. AdaCurv FTAL has no parameters
to tune and the iterates wt are invariant to scaling of returns as shown below:

wt ∈ arg min
w∈∆n

(
t−1∑
s=1

− r⊤s w

r⊤s ws
+

t−1∑
s=1

− r⊤s w

maxi rs(i)

)
+

1

2

(
t−1∑
s=1

(r⊤s w)
2

(r⊤s ws)(maxi rs(i))

)

3.1. AdaCurv ONS Regret Bound

Theorem 2 For w ∈ ∆, any sequence of returns r1, . . . , rT ∈ Rn
+, define ft(w) = − log(r⊤t w).

With ϵ = 1, AdaCurv ONS (Equation (2)) has the data-dependent regret bound:

T∑
t=1

ft(wt)− ft(w) ≤
1

2
+

nR

2
log (1 + TR)

If we set ϵ = 0, we get the data-dependent regret bound for AdaCurv FTAL:

T∑
t=1

ft(wt)− ft(w) ≤ R+
nR

2
log
(
1 + T 2

)
7
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If the returns rt ∈ [c, C]n, then R = C/c. The regret of AdaCurv ONS for any sequence of
such returns is bounded by O((C/c)n log T ). However, AdaCurv ONS does not need to know the
values of C and c beforehand to achieve this regret. Whereas the ONS algorithm of Hazan et al.
(2007) would need to known C and c to achieve the same regret bound.

Consider a sequence of returns where mini rt(i) = 1/t and maxi rt(i) = 1. For such a se-
quence, R = T . Thus, the regret of AdaCurv ONS may be unbounded for such sequences.

4. LB-AdaCurv ONS

While AdaCurv ONS has O(nR log T ) data-dependent regret, it’s worst case regret is not uniformly
bounded for all sequences of returns. Indeed, R could be O(T ) for some sequences of returns. We
address this issue by using the log-barrier regularizer. By tuning the strength of the regularization,
we are able to obtain a worst-case regret bound while maintaining the data-dependent regret bound.
We consider updates of the form:

wt ∈ arg min
w∈∆n

t−1∑
s=1

f̃s(w) +
ϵ

2
∥w∥22 +

1

ηt−1
F (w) (3)

Here F (w) =
∑n

i=1[log(1/n) − log(w(i))], is the log-barrier regularizer, f̃t(w) are adaptive
curvature surrogate functions of the form in Equation (1).

The LB-AdaCurv ONS algorithm is described in Algorithm 1. The BARRONS algorithm of
Luo et al. (2018) also utilizes a log-barrier regularized ONS procedure. However, their algorithm
uses the a constant-curvature surrogate function and an increasing sequence of parameters ηt. On
the other hand, we use an adaptive surrogate function and a decreasing sequence of parameters ηt
chosen via the AdaFTRL (Orabona and Pál, 2018) technique.

Theorem 3 For w ∈ ∆, any sequence of returns r1, . . . , rT ∈ Rn
+, define ft(w) = − log(r⊤t w). If

we set ϵ = 1, we get the bound for LB-AdaCurv ONS:
T∑
t=1

ft(wt)− ft(w) ≤
5

2
+ 2n log T +min

(
nR log (1 +RT ) , 2 + 2

√
2nT log(T )

)
If we set ϵ = 0, we get the bound for LB-AdaCurv FTAL:

T∑
t=1

ft(wt)− ft(w) ≤ 2 + 2n log(T ) + min
(
2R+ nR log

(
1 + T 2

)
, 2 + 2

√
2nT log(T )

)
LB-AdaCurv ONS/FTAL maintains the O(nR log T ) data-dependent regret of AdaCurv ONS/FTAL

while guaranteeing a worst-case regret of O(
√
nT log T ).

5. Optimistic Expected Utility LB-FTRL

Consider an investor who at time t has a prediction distribution Dt and a utility function U . We
augment the log-barrier regularized FTRL algorithm with the expected utility of the player by using
the following update:

wt ∈ arg min
w∈∆n

t−1∑
s=1

∇ft(wt)
⊤w +

F (w)

ηt−1
− Er∼Dt [U(r⊤w)]

8
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Algorithm 1: Log-Barrier Regularized Adaptive Curvature Online Newton Step

Input Parameter: ϵ
Starting Parameters: η0 = 1/2

Regularizer F (q) =

n∑
i=1

(f(w(i))− f(1/n)), where f(x) = − log(x)

for t = 1 to T do

Pick portfolio: wt ∈ arg min
w∈∆n

t−1∑
s=1

f̃s(w) +
ϵ

2
∥w∥22 +

1

ηt−1
F (w)

Observe returns vector rt. Let ft(w) = − log(r⊤t w)
Construct adaptive curvature surrogate function

f̃t(w) = ft(wt) +∇ft(wt)
⊤(w − wt) +

r⊤t wt

2(maxi rt(i))
(∇ft(wt)

⊤(w − wt))
2

Let g̃t =
∑t

s=1 f̃t. Compute Mt(ηt−1) =

sup
w∈∆n

[
∇ft(wt)

⊤(wt − w)− Bg̃t(w∥wt)−
ϵ

2
∥w − wt∥22 −

1

ηt−1
BF (w∥wt)

]
Compute ηt =

n log T

2n log T +
∑t

s=1Ms(ηs−1)

end

Here F (w) =
∑n

i=1[log(1/n)−log(w(i))] is the log-barrier regularizer. Let U ′ is the first derivative
of U and C is a constant chosen such that C = 1+ supx xU

′(x). The OEU-LB-FTRL algorithm is
described in Algorithm 2.

Algorithm 2: Optimistic Expected Utility Log-Barrier FTRL (OEU-LB-FTRL)

Starting Parameters: η0 = 1/2
Pick C = 1 + supx xU

′(x)

Regularizer F (q) =
n∑

i=1

(f(w(i))− f(1/n)), where f(x) = − log(x)

for t = 1 to T do
Investor has a prediction distribution Dt and utility function Ut

Pick portfolio: wt ∈ arg min
w∈∆n

t−1∑
s=1

∇ft(wt)
⊤w +

F (w)

ηt−1
− Er∼Dt [U(r⊤w)]

Observe returns vector rt. Let ft(w) = − log(r⊤t w)

Let g̃t =
∑t

s=1 f̃t. Compute :

Mt(ηt−1) = sup
w∈∆n

[(
∇ft(wt) + Er∼Dt [U

′(r⊤wt)r]
)⊤

(wt − w)− 1

η
BF (w∥wt)

]
Compute ηt =

n log T

Cn log T+
∑t

s=1 Ms(ηs−1)

end

9
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Theorem 4 For w ∈ ∆, any sequence of returns r1, . . . , rT ∈ Rn
+, return prediction distribu-

tions D1, . . . , DT , concave and strictly increasing utility function U with a strictly decreasing first
derivative U ′, define ft(w) = − log(r⊤t w). The updates of OEU-LB-FTRL (Algorithm 2) satisfy
the regret bound:

T∑
t=1

ft(wt)−ft(w) ≤ 2+C (1 + 2n log T )+2

√√√√2n

(
T∑
t=1

∥∥∥Er∼Dt [U
′(r⊤wt)r ◦ wt]−

rt ◦ wt

r⊤t wt

∥∥∥2
2

)
log T

Where C = 1 + supx xU
′(x). This implies the worst-case regret bound:

T∑
t=1

ft(wt)− ft(w) ≤ 2 + C (1 + 2n log T ) + 2C
√

2nT log T

Moreover, if U and Dt are such that Er∼Dt [U
′(r⊤wt)r ◦ wt] = rt◦wt

r⊤t wt
, then we have the regret

bound:
T∑
t=1

ft(wt)− ft(w) ≤ 2 + 2Cn log T

For the specific case of a Kelly Criteria investor, i.e., U(x) = log(x), we have C = 1 +
supx xU

′(x) = 2. Thus, the worst case regret of OEU-LB-FTRL with Kelley Criteria is 4 +
4n log T+4

√
nT log T . As this regret bound of O(

√
nT log T ) holds for any prediction distribution

Dt, it constitutes a robustness guarantee. In the scenario where Dt is a delta distribution on rt, we
have Er∼Dt

[
U ′(r⊤wt)r ◦ wt

]
= rt◦wt

r⊤t wt
, so the regret is 2 + 4n log T . Thus, Algorithm 2 with

U(x) = log(x) is O(n log T )-consistent and O(
√
nT log T )-robust with respect to static regret.

5.1. Robustness and Consistency

When viewed from the perspective of wealth generated, the result of Theorem 4 is unsatisfac-
tory. Denote by W (Alg) the wealth of the investor and W (w⋆) the wealth of the best static
allocation vector w⋆ ∈ argminw∈∆n

∑T
t=1 ft(w). Then, the robustness guarantee ensures that

W (Alg) ≥ W (w⋆) exp(−O(
√
nT log T )). If the prediction distribution Dt perfectly predicts rt,

then the consistency guarantee ensures W (Alg) ≥ W (w⋆) exp(−O(n log T )). Considering the fact
that a purely regret minimizing investor who uses Cover’s UP algorithm can ensure W (Cover) ≥
W (w⋆) exp(−O(n log T )), without even taking the predictions Dt into account, we can see that the
consistency guarantee of W (Alg) ≥ W (w⋆) exp(−O(n log T )) with perfect predictions is quite
weak. Additionally, with perfect predictions, the wealth of the expected utility player W (EU)
will be

∏T
t=1(maxi rt(i)), which could be exponentially larger than the wealth of the best static

allocation W (w⋆) =
∏T

t=1(r
⊤
t w

⋆).
Ideally, we would like to seek an algorithm whose robustness guarantee ensures that the in-

vestor’s wealth is close to W (w⋆) in case the returns rt are completely arbitrary. Additionally, if the
predictions are perfect, then the consistency guarantee must ensure that investor’s wealth is close
to W (EU). In the next section, we present an algorithm that achieves this robustness-consistency
guarantee. As the wealth achieved will always track the better of W (EU) or W (w⋆) depending on
the accuracy of predictions, our algorithm obtains the best of both worlds.

10
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6. Best of Both Worlds for Online Portfolio Selection

Consider an expected utility investor (EU) who picks a portfolio wEU
t at time t by solving the

stochastic optimization problem: wEU
t = argmaxw∈∆n Er∼Dt

[
U(r⊤w)

]
. Also consider a purely

regret minimizing investor (RM) who picks a portfolio wRM
t in round t by using a regret minimizing

algorithm like the ones in Table 5. Denote the algorithm used by this player as RM . Finally consider
an meta-investor who can only allocate wealth to EU and RM. The meta-investor cannot directly
participate in the actual market of n assets, but can indirectly participate via the two base investors,
EU and RM. At time t, the meta-investor allocates γt portion of wealth to EU and 1− γt portion to
RM. The quantity γt itself could be chosen by using a regret minimizing algorithm from Table 5.
Denote the algorithm used by the meta-investor as metaRM . The returns seen by meta-investor are
the returns of the base investors, rEU

t = r⊤t w
EU
t and rRM

t = r⊤t w
RM
t . So, if the allocation chosen

by metaRM is γt, then the implicit allocation of the meta-investor is γtwEU
t + (1− γt)w

RM
t . The

Best of Both Worlds OPS algorithm picks wt = γtw
EU
t + (1− γt)w

RM
t .

Algorithm 3: Best of Both Worlds for Online Portfolio Selection (BoB-OPS)

for t = 1 to T do
EU investor picks portfolio: wEU

t = arg max
w∈∆n

Er∼Dt

[
U(r⊤w)

]
RM investor picks portfolio: wRM

t = RM({wRM
1 , r1, . . . , w

RM
t−1 , rt−1})

Pick EU-RM allocation γt = metaRM({γ1, (rEU
1 , rRM

1 ), . . . , γt−1, (r
EU
t−1, r

RM
t−1 )})

Pick portfolio: wt = γtw
EU
t + (1− γt)w

RM
t

See returns rt. Set rEU
t = r⊤t w

EU
t and rRM

t = r⊤t w
RM
t

end

Theorem 5 For w ∈ ∆n, any sequence of returns r1, . . . , rT ∈ Rn
+, return prediction distribu-

tions D1, . . . , DT , concave and strictly increasing utility function U with a strictly decreasing first
derivative U ′, define ft(w) = − log(r⊤t w). The updates of BoB-OPS (Algorithm 3) satisfy the
regret bounds:

T∑
t=1

ft(wt)− ft(w
EU
t ) ≤ RmetaRM (2, T ) and

T∑
t=1

ft(wt)− ft(w) ≤ RRM (n, T ) +RmetaRM (2, T )

RRM (n, T ) and RmetaRM (2, T ) are the regret bounds for the algorithm used by the RM investor
and the meta-investor respectively. If the RM investor and meta-RM investor use Cover’s Universal
Portfolio (Cover, 1991) algorithm satisfy the regret bounds:

T∑
t=1

ft(wt)− ft(w
EU
t ) ≤ log(T + 1) and

T∑
t=1

ft(wt)− ft(w) ≤ n log(T + 1)

The final part of Theorem 5 implies the following wealth lower bound:

W (Bob-OPS) ≥ max

(
W (EU)

T + 1
,
W (w⋆)

(T + 1)n

)
11
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Thus, when the predictions Dt are perfect, we have the consistency guarantee W (Bob-OPS) ≥
W (EU)
T+1 . When the predictions are arbitrarily bad, we have the robustness guarantee W (Bob-OPS) ≥

W (w⋆)
(T+1)n , where w⋆ ∈ argminw∈∆n

∑T
t=1 ft(w) is the optimal static allocation in hindsight.

7. More Data-Dependent Regret Bounds

7.1. First-Order Regret Bound

Theorem 6 For w ∈ ∆, any sequence of returns r1, . . . , rT ∈ Rn
+, define ft(w) = − log(r⊤t w).

The updates of AdaCurv ONS (Equation (2)) with ϵ = 1 satisfy the regret bound:
T∑
t=1

ft(wt)− ft(w) ≤
1

2
+

nR

2
log

(
4nR3 log

(
4nR3

e

)
+ 4R2 + 8R2L⋆

T + 2

)
Here, L⋆

T = minw∈∆n

[∑T
t=1 ft(w)

]
−
∑T

t=1 [minw∈∆n ft(w)] is the regret between the best static
and the best dynamic portfolio selection strategies.

Theorem 7 For w ∈ ∆, any sequence of returns r1, . . . , rT ∈ Rn
+, define ft(w) = − log(r⊤t w).

The updates of LB-AdaCurv ONS (Algorithm 1) with ϵ = 1 satisfy the regret bound:
T∑
t=1

ft(wt)− ft(wt) ≤
5

2
+ 2n log T +min

[
2 + 2

√
8n log T + 4

√
8n

(
L⋆
T +

9

2
+ 2n log T

)
log T ,

nR log

(
8nR3 log

(
8nR3

e

)
+ 20R2 + 16R2n log T + 8R2L⋆

T + 2

)]
Here, L⋆

T = minw∈∆n

[∑T
t=1 ft(w)

]
−
∑T

t=1 [minw∈∆n ft(w)] is the regret between the best static
and the best dynamic portfolio selection strategies.

7.2. Second-Order Regret Bound

Theorem 8 For w ∈ ∆, any sequence of returns r1, . . . , rT ∈ Rn
+, define ft(w) = − log(r⊤t w).

The AdaCurv ONS updates (Equation (2)) with ϵ = 1 satisfy the regret bound:
T∑
t=1

ft(wt)− ft(w) = O
(
nR2 log(1 +QT + n) +

√
nR log(1 +QT /n) + 1

)
Here QT = minµ

∑T
t=1 ∥rt − µ∥22 =

∑T
t=1 ∥rt − r̄T ∥22, where r̄T = 1

T

∑T
t=1 rt.

7.3. Gradual-Variation Bound

Theorem 9 For w ∈ ∆, any sequence of returns r1, . . . , rT ∈ Rn
+, let the return prediction

distribution Dt be the delta distribution on rt−1 (Let r0 be the all 1s vector). The updates of OEU-
LB-FTRL (Algorithm 2) with U(x) = log(x) satisfy the regret bound:

T∑
t=1

ft(wt)− ft(w) ≤ 4 + 4n log T + 2

√
2nṼ ′

T log T

Here Ṽ ′
T =

∑T
t=1

∥∥∥ rt◦wt

r⊤t wt
− rt−1◦wt

r⊤t−1wt

∥∥∥2
2

and r0 is the all ones vector.
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8. Conclusion

In this paper, we first studied data-dependent regret bounds for the Online Portfolio Selection prob-
lem. We first obtained a new adaptive curvature surrogate function for the loss − log(r⊤t w). We
presented two algorithms that use this surrogate function. First is the AdaCurv ONS algorithm
that has a data-dependent regret bound of O(nR log T ), where R = maxt,i,j rt(i)/rt(j). Next, we
proposed the LB-AdaCurv ONS algorithm, which adds the log-barrier regularization to AdaCurv
ONS, giving it a regret of O(min(nR log T,

√
nT log T )). The ONS algorithm Hazan et al. (2007)

with the constant curvature surrogate functions is an important building block in recent OPS algo-
rithms such as AdaBARRONS Luo et al. (2018), BISONS Zimmert et al. (2022) and PAE+DONS
Mhammedi and Rakhlin (2022). As future work, one could explore if the usage of our adaptive cur-
vature surrogate function along with the techniques developed in Luo et al. (2018); Zimmert et al.
(2022); Mhammedi and Rakhlin (2022) could lead to more elegant algorithms as it avoids the need
to tune the curvature in the quadratic surrogate.

Next, we explored the integration of predicted returns into the online portfolio selection (OPS)
framework, presenting a novel approach that bridges the gap between regret minimization tech-
niques and expected utility theory to guide investment decisions. The OEU-LB-FTRL algorithm
with logarithmic utility is shown to be O(n log T )-consistent and O(

√
nT log T )-robust with re-

spect to static regret. We improve these results using the BoB-OPS algorithm and show that it has
O(log T ) regret with respect to the expected utility investor and O(n log T ) static regret.

Finally, we showed more data dependent regret bounds for our algorithms. We showed that
AdaCurv ONS has a logarithmic first-order regret bound of O(nR logL⋆

T ) and LB-AdaCurv ONS
has a first-order regret bound of O(min(nR logL⋆

T ,
√

nL⋆
T log T )). AdaCurv ONS is also shown

to obtain a second-order regret bound of O(nR2 logQT ). However, R could be unbounded. Find-
ing an algorithm achieving a logarithmic second order regret bound in QT , while also having a
bounded worst case regret remains open problem. The OEU-LB-FTRL algorithm with log utility

and previous return as the prediction gives a gradual variation bound of O(
√

nṼ ′
T log T ). Similarly,

finding an algorithm with logarithmic gradual variation measured in VT and bounded worst case
regret remains open problem.

The general regret inequality developed in Appendix A for Optimistic FTRL with convex hint
functions provides a novel extension over the current literature, which only consider linear hint
functions. These general regret bound could be of independent interest to the OCO research com-
munity.
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Table 5: Worst-case Regret Bounds for Online Portfolio Selection
Algorithm Worst-case Regret Run-time Returns Domain
UP (Cover, 1991; Kalai and Vempala,
2002)

n log(T ) n4T 14 Rn
+

EG (Helmbold et al., 1998) (C/c)
√
T log n n [c, C]n, 0 < c < C

EG + Universalization (Helmbold
et al., 1998; Tsai et al., 2023a)

n1/3T 2/3 n Rn
+

ONS(Hazan et al., 2007) (C/c)n log T n3 [c, C]n, 0 < c < C

ONS + Universalization n
√
T log T n3 Rn

+

Soft-Bayes (Orseau et al., 2017)
√
nT log n n Rn

+

AdaBARRONS (Luo et al., 2018) n2 log4 T n2.5T Rn
+

BISONS (Zimmert et al., 2022) n2 log2 T n3 Rn
+

PAE+DONS (Mhammedi and
Rakhlin, 2022)

n2 log5 T n3 Rn
+

LB-OMD(Tsai et al., 2023a)
√
nT log T n Rn

+

VB-FTRL(Jézéquel et al., 2022) n log T n2T Rn
+

Appendix A. Online Convex Optimization with Predicted Functions

The Online Convex Optimization framework (OCO) was first defined by Zinkevich (2003). It pro-
vides a powerful framework for the design and analysis of regret minimizing algorithms. In the last
two decades, there have been many developments in this area and it continues to be an active area
of research within the the machine learning, operations research and statistics communities. It has
also seen widespread adoption by practitioners. Algorithms that originate from OCO, like AdaGrad
Duchi et al. (2011) and Adam Kingma and Ba (2015) are widely used as optimizers for training
deep neural networks. The monographs of Hazan (2016); Shalev-Shwartz (2012); Orabona (2019)
provide a comprehensive overview of OCO.

A player interacts with an environment for T rounds. In each round, the player selects an action
from a convex set, wt ∈ D ⊆ Rn. The environment picks a convex function ft : D → R. The
player incurs a scalar cost ft(wt) and observes the function ft. The player’s objective is to minimize
the total cost of interaction over the T rounds

∑T
t=1 ft(wt). The static-regret (regret for short) of the

player compared to the cost of fixed point w ∈ D is
∑T

t=1 ft(wt)−ft(w). The action wt is selected
using an algorithm A, that takes as input the current information set It = {w1, f1, . . . , wt−1, ft−1}
and outputs the action, i.e. wt = A(It). The interaction protocol is summarized below:

A straightforward strategy for the player is to select wt using Follow The Leader (FTL). FTL
can be succinctly expressed as:

wt ∈ arg min
w∈D

t−1∑
s=1

fs(w) (FTL)

Unfortunately, FTL can have O(T ) regret even with linear functions (Orabona, 2019, Example
2.10). This occurs because FTL’s iterates can be forced into alternating between opposite corners
of D in every iteration, making it “unstable”. Nevertheless, FTL has O(log T ) regret when the
functions are strongly convex (Orabona, 2019, Corollary 7.24). Even for linear functions, FTL’s
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Online Convex Optimization - Interaction Protocol:
Initial information set I1 = {}
for t = 1 to T do

Player picks wt = A(It)
Environment picks ft
Player incurs cost ft(wt)
Update information set It+1 = It ∪ {wt, ft}

end

regret is O(log T ) if the decision set’s boundary exhibits sufficient curvature Huang et al. (2016,
2017).

Incorporating regularization into FTL is a common approach to “stabilize” the iterations, re-
sulting in a widely studied algorithm in the OCO literature called Follow The Regularized Leader
(FTRL). Another popular algorithm for OCO is Online Mirror Descent (OMD), which stabilizes
the iterates by ensuring consecutive iterates remain close to each other. Several fascinating connec-
tions and equivalences exist between FTRL and OMD, as discussed in Orabona (2019). Various
well-known iterative algorithms in machine learning, such as Online Gradient Descent Zinkevich
(2003), AdaGrad Duchi et al. (2011), Exponentiated GradientKivinen and Warmuth (1997), and
Online Newton Step Hazan et al. (2007), can be formulated using one of these two algorithms. See
Orabona (2019) for a detailed history of FTRL. In this paper, we focus on the FTRL algorithm and
its variants. In its simplest form, it can be stated as:

wt ∈ arg min
w∈D

t−1∑
s=1

fs(w) +
F (w)

ηt−1
(FTRL)

Here, F (w) is the regularization function and ηt−1 is a time varying learning-rate parameter that
needs to be tuned. While there are several techniques for picking ηt−1, we focus on the AdaFTRL
technique prescribed by Orabona and Pál (2018) for obtaining data-dependent regret bounds.

The above FTRL requires minimizing the sum of t convex functions in round t. In general, this
could potentially require O(t) computation per round, becoming increasingly costly as the number
of rounds increases. One can construct surrogate convex functions that are linear or quadratic and
run FTRL on them to mitigate this computational issue. Assume we have a surrogate function f̃t
such that ft(wt) = f̃t(wt) and ft(w) ≥ f̃t(w) for all w ∈ D, then we have:

T∑
t=1

ft(wt)− ft(w) ≤
T∑
t=1

f̃t(wt)− f̃t(w)

Thus, if we can bound the regret of the surrogates
∑T

t=1 f̃t(wt)− f̃t(w) using FTRL on f̃t, we
obtain a bound on the regret

∑T
t=1 ft(wt) − ft(w). Running an FTRL on f̃t instead of ft not only

delivers computational benefits, but may also aid in obtaining tighter regret bounds.
In the online learning with predictions (OLP) framework, the player is given a predicted function

mt(w) before picking wt. The interaction protocol for OLP is below:
For OLP, we employ the Optimistic FTRL Rakhlin and Sridharan (2013a) algorithm:
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Online Convex Optimization with Predictions - Interaction Protocol:
Initial information set I1 = {}
for t = 1 to T do

Receive prediction mt

Player picks wt = A(It ∪ {mt})
Environment picks ft
Player incurs cost ft(wt)
Update information set It+1 = It ∪ {wt, ft}

end

wt ∈ arg min
w∈D

t−1∑
s=1

fs(w) +mt(w) +
F (w)

ηt−1
(OFTRL)

The OLP framework, while formally introduced in Rakhlin and Sridharan (2013a,b), had previ-
ously appeared in various forms Azoury and Warmuth (2001); Chiang et al. (2012). This framework
has been instrumental in demonstrating several intriguing results, such as adaptive regret bounds in
online learning Steinhardt and Liang (2014), adaptive regret bounds in adversarial bandits Wei and
Luo (2018), and accelerated rates of convergence for two-player games Syrgkanis et al. (2015),
to name a few. A related area of research, called Algorithms with Predictions Mitzenmacher and
Vassilvitskii (2022) studies how predictions could be used to improve the performance of online al-
gorithms, where the performance benchmark is competitive ratio. While the problems studied in this
area are different from OLP, they share the common goal of going beyond wort-case performance
with the help of predictions.

A.1. Regret Inequality for Optimistic FTRL with Convex Predictions

In prior works such as Rakhlin and Sridharan (2013a), the regret inequality is obtained for linear
costs and linear predictions (See Luo (2022) for a simple proof). We extend their result and obtain a
general regret inequality for Optimistic FTRL with convex cost functions ft and convex predictions
mt. Our result is stated in terms of Bregmen Divergences and Mixed-Bregmans.

Definition 10 (Bregman Divergence) The Bregman Divergence of function F is:

BF (x∥y) = F (x)− F (y)−∇F (y)⊤(x− y)

Definition 11 (Mixed Bregman) For α, β > 0 the (α, β)-Mixed Bregman of function F is:

Bα,β
F (x∥y) = F (x)

α
− F (y)

β
− ∇F (y)

β

⊤
(x− y)

The Mixed Bregman is not a divergence as Bα,β
F (x∥x) may not be zero. However, we do have

the relation αBα,α
F (x∥y) = BF (x∥y).
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Let the iterates of Optimistic FTRL be wt:

wt ∈ arg min
w∈D

t−1∑
s=1

fs(w) +mt(w) +
F (w)

ηt−1

Let the iterates of FTRL be w′
t:

w′
t ∈ arg min

w∈D

t−1∑
s=1

fs(w) +
F (w)

ηt−1

We will use the shorthand gt =
∑t

s=1 fs. The following theorem bounds the regret of Optimistic
FTRL in terms of the iterates wt and w′

t. The proof appears in Appendix A

Theorem 12 For any w ∈ D, any sequence of convex cost functions f1, . . . , fT , convex hint func-
tions m1, . . . ,mT , convex regularizer F and parameters η0, . . . , ηT such that wt ∈ argminw∈D

∑t−1
s=1 fs(w)+

mt(w) +
F (w)
ηt−1

and w′
t ∈ argminw∈D

∑t−1
s=1 fs(w) +

F (w)
ηt−1

. Let gt =
∑t

s=1 fs. The iterates of Op-

timistic FRTL w1, . . . , wT satisfies the regret inequality
∑T

t=1 ft(wt)− ft(w):

≤ BηT ,η0
F (w∥w′

1) +
T∑
t=1

[
(∇ft(wt)−∇mt(wt))

⊤(wt − w′
t+1)− Bgt(w

′
t+1∥wt)− Bηt,ηt−1

F (w′
t+1∥wt)

− Bgt−1(wt∥w′
t)− Bηt−1,ηt−1

F (wt∥w′
t)
]

Further, if F is such that minw∈DF (w) = 0 and the sequence η0, . . . , ηT is non-increasing,
then the above bound simplifies to

∑T
t=1 ft(wt)− ft(w):

≤ F (w)

ηT
+

T∑
t=1

[
(∇ft(wt)−∇mt(wt))

⊤(wt − w′
t+1)− Bgt(w

′
t+1∥wt)−

BF (w
′
t+1∥wt)

ηt−1

− Bgt−1(wt∥w′
t)−

BF (wt∥w′
t)

ηt−1

]
In most applications, the last two terms in the summation are ignored, giving us the inequality∑T

t=1 ft(wt)− ft(w):

≤ F (w)

ηT
+

T∑
t=1

[
(∇ft(wt)−∇mt(wt))

⊤(wt − w′
t+1)− Bgt(w

′
t+1∥wt)−

BF (w
′
t+1∥wt)

ηt−1

]
(4)

However, these two terms do play a role in certain applications, like in showing convergence
in general convex games Farina et al. (2022), data-dependent regret bounds in Multi-Armed Ban-
dits Wei and Luo (2018) and gradual-variation bounds in online learning Chiang et al. (2012). In
Orabona (2019), a similar regret bound for Optimistic FTRL is obtained, which when translated
into our notation would imply

∑T
t=1 ft(wt)− ft(w):

≤ F (w)

ηT
+

T∑
t=1

[
(∇ft(wt)−∇mt(wt))

⊤(wt − wt+1)− Bgt(wt+1∥wt)−
BF (wt+1∥wt)

ηt−1

]
(5)
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In our bound, we bound the regret of Optimistic FTRL in terms of iterates of both Optimistic
FTRL wt and FTRL w′

t. Whereas in Orabona (2019), only the iterates of Optimistic FTRL ap-
pear. In our analysis of Optimistic FTRL, we separate the hint mt(w) from the regularizer term
F (w)/ηt−1. On the other hand, in Orabona (2019), the sum mt(w) + F (w)/ηt−1 is treated as
a composite regularizer and analyzed using their FTRL bound. Our general regret bound in The-
orem 12 is novel as it could be useful in applications that require the last two terms, like Farina
et al. (2022); Wei and Luo (2018). These two terms cannot be obtained via the analysis in Orabona
(2019).

In the case where we have no hints, i.e., mt = 0, Equation (4) and Equation (5) become equiv-
alent to the well known FTRL regret inequality. The iterates of FTRL are given by:

wt ∈ arg min
w∈D

t−1∑
s=1

fs(w) +
F (w)

ηt−1

The regret of FTRL is stated in the following Corollary.

Corollary 13 For any w ∈ D, any sequence of convex cost functions f1, . . . , fT and parameters
η0, . . . , ηT such that wt ∈ argminw∈D

∑t−1
s=1 fs(w)+

F (w)
ηt−1

. Assume F is such that minw∈DF (w) =

0 Let gt =
∑t

s=1 fs. The iterates of FRTL w1, . . . , wT satisfies the regret inequality:

T∑
t=1

ft(wt)− ft(w) ≤
F (w)

ηT
+

T∑
t=1

[
∇ft(wt)

⊤(wt − wt+1)− Bgt(wt+1∥wt)−
BF (wt+1∥wt)

ηt−1

]
Proof When mt = 0, the iterates of Optimistic FTRL wt and FTRL w′

t coincide. So, the last two
terms in the result of Theorem 12 vanish, i.e., Bgt−1(wt∥w′

t) = 0 and Bηt−1,ηt−1

F (wt∥w′
t) = 0.

In some applications, besides the regularizer F whose strength is regulated through ηt, we may
need to add an extra constant regularizer G to the optimization. The update equation here is:

wt ∈ arg min
w∈D

t−1∑
s=1

fs(w) +G(w) +
F (w)

ηt−1

Note that this is different from the optimistic FTRL update where the hint mt may change over
time. In the above update, G is treated as a regularizer and not as a hint. The regret inequality for
this update is:

Corollary 14 For any w ∈ D, any sequence of convex cost functions f1, . . . , fT and parameters
η0, . . . , ηT such that wt ∈ argminw∈D

∑t−1
s=1 fs(w) + G(w) + F (w)

ηt−1
. Assume G,F are such that

minw∈DG(w) = 0 and minw∈DF (w) = 0. Let gt =
∑t

s=1 fs. The iterates w1, . . . , wT satisfies
the regret inequality

∑T
t=1 ft(wt)− ft(w):

≤ G(w)+
F (w)

ηT
+

T∑
t=1

[
∇ft(wt)

⊤(wt−wt+1)−Bgt(wt+1∥wt)−BG(wt+1∥wt)−
BF (wt+1∥wt)

ηt−1

]
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Proof We can apply Corollary 13 starting from time t = 0. We use f0(w) = G(w), and η−1 > 0 in
Corollary 13. This gives the regret inequality:

T∑
t=0

ft(wt)−ft(w) ≤
F (w)

ηT
+

T∑
t=0

[
∇ft(wt)

⊤(wt−wt+1)−Bgt(wt+1∥wt)−BG(wt+1∥wt)
BF (wt+1∥wt)

ηt−1

]
We can write the left hand side of the above inequality as:

T∑
t=0

ft(wt)− ft(w) = G(w0)−G(w) +

T∑
t=1

ft(wt)− ft(w)

On the right hand side, we simply the term inside the sum when t = 0 as:

∇G(w0)
⊤(w0 − w1)− BG(w1∥w0)−

BF (w1∥w0)

η−1
≤ ∇G(w0)

⊤(w0 − w1)− BG(w1∥w0)

= G(w0)−G(w1) ≤ G(w0)

For t = 1 . . . T , the term inside the sum is:

∇ft(wt)
⊤(wt − wt+1)− Bgt(wt+1∥wt)− BG(wt+1∥wt)−

BF (wt+1∥wt)

ηt−1

Putting the two sides together and simplifying, we get the stated result.

A.2. Tuning ηt using the AdaFRTL technique

In Theorem 12, Corollary 13 and Corollary 14, the inequalities contain the following common form
for suitable of A, bt and Ct.

A

ηT
+

T∑
t=1

b⊤t (wt − wt+1)− BCt(ηt−1)(wt+1∥wt)

The AdaFTRL strategy picks a specific sequence of parameters ηt−1 based on the history It.
This strategy was analyzed in Orabona and Pál (2018) and a simpler analysis was given by Koolen
(2016). They give a simple algorithmic technique for tuning ηt−1. Our analysis is adapted from
Hadiji and Stoltz (2023). We consider time varying parameters of the form:

ηt =
α

β +
∑t

s=1Ms(ηs−1)

Where α, β > 0 are constants and Mt(η) is the optimal value of the following optimization.

Mt(η) = sup
w∈D

b⊤t (wt − w)− BCt(η)(w∥wt)

Thus, we have the sum:

A

ηT
+
∑
t=1

b⊤t (wt − wt+1)− BCt(ηt−1)(wt+1∥wt) ≤
A

ηT
+

T∑
t=1

Mt(ηt−1)

We bound the above sum using the following lemma:

24



DATA DEPENDENT REGRET BOUNDS FOR ONLINE PORTFOLIO SELECTION WITH PREDICTED RETURNS

Lemma 15 Let ηt = α
β+

∑t
s=1 Ms(ηs−1)

. If 0 ≤ Mt(ηt−1) ≤ L for all t = 1, . . . T and Mt(ηt−1)
ηt−1

≤
gt, then we have the upper bound:

A

ηT
+

T∑
t=1

Mt(ηt−1) ≤ A

(
β

α
+

L

α

)
+ L+

√√√√2
T∑
t=1

gt

(
A√
α
+
√
α

)

Proof Substituting for ηT , we have:

A

ηT
+

T∑
t=1

Mt(ηt−1) =
Aβ

α
+

(
A

α
+ 1

) T∑
t=1

Mt(ηt−1)

Consider
(∑T

t=1Mt(ηt−1)
)2

(
T∑
t=1

Mt(ηt−1)

)2

=
T∑
t=1

Mt(ηt−1)
2 + 2

T∑
t=1

Mt(ηt−1)
t−1∑
s=1

Ms(ηs−1)

=
T∑
t=1

Mt(ηt−1)
2 + 2

T∑
t=1

Mt(ηt−1)

(
α

ηt−1
− β

)

≤
T∑
t=1

Mt(ηt−1)
2 + 2α

T∑
t=1

Mt(ηt−1)

ηt−1

≤ L

T∑
t=1

Mt(ηt−1) + 2α

T∑
t=1

gt

Using the fact that x2 ≤ a+ bx implies that x ≤
√
a+ b for all a, b, x ≥ 0, we have:

T∑
t=1

Mt(ηt−1) ≤

√√√√2α
T∑
t=1

gt + L

Thus, we get:

Aβ

α
+

(
A

α
+ 1

) T∑
t=1

Mt(ηt−1) ≤
Aβ

α
+

(
A

α
+ 1

)
√√√√2α

T∑
t=1

gt + L


= A

(
β

α
+

L

α

)
+ L+

√√√√2

T∑
t=1

gt

(
A√
α
+
√
α

)

The constants α and β are tuning based on A and L in order to obtain a concrete bound.
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A.3. Logarithmic-Barrier Regularizer

The final piece is the regularizer. In this paper, the regularizer we use is the Logarithmic-Barrier.
Let ∆n be the probability simplex {x ∈ Rn :

∑n
i=1 x(i) = 1, x(i) ≥ 0, i ∈ [n]}. The log-barrier

regularizer defined on ∆n is given by the function:

F (x) = −n log(n)−
n∑

i=1

log(x(i))

We explore a few important properties of the log-barrier here.

Definition 16 (Legendre function) A continuous function F : D → R is Legendre if F is strictly
convex, continuously differentiable on Interior(D) and limx→D/Interior(D) ∥∇F (x)∥ = +∞.

It is easy to verify that the log-barrier is a Legendre function on the domain Rn
+.

A crucial step in the analysis of FTRL involves bounding the so-called stability term Ψx(l),
which is defined as:

Ψx(l) = sup
y∈∆n

l⊤(x− y)− BF (y∥x)

Let y⋆ be the point in ∆n achieving the supremum in the definition of Ψx(l). As F is Legendre, the
supremum is always attained at a unique y⋆ in ∆n.

Let H(x) be a positive definite matrix for every x ∈ ∆n. Define the norm ∥z∥2H(x) = z⊤H(x)z.
We call such norms as local norms. Let ω is a non-negative convex function. Suppose a lower bound
of the following form holds for all x, y ∈ ∆n:

BF (y∥x) ≥ ω(∥x− y∥H(x))

Then, we obtain the following upper-bound for Ψx(l):

Ψx(l) = l⊤(x− y⋆)− BF (y
⋆∥x) ≤ ∥l∥H(x)−1∥x− y⋆∥H(x) − ω(∥x− y⋆∥H(x)) ≤ ω⋆(∥l∥H(x)−1)

Here ω⋆ is the Fenchel-dual of ω, given by ω⋆(t) = sups(st− ω(s)).
Using the theory of self-concordant functions Nesterov (2018), it is possible to obtain one such

bound for Ψx(l).

Definition 17 (Self-Concordant Function) A continuous function F : D → R is M self-concordant
if F is a Legendre function on D and satisfies:

|∇3F (x)[u, u, u]| ≤ 2M(∇2F (x)[u, u])3/2 ∀x ∈ D, u ∈ Rn

It is easy to verify that the log-barrier satisfies the self-concordance condition with M = 1.
Nesterov (2018) obtains the following lower bound for BF (y∥x).

Lemma 18 (Theorem 5.1.8, Nesterov (2018)) For any x, y ∈ Rn
+ and F (x) = −n log(n) −∑n

i=1 log(x(i)), we have:
BF (y∥x) ≥ ω(∥x− y∥∇2F (x))

Here ω(t) = t− log(1 + t).
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Using Lemma 18, we have the following theorem bounding Ψx(l).

Lemma 19 Let F (x) = −n log(n) −
∑n

i=1 log(x(i)). For all x, y ∈ ∆n and l ∈ Rn such that
∥l∥∇2F (x)−1 ≤ 1, we have the upper-bound:

l⊤(x− y)− BF (y∥x) ≤ ω⋆(∥l∥∇2F (x)−1)

where ω⋆(t) = −t− log(1− t). Further, if we have ∥l∥∇2F (x)−1 ≤ 1
2 , then we have:

l⊤(x− y)− BF (y∥x) ≤ ∥l∥2∇2F (x)−1 =

n∑
i=1

x(i)2l(i)2

Proof Using Holder’s inequality and Lemma 18, we have:

l⊤(x− y)− BF (y∥x) ≤ ∥l∥∇2F (x)−1∥x− y∥∇2F (x) − ω(∥x− y∥∇2F (x)) ≤ ω⋆(∥l∥∇2F (x)−1)

Here ω⋆(t) = −t − log(1 − t) is the Fenchel-dual of ω. Since the domain of ω⋆ is (−∞, 1), the
above inequality holds when ∥l∥∇2F (x)−1 < 1. Observe that when t ∈ [0, 1/2], ω⋆(t) ≤ t2. So,
when ∥l∥∇2F (x)−1 ≤ 1/2, we have the bound:

l⊤(x− y)− BF (y∥x) ≤ ∥l∥2∇2F (x)−1 =

n∑
i=1

x(i)2l(i)2

In applications within online learning, Lemma 19 is typically used when ∥l∥∇2F (x)−1 ≤ 1
2

holds.

Corollary 20 (Putta and Agrawal, 2022, Corollary 7) Let f(x) = − log(x) +C. For x, y ∈ (0, 1],
we have the lower-bound

Bf (y∥x) =
y

x
− 1− ln

(y
x

)
≥ 1

2

(x− y)2

x

Using Corollary 20, we can construct the following new upper-bound:

Lemma 21 Let F (x) = −n log(n)−
∑n

i=1 log(x(i)). For all x, y ∈ ∆n and l ∈ Rn we have the
upper-bound:

l⊤(x− y)− BF (y∥x) ≤
1

2

n∑
i=1

x(i)l(i)2

Proof Let f(x) = − log(x), then F (x) =
∑n

i=1 f(x(i))− f(1/n)

l⊤(x− y)− BF (y∥x) =
n∑

i=1

l(i)(x(i)− y(i))− Bf (y(i)∥x(i))
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Apply Corollary 20

≤
n∑

i=1

l(i)(x(i)− y(i))− (x(i)− y(i))2

2x(i)

≤ 1

2

n∑
i=1

l(i)2x(i)

Compare the result of Lemma 19 and Lemma 21. In Lemma 21, the inequality l⊤(x − y) −
BF (y∥x) ≤ 1

2

∑n
i=1 x(i)l(i)

2 holds for all l ∈ Rn. In Lemma 19, we have a slighly tighter bound
l⊤(x− y)− BF (y∥x) ≤

∑n
i=1 x(i)

2l(i)2, which holds only if
∑n

i=1 x(i)
2l(i)2 ≤ 1

4 . These results
are summarized in Table 6.

Table 6: Upper bounds for l⊤(x− y)− BF (y∥x) when F (x) = −n log(n)−
∑n

i=1 log(x(i))

Lemma Domain of x, y Condition on l Upper bound

Lemma 19 Rn
+ ∥l∥∇2F (x)−1 ≤ 1/2

∑n
i=1 x(i)

2l(i)2

Lemma 21 ∆n l ∈ Rn 1
2

∑n
i=1 x(i)l(i)

2

A.4. Conclusion

We provided a general regret inequality for Optimistic FTRL in Theorem 12 from which we can
obtain the regret bounds of all the algorithms in this paper. For tuning the learning rates in our
algorithms, we use the general technique of AdaFTRL and obtain a bound on the regret using
Lemma 15. Finally, as we use the log-barrier regularizer in some of our algorithms, we provide
two techniques for bounding the stability term Ψx(l) under different conditions. The first uses the
theory of self-concordant function and is presented in Lemma 19. The second a different technique
of obtaining local-norm lower bound and is presented in Lemma 21.
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Appendix B. Proofs from Appendix A

We begin by stating a few useful properties of Bregman Divergences.

Lemma 22 For any v, w ∈ dom(∇F ) and u ∈ dom(F ) we have:

BF (u∥w)− BF (u∥v)− BF (v∥w) = (∇F (w)−∇F (v))⊤(v − u)

Lemma 22 is called the Law of cosines for Bregman divergence. The proof is via a direct
calculation. The law of cosines can be extended to the case of Mixed Bregmans as well.

Lemma 23 For any v, w ∈ dom(∇F ) and u ∈ dom(F ) we have:

Ba,b
F (u∥w)− Ba,c

F (u∥v)− Bc,b
F (v∥w) =

(
∇F (w)

b
− ∇F (v)

c

)⊤
(v − u)

We now prove the main theorem obtaining a general regret bound for Optimistic FTRL.

Theorem 12 For any w ∈ D, any sequence of convex cost functions f1, . . . , fT , convex hint func-
tions m1, . . . ,mT , convex regularizer F and parameters η0, . . . , ηT such that wt ∈ argminw∈D

∑t−1
s=1 fs(w)+

mt(w) +
F (w)
ηt−1

and w′
t ∈ argminw∈D

∑t−1
s=1 fs(w) +

F (w)
ηt−1

. Let gt =
∑t

s=1 fs. The iterates of Op-

timistic FRTL w1, . . . , wT satisfies the regret inequality
∑T

t=1 ft(wt)− ft(w):

≤ BηT ,η0
F (w∥w′

1) +
T∑
t=1

[
(∇ft(wt)−∇mt(wt))

⊤(wt − w′
t+1)− Bgt(w

′
t+1∥wt)− Bηt,ηt−1

F (w′
t+1∥wt)

− Bgt−1(wt∥w′
t)− Bηt−1,ηt−1

F (wt∥w′
t)
]

Further, if F is such that minw∈DF (w) = 0 and the sequence η0, . . . , ηT is non-increasing,
then the above bound simplifies to

∑T
t=1 ft(wt)− ft(w):

≤ F (w)

ηT
+

T∑
t=1

[
(∇ft(wt)−∇mt(wt))

⊤(wt − w′
t+1)− Bgt(w

′
t+1∥wt)−

BF (w
′
t+1∥wt)

ηt−1

− Bgt−1(wt∥w′
t)−

BF (wt∥w′
t)

ηt−1

]
Proof Consider ft(wt)− ft(w). We expand it by adding and subtracting ft(w

′
t+1).

ft(wt)− ft(w) = ft(wt)− ft(w
′
t+1) + ft(w

′
t+1)− ft(w)

Using the definition of Bregman Divergence Bft

= ∇ft(wt)
⊤(wt − w′

t+1)− Bft(w
′
t+1∥wt) +∇ft(w

′
t+1)

⊤(w′
t+1 − w)︸ ︷︷ ︸

(1)

−Bft(w∥w′
t+1)

Consider term (1) in the above equation. Let gt(w) =
∑t

s=1 fs(w). We can write ft(w) = gt(w)−
gt−1(w), so ∇ft(w) = ∇gt(w)−∇ft−1(w). Substituting this expression for ∇ft(w

′
t+1)

(1) = ∇ft(w
′
t+1)

⊤(w′
t+1 − w) = (∇gt(w

′
t+1)−∇gt−1(w

′
t+1))

⊤(w′
t+1 − w)
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Adding and subtracting ∇gt−1(wt)
⊤(w′

t+1 − w)

= (∇gt(w
′
t+1)−∇gt−1(wt))

⊤(w′
t+1 − w) + (∇gt−1(wt)−∇gt−1(w

′
t+1))

⊤(w′
t+1 − w)︸ ︷︷ ︸

(2)

Using Lemma 22, the term (2) is:

(∇gt−1(wt)−∇gt−1(w
′
t+1))

⊤(w′
t+1 − w) = Bgt−1(w∥wt)− Bgt−1(w∥w′

t+1)− Bgt−1(w
′
t+1∥wt)

Substituting this back in the expression for ft(wt)− ft(w) and rearranging, we have:

ft(wt)− ft(w) = ∇ft(wt)
⊤(wt − w′

t+1)− Bft(w
′
t+1∥wt)

+ (∇gt(w
′
t+1)−∇gt−1(wt))

⊤(w′
t+1 − w)

+ Bgt−1(w∥wt)− Bgt−1(w∥w′
t+1)− Bgt−1(w

′
t+1∥wt)

− Bft(w∥w′
t+1)

= ∇ft(wt)
⊤(wt − w′

t+1)− Bgt(w
′
t+1∥wt)

+ (∇gt(w
′
t+1)−∇gt−1(wt))

⊤(w′
t+1 − w)

+ Bgt−1(w∥wt)− Bgt(w∥w′
t+1)

= (∇ft(wt)−∇mt(wt))
⊤(wt − w′

t+1)− Bgt(w
′
t+1∥wt)

+ (∇gt(w
′
t+1)−∇gt−1(wt)−∇mt(wt))

⊤(w′
t+1 − w)

+ Bgt−1(w∥wt)− Bgt(w∥w′
t+1)−∇mt(wt)

⊤(w − wt)

By Lemma 22, we can write:

Bgt−1(w∥wt) = Bgt−1(w∥w′
t)− Bgt−1(wt∥w′

t) + (∇gt−1(w
′
t)−∇gt−1(wt))

⊤(w − wt)

Substituting this back in the expression for ft(wt)− ft(w), we and simplifying, we have:

ft(wt)− ft(w) = (∇ft(wt)−∇mt(wt))
⊤(wt − w′

t+1)− Bgt(w
′
t+1∥wt)− Bgt−1(wt∥w′

t)

+ (∇gt(w
′
t+1)−∇gt−1(wt)−∇mt(wt))

⊤(w′
t+1 − w)︸ ︷︷ ︸

(3)

+ (∇gt−1(wt) +∇mt(wt)−∇gt−1(w
′
t))

⊤(wt − w)︸ ︷︷ ︸
(4)

+ Bgt−1(w∥w′
t)− Bgt(w∥w′

t+1)

We introduce the following notation to ease the algebraic manipulation:

Gt−1(w) = gt−1(w) +mt(w) +
F (w)

ηt−1

G′
t(w) = gt(w) +

F (w)

ηt
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We simplify term (3) and apply Lemma 23:

(3) = (∇G′
t(w

′
t+1)−∇Gt−1(wt))

⊤(w′
t+1 − w) +

(
∇F (wt)

ηt−1
−

∇F (w′
t+1)

ηt

)⊤
(w′

t+1 − w)

= (∇G′
t(w

′
t+1)−∇Gt−1(wt))

⊤(w′
t+1 − w) + Bα,ηt−1

F (w∥wt)− Bα,ηt
F (w∥w′

t+1)− Bηt,ηt−1

F (w′
t+1∥wt)

Similarly, we simplify term (4) and apply Lemma 23:

(4) = (∇Gt−1(wt)−∇G′
t−1(w

′
t))

⊤(wt − w) +

(
∇F (w′

t)

ηt−1
− ∇F (wt)

ηt−1

)⊤
(wt − w)

= (∇Gt−1(wt)−∇G′
t−1(w

′
t))

⊤(wt − w) + Bα,ηt−1

F (w∥w′
t)− Bα,ηt−1

F (w∥wt)− Bηt−1,ηt−1

F (wt∥w′
t)

Substituting these back in the expression for ft(wt)− ft(w), we have:

= (∇ft(wt)−∇mt(wt))
⊤(wt − w′

t+1)− Bgt(w
′
t+1∥wt)− Bgt−1(wt∥w′

t)

+ (∇G′
t(w

′
t+1)−∇Gt−1(wt))

⊤(w′
t+1 − w) + Bα,ηt−1

F (w∥wt)− Bα,ηt
F (w∥w′

t+1)− Bηt,ηt−1

F (w′
t+1∥wt)

+ (∇Gt−1(wt)−∇G′
t−1(w

′
t))

⊤(wt − w) + Bα,ηt−1

F (w∥w′
t)− Bα,ηt−1

F (w∥wt)− Bηt−1,ηt−1

F (wt∥w′
t)

+ Bgt−1(w∥w′
t)− Bgt(w∥w′

t+1)

= (∇ft(wt)−∇mt(wt))
⊤(wt − w′

t+1)− Bgt(w
′
t+1∥wt)− Bgt−1(wt∥w′

t)

− Bηt,ηt−1

F (w′
t+1∥wt)− Bηt−1,ηt−1

F (wt∥w′
t)

+ Bgt−1(w∥w′
t)− Bgt(w∥w′

t+1) + Bα,ηt−1

F (w∥w′
t)− Bα,ηt

F (w∥w′
t+1)

+ (∇G′
t−1(w

′
t)−∇G′

t(w
′
t+1))

⊤w

+∇Gt−1(wt)
⊤(wt − w′

t+1)

+∇G′
t(w

′
t+1)w

′
t+1 −∇G′

t−1(w
′
t)
⊤wt

Since wt minimizes Gt−1(w), we have (∇Gt−1(wt))
⊤(wt − w′

t+1) ≤ 0. Taking the summation
over the t terms

∑T
t=1 ft(wt)− ft(w), we have :

≤
T∑
t=1

(
(∇ft(wt)−∇mt(wt))

⊤(wt − w′
t+1)− Bgt(w

′
t+1∥wt)− Bηt,ηt−1

F (w′
t+1∥wt)

)
+

T∑
t=1

(
−Bgt−1(wt∥w′

t)− Bηt−1,ηt−1

F (wt∥w′
t)
)

+
T∑
t=1

Bgt−1(w∥w′
t)− Bgt(w∥w′

t+1)︸ ︷︷ ︸
(5)

+

T∑
t=1

Bα,ηt−1

F (w∥w′
t)− Bα,ηt

F (w∥w′
t+1)︸ ︷︷ ︸

(6)

+

T∑
t=1

(∇G′
t−1(w

′
t)−∇G′

t(w
′
t+1))

⊤w︸ ︷︷ ︸
(7)

+
T∑
t=1

(
∇G′

t(w
′
t+1)w

′
t+1 −∇G′

t−1(w
′
t)
⊤wt

)
︸ ︷︷ ︸

(8)
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We can telescope term (5) to get:
T∑
t=1

Bgt−1(w∥w′
t)− Bgt(w∥w′

t+1) = Bg0(w∥w′
1)− BgT (w∥w

′
T+1) = 0− BgT (w∥w

′
T+1) ≤ 0

We can telescope term (6) to get:
T∑
t=1

Bα,ηt−1

F (w∥w′
t)− Bα,ηt

F (w∥w′
t+1) = Bα,η0

F (w∥w′
1)− Bα,ηT

F (w∥w′
T+1)

Taking α = ηT , we have:

BηT ,η0
F (w∥w′

1)− BηT ,ηT
F (w∥w′

T+1) ≤ BηT ,η0
F (w∥w′

1)

Term (7) can be telescoped as:
T∑
t=1

(∇G′
t−1(w

′
t)−∇G′

t(w
′
t+1))

⊤w = (∇G′
0(w

′
1)−∇G′

T (w
′
T+1))

⊤w = −∇GT (w
′
T+1)

⊤w

The hint for round T + 1 can be taken as mT+1(w) = 0. We have wT+1 = w′
T+1. Finally for term

(8):
T∑
t=1

∇G′
t(w

′
t+1)

⊤w′
t+1 −∇G′

t−1(w
′
t)
⊤wt =

T−1∑
t=1

∇G′
t(w

′
t+1)

⊤(w′
t+1 − wt+1) +∇G′

T (w
′
T+1)

⊤wT+1

≤ ∇G′
T (w

′
T+1)

⊤w′
T+1

Here, we used the fact that w′
t+1 minimizes G′

t(w). So ∇G′
t(w

′
t+1)

⊤(w′
t+1−w) ≤ 0 for all w ∈ D.

Combining the upper bounds for terms (7) and (8):

(7) + (8) ≤ ∇GT (w
′
T+1)

⊤(w′
T+1 − w) ≤ 0

Thus, we have the result
∑T

t=1 ft(wt)− ft(w) ≤:

≤ BηT ,η0
F (w∥w′

1) +

T∑
t=1

[
(∇ft(wt)−∇mt(wt))

⊤(wt − w′
t+1)− Bgt(w

′
t+1∥wt)− Bηt,ηt−1

F (w′
t+1∥wt)

− Bgt−1(wt∥w′
t)− Bηt−1,ηt−1

F (wt∥w′
t)
]

Further, if F is such that minw∈DF (w) = 0, then w′
1 ∈ minw∈D F (w). So, BηT ,η0

F (w∥w′
1) ≤

F (w)
ηT

.
If the sequence η0, . . . , ηT is non-increasing, then

Bηt,ηt−1

F (w′
t+1∥wt) ≥

1

ηt−1
BF (w

′
t+1∥wt)

the above bound simplifies to
∑T

t=1 ft(wt)− ft(w):

≤ F (w)

ηT
+

T∑
t=1

[
(∇ft(wt)−∇mt(wt))

⊤(wt − w′
t+1)− Bgt(w

′
t+1∥wt)−

BF (w
′
t+1∥wt)

ηt−1

− Bgt−1(wt∥w′
t)−

BF (wt∥w′
t)

ηt−1

]
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Appendix C. Proofs from Section 3 and Section 4

Lemma 1 For all x, y ∈ ∆n, rt ∈ Rn
+ such that r⊤t x, r

⊤
t y > 0, we have the inequality:

− log(r⊤t x) ≥ − log(r⊤t y)−
r⊤t (x− y)

r⊤t y
+

r⊤t y

2maxi rt(i)

(
r⊤t (x− y)

r⊤t y

)2

Proof When r⊤t x, r
⊤
t y > 0, we have 0 <

r⊤t x
maxi rt(i)

,
r⊤t y

maxi rt(i)
≤ 1. We apply Corollary 20 (with

x =
r⊤t y

maxi rt(i)
and y =

r⊤t x
maxi rt(i)

) to obtain:

r⊤t x

r⊤t y
− 1− log

(
r⊤t x

r⊤t y

)
≥ 1

2

(r⊤t x− r⊤t y)
2

(maxi rt(i))(r⊤t y)

=⇒ − log(r⊤t x) ≥ − log(r⊤t y)−
r⊤t (x− y)

r⊤t y
+

r⊤t y

2maxi rt(i)

(
r⊤t (x− y)

r⊤t y

)2

Let I be the n× n identity matrix. We state the following lemma, which is a tighter version of
Lemma 11 in Hazan et al. (2007)

Lemma 24 (Hazan et al., 2007, Lemma 11) Let x1, . . . , xt be a sequence of vectors in Rn. Define
Ht = ϵI +

∑t
s=1 xsx

⊤
s . Then, the following holds:

T∑
t=1

x⊤t H
−1
t xt ≤ n log

(
1 +

∑T
t=1 ∥xt∥22
nϵ

)

Lemma 25 For any w1, . . . , wT ∈ ∆n, and r1, . . . , rT ∈ Rn
+ we have the inequality:

1

2

T∑
t=1

rt

r⊤t wt

⊤
(

t∑
s=1

rsr
⊤
s

(r⊤s ws)(maxi rs(i))
+ ϵI + λI

)−1
rt

r⊤t wt
≤ nR

2
log

(
1 +

∑T
t=1 ∥r̂t∥22
n(ϵ+ λ)

)

Here R = maxt,i,j
rt(i)
rt(j)

and r̂s =
rs√

(r⊤s ws)(maxi rs(i))

Proof Let r̃t = rt
maxi rt(i)

. We re-write the above expression with r̃t as:

1

2

T∑
t=1

1

(r̃⊤t wt)2
r̃⊤t

(
t∑

s=1

r̃sr̃
⊤
s

r̃⊤s ws
+ ϵI + λI

)−1

r̃t

Now let r̂t = r̃t√
r̃⊤t wt

= rt√
(r⊤t wt)(maxi rt(i))

= rt
r⊤t wt

√
r⊤t wt

maxi rt(i)

1

2mint(r̃⊤t wt)

T∑
t=1

r̂t

(
t∑

s=1

r̂sr̂
⊤
s + ϵI + λI

)−1

r̂t
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We have 1
mint(r̃⊤t wt)

= maxt
1

(r̃⊤t wt)
= maxt

maxi rt(i)

r⊤t wt
≤ maxt

maxi rt(i)
mini rt(i)

= maxt,i,j
rt(i)
rt(j)

= R.
Using the so called Elliptical potential lemma (Lemma 24), we have the bound:

T∑
t=1

r̂t

(
t∑

s=1

r̂sr̂
⊤
s + ϵI + λI

)−1

r̂t ≤ n log

(
1 +

∑T
t=1 ∥r̂t∥22
n(ϵ+ λ)

)
This gives us the stated result.

Theorem 2 For w ∈ ∆, any sequence of returns r1, . . . , rT ∈ Rn
+, define ft(w) = − log(r⊤t w).

With ϵ = 1, AdaCurv ONS (Equation (2)) has the data-dependent regret bound:

T∑
t=1

ft(wt)− ft(w) ≤
1

2
+

nR

2
log (1 + TR)

If we set ϵ = 0, we get the data-dependent regret bound for AdaCurv FTAL:

T∑
t=1

ft(wt)− ft(w) ≤ R+
nR

2
log
(
1 + T 2

)
Proof
Recall the adaptive curvature surrogate function in Equation (1):

f̃t(w) = ft(wt) +∇ft(wt)
⊤(w − wt) +

r⊤t wt

2(maxi rt(i))
(∇ft(wt)

⊤(w − wt))
2

Due to Lemma 1, we know that that f̃t(w) ≤ ft(w) for all w ∈ D and f̃t(wt) = ft(wt). Thus,

T∑
t=1

ft(wt)− ft(w) ≤
T∑
t=1

f̃t(wt)− f̃t(w)

Applying Corollary 13 and with the constant regularizer ϵ
2

(
∥w∥22 − 1

n

)
, we get:

T∑
t=1

f̃t(wt)− f̃t(w) ≤
ϵ

2
∥w∥22 +

T∑
t=1

∇f̃t(wt)
⊤(wt − wt+1)− Bg̃t(wt+1∥wt)−

ϵ

2
∥wt+1 − wt∥22

Here g̃t =
∑t

s=1 f̃t. Note that ∇f̃t(wt) = ∇ft(wt) = − rt
r⊤t wt

. Since g̃t(w) is quadratic in w, we
have Bg̃t(wt+1∥wt)

=
1

2
(wt+1−wt)

⊤∇2g̃t(wt)(wt+1−wt) =
1

2
(wt+1−wt)

⊤

(
t∑

s=1

rsr
⊤
s

(r⊤s ws)(maxi rs(i))

)
(wt+1−wt)

Thus
∑T

t=1 ft(wt)− ft(w) ≤

ϵ

2
∥w∥22 +

T∑
t=1

− rt

r⊤t wt

⊤
(wt − wt+1)−

1

2
(wt+1 − wt)

⊤

(
t∑

s=1

rsr
⊤
s

(r⊤s ws)(maxi rs(i))
+ ϵI

)
(wt+1 − wt)
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Add and subtract λ
2∥wt+1 − wt∥22.

=
ϵ

2
∥w∥22 +

T∑
t=1

− rt

r⊤t wt

⊤
(wt − wt+1)−

1

2
(wt+1 − wt)

⊤

(
t∑

s=1

rsr
⊤
s

(r⊤s ws)(maxi rs(i))
+ ϵI + λI

)
(wt+1 − wt)

+
T∑
t=1

λ

2
∥wt+1 − wt∥22

Upper bound the quadratic function in wt+1 − wt.

≤ ϵ

2
∥w∥22 +

1

2

T∑
t=1

rt

r⊤t wt

⊤
(

t∑
s=1

rsr
⊤
s

(r⊤s ws)(maxi rs(i))
+ ϵI + λI

)−1
rt

r⊤t wt
+

T∑
t=1

λ

2
∥wt+1 − wt∥22

Since w,wt ∈ ∆n, we can bound ∥wt+1 − wt∥22 ≤ 2 and ∥w∥22 ≤ 1. Using Lemma 25, we have:

T∑
t=1

ft(wt)− ft(w) ≤
ϵ

2
+

nR

2
log

(
1 +

∑T
t=1 ∥r̂t∥22
n(ϵ+ λ)

)
+ λT

Since λ ≥ 0 can be chosen arbitrarily, we have the bound:

T∑
t=1

ft(wt)− ft(w) ≤
ϵ

2
+ inf

λ≥0

(
λT +

nR

2
log

(
1 +

∑T
t=1 ∥r̂t∥22
n(ϵ+ λ)

))

Choosing ϵ = 1, λ = 0 and noting that ∥r̂t∥22 ≤ nR gives the regret bound for AdaCurv ONS.

T∑
t=1

ft(wt)− ft(w) ≤
1

2
+

nR

2
log (1 + TR)

Setting ϵ = 0 and λ = R/T gives us the regret bound for AdaCurv FTAL.

T∑
t=1

ft(wt)− ft(w) ≤ R+
nR

2
log
(
1 + T 2

)

Theorem 3 For w ∈ ∆, any sequence of returns r1, . . . , rT ∈ Rn
+, define ft(w) = − log(r⊤t w). If

we set ϵ = 1, we get the bound for LB-AdaCurv ONS:

T∑
t=1

ft(wt)− ft(w) ≤
5

2
+ 2n log T +min

(
nR log (1 +RT ) , 2 + 2

√
2nT log(T )

)
If we set ϵ = 0, we get the bound for LB-AdaCurv FTAL:

T∑
t=1

ft(wt)− ft(w) ≤ 2 + 2n log(T ) + min
(
2R+ nR log

(
1 + T 2

)
, 2 + 2

√
2nT log(T )

)
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Proof First, we decompose the regret into two terms:

T∑
t=1

ft(wt)− ft(w) =

T∑
t=1

ft(wt)− ft(w
γ) +

T∑
t=1

ft(w
γ)− ft(w)

Here wγ = (1− γ)w + γ/n. For the second term, we have:

T∑
t=1

ft(w
γ)− ft(w) =

T∑
t=1

log

(
r⊤t w

(1− γ)r⊤t w + γr⊤t
1
n

)
≤ T log

(
1

1− γ

)
≤ 2γT

Here, we used the fact that when γ ≤ 1/2, we have log
(

1
1−γ

)
≤ 2γ. For the first term, we use the

surrogate function property:

T∑
t=1

ft(wt)− ft(w
γ) ≤

T∑
t=1

f̃t(wt)− f̃t(w
γ)

So, we have:

T∑
t=1

ft(wt)− ft(w) ≤
T∑
t=1

f̃t(wt)− f̃t(w
γ) + 2γT

The iterates of LB-AdaCurv ONS are given by:

wt ∈ arg min
w∈∆n

t−1∑
s=1

f̃s(w) +
ϵ

2
∥w∥22 +

1

ηt−1

n∑
i=1

− log(w(i))

The updates can be viewed as an FTRL with time varying learning rate ηt−1 for regularizer F (w) =∑n
i=1[log(1/n)− log(w(i))] and constant regularizer ϵ

2

(
∥w∥22 − 1

n

)
. Here F (w) is the log-barrier

regularizer. Using Corollary 14 we have the regret bound
∑T

t=1 f̃t(wt)− f̃t(w
γ)

≤ ϵ

2
∥wγ∥22 +

F (wγ)

ηT
+

T∑
t=1

∇f̃t(wt)
⊤(wt − wt+1)− Bg̃t(wt+1∥wt)−

ϵ

2
∥wt+1 − wt∥22 −

1

ηt−1
BF (wt+1∥wt)

Here g̃t =
∑t

s=1 f̃s. We compute ∇f̃t(wt) = ∇ft(wt) = − rt
r⊤t wt

. Moreover, g̃t(w) is quadratic in
w, we have Bg̃t(wt+1∥wt)

=
1

2
(wt+1−wt)

⊤∇2g̃t(wt)(wt+1−wt) =
1

2
(wt+1−wt)

⊤

(
t∑

s=1

rsr
⊤
s

(r⊤s ws)(maxi rs(i))

)
(wt+1−wt)

We bound F (wγ) below:

F (wγ) = n log(1/n)− (n− 1) log(γ/n)− log((1− γ) + γ/n)

≤ n log(1/n)− n log(γ/n) = n log(1/γ)
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So for the first term, we have:

ϵ

2
∥wγ∥22 +

F (wγ)

ηT
≤ ϵ

2
+

n

ηT
log

(
1

γ

)
Define Mt(ηt−1) as

Mt(ηt−1) = sup
w∈∆n

∇ft(wt)
⊤(wt − w)− Bg̃t(w∥wt)−

ϵ

2
∥w − wt∥22 −

1

ηt−1
BF (w∥wt)

Let w⋆
t be the optimal value of w in the optimization. We pick ηt as:

ηt =
α

β +
∑t

s=1Ms(ηs−1)

We bound the regret in in two different ways. Substituting ηt in the regret inequality, we have:

T∑
t=1

f̃t(wt)− f̃t(w
γ) ≤ ϵ

2
+

n

ηT
log

(
1

γ

)
+

T∑
t=1

Mt(ηt−1)

=
ϵ

2
+

n log(1/γ)β

α
+

(
n log(1/γ)

α
+ 1

)( T∑
t=1

Mt(ηt−1)

)
Observe that Mt(ηt−1) can be written as:

Mt(ηt−1) = ∇ft(wt)
⊤(wt − w⋆

t )− Bg̃t(w
⋆
t ∥wt)−

ϵ

2
∥w⋆

t − wt∥22 −
1

ηt−1
BF (w

⋆
t ∥wt)

Ignoring the last Bregman term.

≤ ∇ft(wt)
⊤(wt − w⋆

t )− Bg̃t(w
⋆
t ∥wt)−

ϵ

2
∥w⋆

t − wt∥22

Adding and subtracting λ
2∥w

⋆
t − wt∥22.

= ∇ft(wt)
⊤(wt − w⋆

t )− Bg̃t(w
⋆
t ∥wt)−

ϵ+ λ

2
∥w⋆

t − wt∥22 +
λ

2
∥w⋆

t − wt∥22

Taking the sum, we have
∑T

t=1Mt(ηt−1)

≤
T∑
t=1

(
∇ft(wt)

⊤(wt − w⋆
t )− Bg̃t(w

⋆
t ∥wt)−

ϵ+ λ

2
∥w⋆

t − wt∥22
)
+

T∑
t=1

λ

2
∥w⋆

t − wt∥22

≤
T∑
t=1

− rt

r⊤t wt

⊤
(wt − w⋆

t )−
1

2
(w⋆

t − wt)
⊤

(
t∑

s=1

rsr
⊤
s

(r⊤s ws)(maxi rs(i))
+ ϵI + λI

)
(w⋆

t − wt)

+

T∑
t=1

λ

2
∥w⋆

t − wt∥22

≤ λ

2

T∑
t=1

∥w⋆
t − wt∥22 +

1

2

T∑
t=1

rt

(r⊤t wt)

⊤
(

t∑
s=1

rsr
⊤
s

(r⊤s ws)(maxi rs(i))
+ ϵI + λI

)−1
rt

(r⊤t wt)
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Using Lemma 25 and using the fact that λ ≥ 0 can be chosen arbitrarily, we have:

T∑
t=1

Mt(ηt−1) ≤ inf
λ≥0

(
λT +

nR

2
log

(
1 +

∑T
t=1 ∥r̂t∥22
n(ϵ+ λ)

))

Thus, we have the following bound:

F (wγ)

ηT
+

T∑
t=1

Mt(ηt−1) ≤
ϵ

2
+
n log(1/γ)β

α
+

(
n log(1/γ)

α
+ 1

)(
inf
λ≥0

(
λT +

nR

2
log

(
1 +

∑T
t=1 ∥r̂t∥22
n(ϵ+ λ)

)))

Using α = n log T , β = 2n log T and γ = 1/T , the above bound yields:

T∑
t=1

f̃t(wt)− f̃t(w
γ) ≤ ϵ

2
+ 2n log T + 2 inf

λ≥0

(
λT +

∑T
t=1 ∥r̂t∥22
n(ϵ+ λ)

)
(6)

The second way to bound regret is below. Observe that:

Mt(ηt−1) = ∇ft(wt)
⊤(wt − w⋆

t )− Bg̃t(w
⋆
t ∥wt)−

ϵ

2
∥w⋆

t − wt∥ −
1

ηt−1
BF (w

⋆
t ∥wt)

≤ ∇ft(wt)
⊤(wt − w⋆

t )−
1

ηt−1
BF (w

⋆
t ∥wt)

=
1

ηt−1

[
ηt−1∇ft(wt)

⊤(wt − w⋆
t )− BF (w

⋆
t ∥wt)

=
1

ηt−1

[
ηt−1(∇ft(wt) + c1)⊤(wt − w⋆

t )− BF (w
⋆
t ∥wt)

]
Here c can be any arbitrary constant.

Using Lemma 19, we have the following bound if ∥ηt−1(∇ft(wt) + c1)∥2∇2F−1(wt)
≤ 1

4 .

Mt(ηt−1) ≤
1

ηt−1
∥ηt−1(∇ft(wt) + c1)∥2∇2F−1(wt)

= ηt−1∥(∇ft(wt) + c1) ◦ wt∥22

Since c, can be an arbitrary constant, we have that if η2t−1 infc ∥(∇ft(wt) + c1) ◦wt∥22 ≤ 1/4 then:

Mt(ηt−1) ≤ inf
c
ηt−1∥(∇ft(wt) + c1) ◦ wt∥22

Choosing c = 0, we have that if η2t−1 infc ∥(∇ft(wt) + c1) ◦wt∥22 ≤ η2t−1∥∇ft(wt) ◦wt∥22 ≤ 1/4,
then:

Mt(ηt−1) ≤ inf
c
ηt−1∥(∇ft(wt) + c1) ◦ wt∥22 ≤ ηt−1∥∇ft(wt) ◦ wt∥22 ≤ ηt−1

Observe that η2t−1∥∇ft(wt) ◦ wt∥22 ≤ 1
4 holds if ηt−1 ≤ 1

2 . Thus, when ηt−1 ≤ 1
2 , we have

Mt(ηt−1) ≤ ηt−1 ≤ 1
2 and Mt(ηt−1)/ηt−1 ≤ infc ∥(∇ft(wt)+c1)◦wt∥22 ≤ ∥∇ft(wt)◦wt∥22 ≤ 1.
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Applying Lemma 15, we have the following bound::

T∑
t=1

f̃t(wt)− f̃t(w
γ) ≤ ϵ

2
+

n

ηT
log

(
1

γ

)
+

T∑
t=1

Mt(ηt−1)

≤ ϵ

2
+ n log(1/γ)

(
β

α
+

1

2α

)

+
1

2
+

√√√√2

T∑
t=1

inf
c
∥(∇ft(wt) + c1) ◦ wt∥22

(
n log(1/γ)√

α
+
√
α

)
Using α = n log T , β = 2n log T and γ = 1/T , the above bound yields

∑T
t=1 f̃t(wt) −

f̃t(w
γ) ≤

ϵ

2
+

(
2n log(T ) +

1

2

)
+

1

2
+ 2

√√√√2n

(
T∑
t=1

inf
c
∥(∇ft(wt) + c1) ◦ wt∥22

)
log(T ) (7)

Both Equation (6) and Equation (7) hold simultaneously. Combining them, we have the bound:

T∑
t=1

ft(wt)− ft(w) ≤ 2 +
ϵ

2
+ 2n log T + 2min

[
inf
λ≥0

(
λT +

nR

2
log

(
1 +

∑T
t=1 ∥r̂t∥22
n(ϵ+ λ)

))
,

1 +

√√√√2n

(
T∑
t=1

inf
c
∥(∇ft(wt) + c1) ◦ wt∥22

)
log(T )

]
Using ϵ = 1 and λ = 0, The regret of LB-AdaCurv ONS will be:

T∑
t=1

ft(wt)− ft(w) ≤
5

2
+ 2n log T +min

(
nR log (1 +RT ) , 2 + 2

√
2nT log(T )

)
Using ϵ = 0 and λ = R/T , the regret of LB-AdaCurv FTAL algorithm:

T∑
t=1

ft(wt)− ft(w) ≤ 2 + 2n log(T ) + min
(
2R+ nR log

(
1 + T 2

)
, 2 + 2

√
2nT log(T )

)

Appendix D. Proofs from Section 5 and Section 6

Theorem 4 For w ∈ ∆, any sequence of returns r1, . . . , rT ∈ Rn
+, return prediction distribu-

tions D1, . . . , DT , concave and strictly increasing utility function U with a strictly decreasing first
derivative U ′, define ft(w) = − log(r⊤t w). The updates of OEU-LB-FTRL (Algorithm 2) satisfy
the regret bound:

T∑
t=1

ft(wt)−ft(w) ≤ 2+C (1 + 2n log T )+2

√√√√2n

(
T∑
t=1

∥∥∥Er∼Dt [U
′(r⊤wt)r ◦ wt]−

rt ◦ wt

r⊤t wt

∥∥∥2
2

)
log T

39



PUTTA AGRAWAL

Where C = 1 + supx xU
′(x). This implies the worst-case regret bound:

T∑
t=1

ft(wt)− ft(w) ≤ 2 + C (1 + 2n log T ) + 2C
√

2nT log T

Moreover, if U and Dt are such that Er∼Dt [U
′(r⊤wt)r ◦ wt] = rt◦wt

r⊤t wt
, then we have the regret

bound:
T∑
t=1

ft(wt)− ft(w) ≤ 2 + 2Cn log T

Proof First, we decompose the regret into two terms:

T∑
t=1

ft(wt)− ft(w) =

T∑
t=1

ft(wt)− ft(w
γ) +

T∑
t=1

ft(w
γ)− ft(w)

Here wγ = (1− γ)w + γ/n. For the second term, we have:

T∑
t=1

ft(w
γ)− ft(w) =

T∑
t=1

log

(
r⊤t w

(1− γ)r⊤t w + γr⊤t
1
n

)
≤ T log

(
1

1− γ

)
≤ 2γT

Here, we used the fact that when γ ≤ 1/2, we have log
(

1
1−γ

)
≤ 2γ. For the first term, we use

convexity:

T∑
t=1

ft(wt)− ft(w
γ) ≤

T∑
t=1

∇ft(wt)
⊤(wt − wγ)

So, we have:

T∑
t=1

ft(wt)− ft(w) ≤
T∑
t=1

∇ft(wt)
⊤(wt − wγ) + 2γT

Since OEU-LB-FTRL is an instance of optimistic FTRL on the gradients ∇ft(wt), we can ap-
ply Theorem 12 with hint function mt(w) = −Er∼Dt [U(r⊤w)]. This gives the regret inequality
∇ft(wt)

⊤(wt − wγ):

≤ F (wγ)

ηT
+

T∑
t=1

[
(∇ft(wt)−∇mt(wt))

⊤(wt − w′
t+1)−

BF (w
′
t+1∥wt)

ηt−1

]
≤ F (wγ)

ηT
+

T∑
t=1

Mt(ηt−1)

Note that ∇mt(w) = −Er∼Dt [U
′(r⊤w)r] and w′

t are the iterates of LB-FTRL with no hints. We
bound F (wγ) below:

F (wγ) = n log(1/n)− (n− 1) log(γ/n)− log((1− γ) + γ/n)

≤ n log(1/n)− n log(γ/n) = n log(1/γ)
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Consider Mt(ηt−1). Assume the supremum in it’s optimization occurs at w⋆
t .

Mt(ηt−1) =
(
∇ft(wt) + Er∼Dt [U

′(r⊤wt)r]
)⊤

(wt − w⋆
t )−

1

ηt−1
BF (w

⋆
t ∥wt)

=
1

ηt−1

(
ηt−1

(
∇ft(wt) + Er∼Dt [U

′(r⊤wt)r]
)⊤

(wt − w⋆
t )− BF (w

⋆
t ∥wt)

)
Applying Lemma 19, if ∥ηt−1

(
∇ft(wt) + Er∼Dt [U

′(r⊤wt)r]
)
∥∇2F (wt)−1 ≤ 1/2, then:

Mt(ηt−1) ≤
1

ηt−1
∥ηt−1

(
∇ft(wt) + Er∼Dt [U

′(r⊤wt)r]
)
∥2∇2F (wt)−1

= ηt−1

∥∥∥Er∼Dt [U
′(r⊤wt)r ◦ wt]−

rt ◦ wt

r⊤t wt

∥∥∥2
2

= ηt−1

∥∥∥Er∼Dt

[
(r⊤wt)U

′(r⊤wt)
r ◦ wt

r⊤wt

]
− rt ◦ wt

r⊤t wt

∥∥∥2
2

≤ ηt−1(1 + sup
x

xU ′(x))2

Since ∥∇ft(wt)+Er∼Dt [U
′(r⊤wt)r]∥∇2F (wt)−1 ≤ 1+supx xU

′(x), we can ensure that Lemma 19
is applicable by picking ηt−1 ≤ (2(1 + supx xU

′(x)))−1. Thus, we have

Mt(ηt−1) ≤ ηt−1(1 + sup
x

xU ′(x))2 ≤ 1 + supx xU
′(x)

2
=

C

2

Mt(ηt−1)

ηt−1
≤
∥∥∥Er∼Dt [U

′(r⊤wt)r ◦ wt]−
rt ◦ wt

r⊤t wt

∥∥∥2
2
≤ (1 + sup

x
xU ′(x))2 = C2

Applying Lemma 15 and picking γ = 1/T , we have the bound:

F (wγ)

ηT
+

T∑
t=1

Mt(ηt−1) ≤ C

(
2n log T +

1

2

)
+

C

2

+ 2

√√√√2n

(
T∑
t=1

∥∥∥Er∼Dt [U
′(r⊤wt)r ◦ wt]−

rt ◦ wt

r⊤t wt

∥∥∥2
2

)
log T

Thus, we have the first bound:

T∑
t=1

ft(wt)−ft(w) ≤ 2+C (1 + 2n log T )+2

√√√√2n

(
T∑
t=1

∥∥∥Er∼Dt [U
′(r⊤wt)r ◦ wt]−

rt ◦ wt

r⊤t wt

∥∥∥2
2

)
log T

Since
∥∥∥Er∼Dt [U

′(r⊤wt)r ◦ wt]− rt◦wt

r⊤t wt

∥∥∥2
2
≤ C2, this implies the worst-case bound:

T∑
t=1

ft(wt)− ft(w) ≤ 2 + C (1 + 2n log T ) + 2C
√

2nT log T
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If the condition Er∼Dt [U
′(r⊤wt)r ◦ wt] =

rt◦wt

r⊤t wt
is satisfied, then Mt(ηt−1) = 0. In this case, we

have the bound:
T∑
t=1

ft(wt)− ft(w) ≤ 2 +
F (wγ)

ηT
≤ 2 + 2Cn log T

Theorem 5 For w ∈ ∆n, any sequence of returns r1, . . . , rT ∈ Rn
+, return prediction distribu-

tions D1, . . . , DT , concave and strictly increasing utility function U with a strictly decreasing first
derivative U ′, define ft(w) = − log(r⊤t w). The updates of BoB-OPS (Algorithm 3) satisfy the
regret bounds:

T∑
t=1

ft(wt)− ft(w
EU
t ) ≤ RmetaRM (2, T ) and

T∑
t=1

ft(wt)− ft(w) ≤ RRM (n, T ) +RmetaRM (2, T )

RRM (n, T ) and RmetaRM (2, T ) are the regret bounds for the algorithm used by the RM investor
and the meta-investor respectively. If the RM investor and meta-RM investor use Cover’s Universal
Portfolio (Cover, 1991) algorithm satisfy the regret bounds:

T∑
t=1

ft(wt)− ft(w
EU
t ) ≤ log(T + 1) and

T∑
t=1

ft(wt)− ft(w) ≤ n log(T + 1)

Proof The regret bound for the meta-investor is:

T∑
t=1

− log(γtr
EU
t + (1− γt)r

RM
t )−

T∑
t=1

− log(γrEU
t + (1− γ)rRM

t ) ≤ RmetaRM (2, T )

Pick γ = 1 and note that rEU
t = r⊤t w

EU
t , rRM

t = r⊤t w
RM
t

=⇒
T∑
t=1

− log(γtr
⊤
t w

EU
t + (1− γt)r

⊤
t w

RM
t )−

T∑
t=1

− log(r⊤t w
EU
t ) ≤ RmetaRM (2, T )

=⇒
T∑
t=1

− log(r⊤t wt)−
T∑
t=1

− log(r⊤t w
EU
t ) ≤ RmetaRM (2, T )

=⇒
T∑
t=1

ft(wt)−
T∑
t=1

ft(w
EU
t ) ≤ RmetaRM (2, T )

This gives the first bound in the theorem. If we pick γ = 0, we would have arrived at:

T∑
t=1

ft(wt)−
T∑
t=1

ft(w
RM
t ) ≤ RmetaRM (2, T )

The regret bound for the RM investor is:

T∑
t=1

ft(w
RM
t )−

T∑
t=1

ft(w) ≤ RRM (n, T )
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Adding these two inequalities, we have the second bound in the theorem:

T∑
t=1

ft(wt)−
T∑
t=1

ft(w) ≤ RmetaRM (2, T ) +RRM (n, T )

As the regret of Cover’s UP algorithm is bounded by (n− 1) log(T +1) (Cesa-Bianchi and Lugosi,
2006, Theorem 10.3), we get the final result stated in the theorem.

Appendix E. Proofs from Section 7

Lemma 26 (Srebro et al., 2010, Lemma 3.1) If a non-negative function f is H-smooth on the
domain D, then ∥∇f(w)∥ ≤

√
4Hf(w) for all w ∈ D

Lemma 27 Let ft = − log(r⊤t w) and let w⋆
t = argminw∈∆n ft(w), i.e., it is the optimal portfolio

for the return vector rt. Let lt(w) = ft(w)− ft(w
⋆
t ). Then lt is nR2-smooth on ∆n. So,

∥∇ft(w)∥22 ≤ 4nR2lt(w)

Proof We have ∇lt(w) = ∇ft(w). So for any w,w′ ∈ ∆n, we have:

s∥∇lt(w)−∇lt(w
′)∥2 =

∥∥∥∥ rt

r⊤t w
− rt

r⊤t w
′

∥∥∥∥
2

=
∥rt∥22∥w − w′∥2
(r⊤t w)(r

⊤
t w

′)
≤ nR2∥w − w′∥2

Thus lt(w) is nR2 smooth on ∆n. Applying Lemma 26, we have the final result.

Lemma 28 (Tsai et al., 2023b, Lemma 4.7) Let ft = − log(r⊤t w) and let w⋆
t = argminw∈∆n ft(w),

i.e., it is the optimal portfolio for the return vector rt. Let lt(w) = ft(w)− ft(w
⋆
t ). We have,

inf
c
∥(∇ft(w) + c1) ◦ w∥22 ≤ 4lt(w)

Lemma 29 (Orabona et al., 2012, Corollary 5) Let a, b, c, d, x > 0 satisfy x ≤ a log(bx+ c) + d,
then:

x ≤ a log

(
2

(
ab log

(
2ab

e

)
+ db+ c

))
+ d

Here e is the base of the natural logarithm.

Lemma 30 (Orabona, 2019, Lemma 4.24) Let a, b, c, , x > 0 satisfy x ≤ c+
√
ax+ b, then:

x ≤ a+ c+ 2
√
b+ ac

Theorem 6 For w ∈ ∆, any sequence of returns r1, . . . , rT ∈ Rn
+, define ft(w) = − log(r⊤t w).

The updates of AdaCurv ONS (Equation (2)) with ϵ = 1 satisfy the regret bound:

T∑
t=1

ft(wt)− ft(w) ≤
1

2
+

nR

2
log

(
4nR3 log

(
4nR3

e

)
+ 4R2 + 8R2L⋆

T + 2

)

Here, L⋆
T = minw∈∆n

[∑T
t=1 ft(w)

]
−
∑T

t=1 [minw∈∆n ft(w)] is the regret between the best static
and the best dynamic portfolio selection strategies.
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Proof Consider the result from Theorem 2:
T∑
t=1

ft(wt)− ft(w) ≤
ϵ

2
+ inf

λ≥0

(
λT +

nR

2
log

(
1 +

∑T
t=1 ∥r̂t∥22
n(ϵ+ λ)

))
Note that :

∥r̂t∥22 =
∥∥∥∥ rt

r⊤t wt

√
r⊤t wt

maxi rt(i)

∥∥∥∥2
2

=
r⊤t wt

maxi rt(i)
∥∇ft(wt)∥22 ≤ ∥∇ft(wt)∥22

Let w⋆
t = argminw∈∆n ft(w), i.e., it is the optimal portfolio for the return vector rt. Let lt(w) =

ft(w)− ft(w
⋆
t ). Note that ∇ft(w) = ∇lt(w). So, we have:

T∑
t=1

ft(wt)− ft(w) ≤
ϵ

2
+ inf

λ≥0

(
λT +

nR

2
log

(
1 +

∑T
t=1 ∥∇ft(wt)∥22
n(ϵ+ λ)

))
Pick ϵ = 1 and λ = 0:

T∑
t=1

ft(wt)− ft(w) ≤
1

2
+

nR

2
log

(
1 +

∑T
t=1 ∥∇ft(wt)∥22

n

)
Apply Lemma 27, which states that ∥∇ft(wt)∥22 ≤ 4nR2lt(wt) = 4nR2 (ft(wt)− ft(w

⋆
t )):

T∑
t=1

ft(wt)− ft(w) ≤
1

2
+

nR

2
log

(
1 + 4R2

(
T∑
t=1

ft(wt)− ft(w
⋆
t )

))
T∑
t=1

ft(wt)− ft(w
⋆
t ) ≤

T∑
t=1

ft(w)− ft(w
⋆
t ) +

1

2
+

nR

2
log

(
1 + 4R2

(
T∑
t=1

ft(wt)− ft(w
⋆
t )

))

Now, we apply Lemma 29 with a = nR/2, b = 4R2, c = 1, d = 1/2 +
∑T

t=1 ft(w)− ft(w
⋆
t ) and

x =
∑T

t=1 ft(wt)− ft(w
⋆
t ). So, we have the inequality:

T∑
t=1

ft(wt)− ft(w
⋆
t ) ≤

1

2
+

T∑
t=1

ft(w)− ft(w
⋆
t )

+
nR

2
log

(
4nR3 log

(
4nR3

e

)
+ 4R2 + 8R2

(
T∑
t=1

ft(w)− ft(w
⋆
t )

)
+ 2

)
T∑
t=1

ft(wt)− ft(w) ≤
1

2
+

nR

2
log

(
4nR3 log

(
4nR3

e

)
+ 4R2 + 8R2

(
T∑
t=1

ft(w)− ft(w
⋆
t )

)
+ 2

)

Specifically, if we pick w⋆ ∈ argminw∈∆n

∑T
t=1 ft(w). Then,

∑T
t=1 ft(w

⋆)− ft(w
⋆
t ) is the regret

between the best static and the best dynamic portfolio selection strategies. We use the shorthand L⋆
T

to denote this quantity. Thus, we have the bound:

T∑
t=1

ft(wt)− ft(w) ≤
1

2
+

nR

2
log

(
4nR3 log

(
4nR3

e

)
+ 4R2 + 8R2L⋆

T + 2

)
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Theorem 7 For w ∈ ∆, any sequence of returns r1, . . . , rT ∈ Rn
+, define ft(w) = − log(r⊤t w).

The updates of LB-AdaCurv ONS (Algorithm 1) with ϵ = 1 satisfy the regret bound:

T∑
t=1

ft(wt)− ft(wt) ≤
5

2
+ 2n log T +min

[
2 + 2

√
8n log T + 4

√
8n

(
L⋆
T +

9

2
+ 2n log T

)
log T ,

nR log

(
8nR3 log

(
8nR3

e

)
+ 20R2 + 16R2n log T + 8R2L⋆

T + 2

)]

Here, L⋆
T = minw∈∆n

[∑T
t=1 ft(w)

]
−
∑T

t=1 [minw∈∆n ft(w)] is the regret between the best static
and the best dynamic portfolio selection strategies.

Proof From Theorem 3, we have the following bound for LB-AdaCurv ONS after picking ϵ = 1
and λ = 0:

T∑
t=1

ft(wt)− ft(w) ≤
5

2
+ 2n log T + 2min

[
nR

2
log

(
1 +

∑T
t=1 ∥r̂t∥22

n

)
,

1 +

√√√√2n

(
T∑
t=1

inf
c
∥(∇ft(wt) + c1) ◦ wt∥22

)
log(T )

]

Consider just the first part of the minimum. Note that :

∥r̂t∥22 =
∥∥∥∥ rt

r⊤t wt

√
r⊤t wt

maxi rt(i)

∥∥∥∥2
2

=
r⊤t wt

maxi rt(i)
∥∇ft(wt)∥22 ≤ ∥∇ft(wt)∥22

Let w⋆
t = argminw∈∆n ft(w), i.e., it is the optimal portfolio for the return vector rt. Let lt(w) =

ft(w)− ft(w
⋆
t ). Note that ∇ft(w) = ∇lt(w). So, we have:

T∑
t=1

ft(wt)− ft(w) ≤
5

2
+ 2n log T + nR log

(
1 +

∑T
t=1 ∥∇ft(wt∥22

n

)

Apply Lemma 27, which states that ∥∇ft(wt)∥22 ≤ 4nR2lt(wt) = 4nR2 (ft(wt)− ft(w
⋆
t )):

T∑
t=1

ft(wt)− ft(w) ≤
5

2
+ 2n log T + nR log

(
1 + 4R2

(
T∑
t=1

ft(wt)− ft(w
⋆
t )

)
T∑
t=1

ft(wt)− ft(w
⋆
t ) ≤

T∑
t=1

ft(w)− ft(w
⋆
t ) +

5

2
+ 2n log T + nR log

(
1 + 4R2

(
T∑
t=1

ft(wt)− ft(w
⋆
t )

))
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Now, we apply Lemma 29 with a = nR, b = 4R2, c = 1, d = 5/2+2n log T+
∑T

t=1 ft(w)−ft(w
⋆
t )

and x =
∑T

t=1 ft(wt)− ft(w
⋆
t ). So, we have the inequality:

T∑
t=1

ft(wt)− ft(w
⋆
t ) ≤

5

2
+ 2n log T +

T∑
t=1

ft(w)− ft(w
⋆
t )

+ nR log

(
8nR3 log

(
8nR3

e

)
+ 20R2 + 16R2n log T + 8R2

(
T∑
t=1

ft(w)− ft(w
⋆
t )

)
+ 2

)
T∑
t=1

ft(wt)− ft(w) ≤
5

2
+ 2n log T+

+ nR log

(
8nR3 log

(
8nR3

e

)
+ 20R2 + 16R2n log T + 8R2

(
T∑
t=1

ft(w)− ft(w
⋆
t )

)
+ 2

)
Specifically, if we pick w⋆ ∈ argminw∈∆n

∑T
t=1 ft(w). Then, L⋆

T =
∑T

t=1 ft(w
⋆) − ft(w

⋆
t ) is

the regret between the best static and the best dynamic portfolio selection strategies. We use the
shorthand L⋆

T to denote this quantity. Thus, we have the bound:
T∑
t=1

ft(wt)−ft(w) ≤
5

2
+2n log T+nR log

(
8nR3 log

(
8nR3

e

)
+ 20R2 + 16R2n log T + 8R2L⋆

T + 2

)
Consider the second part of the minimum:

T∑
t=1

ft(wt)− ft(w) ≤
5

2
+ 2n log T + 2 + 2

√√√√2n

(
T∑
t=1

inf
c
∥(∇ft(wt) + c1) ◦ wt∥22

)
log(T )

Using Lemma 28, we have the bound infc ∥(∇ft(wt) + c1) ◦ wt∥22 ≤ 4(ft(wt)− ft(w
⋆
t )):

T∑
t=1

ft(wt)− ft(w) ≤
5

2
+ 2n log T + 2 + 2

√√√√8n

(
T∑
t=1

ft(wt)− ft(w⋆
t )

)
log(T )

=⇒
T∑
t=1

ft(wt)− ft(w
⋆
t ) ≤

T∑
t=1

ft(w)− ft(w
⋆
t ) +

5

2
+ 2n log T + 2 + 2

√√√√8n

(
T∑
t=1

ft(wt)− ft(w⋆
t )

)
log(T )

Now, we apply Lemma 30 with c =
∑T

t=1 ft(w) − ft(w
⋆
t ) +

5
2 + 2n log T + 2, a = 2

√
8n log T ,

b = 0:
T∑
t=1

ft(wt)− ft(w
⋆
t ) ≤

T∑
t=1

ft(w)− ft(w
⋆
t ) +

5

2
+ 2n log T + 2 + 2

√
8n log T

+ 4

√√√√8n log T

(
T∑
t=1

ft(w)− ft(w⋆
t ) +

5

2
+ 2n log T + 2

)

=⇒
T∑
t=1

ft(wt)− ft(w) ≤
9

2
+ 2n log T + 2

√
8n log T + 4

√
8n

(
L⋆
T +

9

2
+ 2n log T

)
log T
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Combining the two results, we get the final bound.

In order to obtain the O(logQT ) regret bound, we state a slightly modified version of a theorem
from Hazan and Kale (2015).

Theorem 31 (Hazan and Kale, 2015, Theorem 1.1) Let the cost functions be ft(w) = ht(w
⊤vt)

for a scalar function ht. Consider the iterates:

wt = arg min
w∈D

1

2
∥w∥22 +

t−1∑
s=1

hs(w
⊤vs)

If ∥vt∥ ≤ V , ∥w∥ ≤ D for all w ∈ D, h′t(w
⊤
t vt) ∈ [−a, 0] and h′′t (w

⊤vt) ≥ b for all w ∈ D, then:

RT (w) ≤ O

(
a2n

b
log(1 + bQT + bV 2) + aV D log(1 +QT /V

2) +D2

)
Here QT = minµ

∑T
t=1 ∥vt − µ∥

In the statement of the theorem in Hazan and Kale (2015), they assume that ht = h for all t
and h′(w⊤vt) ∈ [−a, 0] for all w ∈ D. However, they later note that the proof of the theorem is
flexible enough to handle different functions ht for different t. Furthermore, the proof only requires
the bound a on the magnitude of the first derivatives at the points wt, which the algorithm produces,
and not the entire domain D.

Theorem 8 For w ∈ ∆, any sequence of returns r1, . . . , rT ∈ Rn
+, define ft(w) = − log(r⊤t w).

The AdaCurv ONS updates (Equation (2)) with ϵ = 1 satisfy the regret bound:

T∑
t=1

ft(wt)− ft(w) = O
(
nR2 log(1 +QT + n) +

√
nR log(1 +QT /n) + 1

)
Here QT = minµ

∑T
t=1 ∥rt − µ∥22 =

∑T
t=1 ∥rt − r̄T ∥22, where r̄T = 1

T

∑T
t=1 rt.

Proof The iterates of AdaCurvONS are computed as:

wt = arg min
w∈∆n

1

2
∥w∥22 +

t−1∑
s=1

(
fs(ws)−

r⊤s (w − ws)

(r⊤s ws)⊤
+

(r⊤s (w − ws))
2

2(r⊤s ws)

)
We can replace rt with r̃t = rt

mini rt(i)
in the above equation without changing the iterates as the

optimization is invariant to scaling. We can apply Theorem 31 with vt = r̃t. The function ht(x) =

ft(wt)− x−r̃⊤s ws

(r̃⊤s ws)⊤
+ (x−r̃⊤s ws)2

2(r̃⊤s ws)
. This gives h′t(r̃

⊤
t wt) =

−1
r̃⊤t wt

∈ [−R, 0] and h′′t (r̃
⊤
t w) =

1
r̃⊤t wt

≥ 1.

Thus we have ∥r̃t∥ ≤
√
n = V , D = 1, a = R and b = 1. So, we have the regret bound:

T∑
t=1

ft(wt)− ft(w) = O
(
nR2 log(1 +QT + n) +

√
nR log(1 +QT /n) + 1

)
Here QT = minµ

∑T
t=1 ∥rt − µ∥ =

∑T
t=1 ∥rt − r̄T ∥, where r̄T = 1

T

∑T
t=1 rt.
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Theorem 9 For w ∈ ∆, any sequence of returns r1, . . . , rT ∈ Rn
+, let the return prediction distri-

bution Dt be the delta distribution on rt−1 (Let r0 be the all 1s vector). The updates of OEU-LB-
FTRL (Algorithm 2) with U(x) = log(x) satisfy the regret bound:

T∑
t=1

ft(wt)− ft(w) ≤ 4 + 4n log T + 2

√
2nṼ ′

T log T

Here Ṽ ′
T =

∑T
t=1

∥∥∥ rt◦wt

r⊤t wt
− rt−1◦wt

r⊤t−1wt

∥∥∥2
2

and r0 is the all ones vector.

Proof Apply Theorem 4 with U(x) = log(x) and Dt being the delta distribution on rt−1.
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