Appendix

A On-line Performance Analysis

We extend our evaluation of the TESPA model to real-world in-
dustry scenarios, specifically conducting online experiments on
a widely used sponsored search platform. Leveraging the learned
item representations, we compute pairwise similarities, identifying
top candidates for each item to construct a recommendation table.
This table serves as a pivotal component supporting online services
on the platform. The evaluation is carried out across two distinct
industry scenarios: ProductAds and ProductReco. Key performance
metrics such as Revenue Per Thousand (RPM), Click-Through-Rate
(CTR), and Cost Per Click (CPC) are employed for a comprehen-
sive assessment. The baseline model for comparison is BERT, a
previously utilized online serving model. As depicted in Table 1,
the TESPA model showcases a noteworthy enhancement in on-
line performance. Particularly in the critical ProductAds scenario,
TESPA demonstrates an 8.31% increase in RPM, a 9.25% improve-
ment in CTR, and a 5.27% reduction in CPC. This signifies not only
a considerable uplift in online revenue but also an enhancement
in both user and advertiser experiences. The substantial improve-
ments underscore the efficacy of our proposed model in real-world
industry applications. It is worth noting that TESPA has seamlessly
integrated into diverse industry scenarios, attesting to its versatility
and applicability across different domains.

B Case Study

In this section, we showcase two illustrative cases retrieved from
the online serving pipeline, as delineated in Table 2. The first case
involves an input item, a backpack adorned with Ariel, a beloved
cartoon character. Notably, the retrieved candidates exhibit a the-
matic congruence, featuring designs catered to a similar cartoon
fashion aesthetic tailored for children. In the second case, the input
item is a white bone china product, and the recalled candidates ex-
hibit a discernible thematic affinity with the input item. Traditional
models often rely on retrieving items solely based on semantic
similarity, a practice that tends to result in low diversity and conse-
quently, suboptimal user experiences. For instance, in the first case,
traditional models might yield candidates comprising identical bags
differing only in size. This limitation underscores the necessity for
a more nuanced approach to retrieval. In contrast, the candidates
retrieved by our proposed model, TESPA, demonstrate increased
informativeness. This observation underscores the efficacy of the
mutual reinforcement learning paradigm employed in TESPA. The
model’s ability to discern and present more varied and informative
candidates reflects its potential to significantly enhance the user
experience by surpassing the limitations of conventional semantic
similarity-based retrieval models.

C Related Work

Topological-based methods rely on topological features, especially
the topological relationships introduced by users’ clicks and views.
For topological-based methods, collaborative filtering [10, 16, 21, 22]
is a typical technique that has been widely used; this approach

Table 1: Results of on-line test.

RPM CTR CpC

+8.31% +9.25% -5.27%
+1.39% +2.36% -0.94%

ProductAds
ProductReco

Table 2: Case study of the on-line serving model.

Input Item Candidatel Candidate2

1 Y

4

Title: Nickelodeon Paw
Patrol Boy’s 18"
Carry-On Duffel Bag

Title: Disney Ariel
Toddler Backpack 12"
Backpack for Kids

Title: Disney Mickey
Mouse Be Awesome
Backpack School Kids

Title: Noritake
Accompanist China Set, | Blueshire China Soup

Title: Noritake Blue
Hill 2482 Pattern
Service for 12

Title: Noritake 40Pc

Service for 8 Bowl Set Of 4

jointly learns item and user’s latent embeddings to fit their inter-
action matrix. In recent years, conventional collaborative filtering
has been enhanced by the deep neural networks [2, 8]. For such a
regression-based task, matrix factorization (MF) methods associate
each user and item with an embedding and model their matching
score as the inner item between their embeddings, including Local-
ized MF [28], Hierarchical MF [20] and Social-aware MF [29]. Mean-
while, by having items connected by their co-click relationships, the
graph representation techniques are now being intensively applied
to this area. In [4, 19], network embedding approaches are used for
item representation; and more recently, graph neural networks are
adopted [5, 23]. For example, SpectralCF [30] utilizes the spectral
graph convolutions for collaborative filtering. GC-MC [17] and
NGCEF [7] adopt Graph Convolutional Network (GCN) to model
user-item interactions. LR-GCCF [1], and LightGCN [[6] eliminate
unnecessary non-linear operations, showing superior performance.

Apart from the above works, the utilization of textual feature
is also important for item representation, especially in the text-
rich scenarios. Many of the content based recommender systems
leverage textual descriptions to formulate the fundamental repre-
sentation of item [18, 24, 26]. Thanks to the quick development
of pretrained language models [3, 12], much more powerful text
encoders can be developed for the related applications [11, 14, 25],
which significantly improves the representation quality.

Finally, the topological and textual features are also combined
for better representation quality. A typical way of combination is
demonstrated as the recent works PinSage [23] and TextGNN [33].
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Given a graph of items connected by their co-click relations, each
item is represented by its textual feature in the first place; then,
it is aggregated with its neighbourhood embeddings via GNNs,
which gives rise to the final item representation. HASH-CODE
[27] developed a hierarchical contrastive learning architecture in
different granularities, training the language model to refine the
understanding of the text by graph topology and leveraging a high-
frequency component (HFC)-aware contrastive learning objective
that makes the learned embeddings more discriminative. Heter-
former [9] proposed a network-empowered Transformer to inject
heterogeneous structure information into each Transformer layer
when encoding node texts, and designed a strategy for textless
node learning with heterogeneous type-specific projection and em-
bedding warm-up. Similar strategies are also applied in related
scenarios, e.g., [13, 15, 31, 32].

Different from these methods, we focus on enriching the graph
topology based on semantics and encoding the knowledge from
the graph topology into the language models, and our proposed
model employs a multi-channel co-training paradigm to preserve
the fine-grained correlations.
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