
A Supplementary Material483

A.1 Training Details484

To ensure stable training, we applied gradient clipping with a maximum norm of 1.0 and used the485

Adam optimizer with �1 = 0.9, �2 = 0.98 Kingma & Ba (2015). We used the built-in polynomial486

decay learning rate scheduler in MetaSeq with 500 warmup updates and the end learning rate set487

to 0. All models are trained with pre-norm and using ReLU activation. We apply a dropout of 0.1488

throughout, but we do not apply any dropout to embeddings. We also use weight decay of 0.1. To489

initialize the weights, we use a variant based on Megatron-LM codebase, which involves using a490

normal distribution with a mean of zero and a standard deviation of 0.006. We truncate this normal491

distribution within two standard deviations and observed substantial gain in both training stability492

and performance.493

A.2 Motivation494

Why is the local model needed? Many of the efficiency advantages of the MEGABYTE design could495

be realized with the Global model alone, which would resemble a decoder version of ViT (Dosovitskiy496

et al., 2020). However, the joint distribution over the patch p(xt+1, .., xt+P |x0..t) has an output space497

of size 256P so direct modeling is only tractable for very small patches. We could instead factor498

the joint distribution into conditionally independent distributions p(xt+1|x0..t)..p(xt+P |x0..t), but499

this would greatly limit the model’s expressive power. For example, it would be unable to express500

a patch distribution such as 50% cat and 50% dog, and would instead have to assign probability501

mass to strings such as cag and dot. Instead, our autoregressive Local model conditions on previous502

characters within the patch, allowing it to only assign probability to the desired strings.503

Increasing Parameters for Fixed Compute Transformer models have shown consistent improve-504

ments with parameter counts (Kaplan et al., 2020). However, the size of models is limited by their505

increasing computational cost. MEGABYTE allows larger models for the same cost, both by mak-506

ing self attention sub-quadratic, and by using large feedforward layers across patches rather than507

individual tokens.508

Re-use of Established Components MEGABYTE consists of two transformer models interleaved509

with shifting, reshaping and a linear projection. This re-use increases the likelihood that the architec-510

ture will inherit the desirable scaling properties of transformers.511

A.3 Model Details512

As discussed in Section 4, we conduct experiments using a fixed compute and data budget across all513

models to focus our comparisons solely on the model architecture rather than training resources. To514

achieve this, we adjust model hyperparameters within each architecture so that the time taken for a515

single update is matched and then train all models for the same number of updates. We list all of516

model details in Table 8 and Table 9.517

Model #L dmodel #H dhead

S1 125M 12 768 12 64
S2 350M 24 1024 16 64
S3 760M 24 1536 16 96
S4 1.3B 24 2048 32 64
S5 2.7B 32 2560 32 80
S6 6.7B 32 4096 32 128

Table 8: Common Model architecture details by size. For each model size, we show the number of layers (#L),
the embedding size (dmodel), the number of attention heads (#H), the dimension of each attention head (dhead).

13

Model (Global) Size Local Size BS LR Context Length (in bytes)

arXiv

Transformer 320M (D=1024, L=22) N/A 72 2.00E-04 1,024
Perceiver AR 248M (D=1024, L=17) N/A 72 2.00E-04 8,192 (1024 latents)
MEGABYTE 758M (D=2048, L=14) 262M (D=1024, L=18) 48 2.00E-04 8,192 (patch size 8)

w/o Local model 2.3B (D=2560, L=20) N/A 48 1.50E-04 8,192 (patch size 4)
w/o global model N/A 350M (D=1024, L=24) 192 2.00E-04 8,192 (patch size 8)
w/o cross-patch Local model 921M (D=2048, L=17) 350M (D=1024, L=24) 48 2.00E-04 8,192 (patch size 8)
w/ CNN encoder 704M (D=2048, L=13) 262M (D=1024, L=18) 48 2.00E-04 8,192 (patch size 8)

Image task 64 (Table 2)

MEGABYTE 2.7B (D=2560, L=32) 350M (D=1024, L=24) 2 2.00E-04 12,288 (patch size 12)

Image task 64 (Table 4)

Transformer 760M (D=1536, L=24) N/A 512 3.00E-04 2,048
Perceiver AR 227M (D=1024, L=16) N/A 512 3.00E-04 12,288 (1024 latents)
MEGABYTE 1.3B (D=2048, L=24) 1.3B (D=2048, L=24) 256 3.00E-04 12,288 (patch size 12)

Image task 256

Transformer 62M (D=768, L=6) N/A 1536 2.00E-04 1,024
Perceiver AR 62M (D=768, L=6) N/A 256 2.00E-04 8,192 (768 latents)
MEGABYTE 125M (D=768, L=12) 125M (D=768, L=12) 16 2.00E-04 196,608 (patch size 192)

w/o local model 2.7B (D=4096, L=32) N/A 16 2.00E-04 196,608 (patch size 48)
w/o global model 125M (D=768, L=12) 125M (D=768, L=12) 16 2.00E-04 196,608 (patch size 192)
w/o cross-patch Local model 250M 156M (D=768, L=15) 16 2.00E-04 196,608 (patch size 192)
w/ CNN encoder 125M (D=768, L=12) 125M (D=768, L=12) 16 2.00E-04 196,608 (patch size 192)

Image task 640

Transformer 83M (D=768, L=8) N/A 4800 3.00E-04 1,024
Perceiver AR 62M (D=768, L=6) N/A 2048 3.00E-04 4,096 (1024 latents)
MEGABYTE 125M (D=768, L=12) 83M (D=768, L=8) 32 3.00E-04 1,228,800 (192 patch size)

audio

Transformer 135M (D=768, L=13) N/A 2048 2.00E-04 1024
Perceiver AR 62M (D=768, L=6) N/A 384 2.00E-04 8,192 (1024 latents)
MEGABYTE 350M (D=1024, L=24) 125M (D=768, L=12) 256 2.00E-04 524,288 (32 patch size)

w/o local model 2.7B (D=4096, L=32) 125M (D=768, L=12) 256 2.00E-04 524,288 (32 patch size)
w/o global model 350M (D=1024, L=24) 125M (D=768, L=12) 256 2.00E-04 524,288 (32 patch size)
w/o cross-patch Local model 350M (D=1024, L=24) 146M (D=768, L=14) 256 2.00E-04 524,288 (32 patch size)
w/ CNN encoder 350M (D=1024, L=24) 125M (D=768, L=12) 256 2.00E-04 524,288 (32 patch size)

Table 9: Model architecture details. We report the model size, the embedding size (D), number of layaers(L),
total batch size (BS), learning rate(LR), and context length. When we vary the number of model layers from the
standard amount for the given size (Table 8), we note this accordingly. For PerceiverAR models, we note the
number of latents used, and for MEGABYTE models we note the patch sizes.

B Pseudocode518

Listing 1: Pseudocode of Megabyte model
519

class MegaByteDecoder:520

def __init__(521

self ,522

global_args ,523

local_args ,524

patch_size ,525

):526

self.pad = 0527

self.patch_size = patch_size528

self.globalmodel = TransformerDecoder(global_args)529

self.localmodel = TransformerDecoder(local_args)530

531

def forward(532

self ,533

bytes ,534

):535

bytes_global , bytes_local = self.prepare_input(bytes)536

537

14

global_bytes_embedded = self.globalmodel.embed(bytes_global)538

global_in = rearrange(539

global_bytes_embedded ,540

"b (t p) e -> b t (p e)",541

p=self.patch_size ,542

)543

global_output = self.globalmodel(global_in)544

545

global_output_reshaped = rearrange(546

global_output ,547

"b t (p e) -> (b t) p e",548

p=self.patch_size ,549

)550

local_bytes_embedded = self.localmodel.embed(bytes_local)551

local_in = local_bytes_embedded + global_output_reshaped552

local_output = self.localmodel(local_in)553

554

batch_size = bytes_global.shape [0]555

x = rearrange(local_output , "(b t) l v -> b (t l) v", b=556

batch_size)557

return x558

559

def prepare_input(self , bytes):560

padding_global = bytes.new(bytes.shape[0], self.patch_size).561

fill_(self.pad)562

bytes_global = torch.cat((padding_global , bytes[:, : -self.563

patch_size]), -1)564

565

bytes_input = rearrange(bytes , "b (t p) -> (b t) p", p=self.566

patch_size)567

padding_local = bytes_input.new(bytes_input.shape [0], 1).fill_568

(self.pad)569

bytes_local = torch.cat((padding_local , bytes_input [:, :-1]),570

-1)571

572

return bytes_global , bytes_local573

C PerceiverAR Implementation574

To reproduce PerceiverAR in a compute-controlled setting we extended the standard transformer575

implementation in metaseq with an additonal cross attention layer to compute the latents and match576

the architecture of PerceiverAR. We trained the model by sampling random spans from each text,577

matching the procedure used in the PerceiverAR codebase. To be consistent with the original work,578

we use sliding window evaluation with a stride of num_latents/2 unless otherwise noted. In several579

cases we used the standard metaseq implementation as opposed to specific techniques reported in580

the original paper: 1) we used standard attention dropout instead of cross-attention dropout 2) We581

did not implement chunked attention. We verified our implementation by reproducing the "Standard582

Ordering" experiments in Table 5 of the Perceiver AR paper. After carefully matching context size,583

number of latents, the amount of data and training steps used and learning rate, we achieved 3.53 bpb584

vs 3.54 reported in the original paper.585

D More results586

D.1 Patch scan Implementation587

Images have a natural structure, containing a grid of n ⇥ n pixels each composed of 3 bytes588

(corresponding to color channels). We explore two ways of converting images to sequences for589

modeling (see Figure 8). Firstly, raster scan where the pixels are linearized into 3 bytes and590

concatenated row-by-row. Secondly, patch scan where we create patches of shape p⇥ p⇥ 3 bytes591

15

patch 1 patch 2 patch 3

patch 4

Figure 8: Two ways to model 2D data sequentially. Left, raster scan, by taking bytes row by row and left to
right; right, patch scan, where we first split an image into patches, and do raster scan across patches and within a
patch. (T=36, K=9, P=4).

where p =
q

P
3 , and then use a raster scan both within and between patches. Unless otherwise592

specified, MEGABYTE models use patch scan for image data.593

D.2 Patch scan vs Raster scan594

The patch scan method is inspired by recent works in Vision Transformers (Dosovitskiy et al., 2020),595

and it is more effective than raster scan for modeling image sequencing. We found it improves both596

MEGABYTE and Perceiver AR.

(Global) Size Local Size context bpb

MEGABYTE (patch scan) 62M (D=768, L=6) N/A 8,192 (768 latents) 3.158
MEGABYTE (raster scan) 62M (D=768, L=6) N/A 8,192 (768 latents) 3.428
Perceiver AR (patch scan) 125M (D=768, L=12) 125M (D=768, L=12) 196,608 (patch size 192) 3.373
Perceiver AR (raster scan) 125M (D=768, L=12) 125M (D=768, L=12) 196,608 (patch size 192) 3.552

Table 10: ImageNet256 performance with patch scan vs raster scan for MEGABYTE and Perceiver AR.

597

D.3 Longer sequence modeling598

For our pg19 scaling experiment, we also use longer context length for MEGABYTE. The results are599

shown in Table 11. With longer sequence, we didn’t observer further improvement, consistent with600

findings in Hawthorne et al. (2022). We think we will benefit more from longer sequence when we601

futher scale up the model size and data.602

context bpb

MEGABYTE 8,192 (patch size 8) 0.8751
MEGABYTE 16,384 (patch size 8) 0.8787

Table 11: Longer sequence for PG19 dataset. For both experiments, we set global model as 1.3b, local model as
350m, and MEGABYTE patch size as 8.

16

	Introduction
	MegaByte Transformer
	Overview
	Components
	Variations and Extensions

	Efficiency Analysis
	Training Efficiency
	Generation Efficiency

	Experimental setup
	Language Modeling
	Image Modeling
	Audio Modeling
	Analysis
	Related Work
	Conclusion
	Supplementary Material
	Training Details
	Motivation
	Model Details

	Pseudocode
	PerceiverAR Implementation
	More results
	Patch scan Implementation
	Patch scan vs Raster scan
	Longer sequence modeling

