Towards Embodiment Scaling Laws in Robot Locomotion

Bo Ai^{1*}, Dai Liu^{1*}, Nico Boghlinger^{3*}, Dichen Li^{1*}, Tongzhou Mu¹, Zhanxin Wu², K. Fay¹, Henrik I. Christensen¹, Jan Peters^{3,4}, Hao Su¹

Motivation

Generalization Embodiment Variations in embodiment: Hardware degradation Design updates Manufacturing differences Heterogeneous deployment Task/Em

Embodiment: The Third Axis of Generalization

- Task & environment scaling → generalization
- Can scaling enable embodiment generalization? **Embodiment Scaling Law**
 - More embodiments → better generalization

GENBOT-1K

~1000 Embodiments: Humanoids, Quadrupeds, and Hexapods

Cross-Embodiment Learning

- Extended Unified Robot Morphology Architecture to multi-head architecture
- Two-stage training: (i) learning specialist policies with RL. (ii) distilling policies into the unified model.

Studying Embodiment Scaling Laws

(a) Embodiment Scaling within Morphology Classes

- 2520C6 Embodiment Scaling
 Data Scaling
 Quadruped
 Hexapod
 Hexapod
 Humanoid

 0 200 400 600 800
 - (b) Cross-Class Learning
- More embodiments \rightarrow better generalization to unseen embodiments (C1–C4)
- Harder embodiments require more embodiments to saturate generalization (C1 vs C2/C3)
- Cross-morphology training improves generalization (C4 vs C6/C7/C8)
- Embodiment scaling > > pure data scaling for embodiment-level generalization (C4 vs C8)

One Policy, Two Worlds, Many Robots

