
Learning Cognitive Maps from Transformer Representations for Efficient
Planning in Partially Observed Environments

Antoine Dedieu 1 Wolfgang Lehrach 1 Guangyao Zhou 1 Dileep George 1 Miguel Lázaro-Gredilla 1

Abstract
Despite their stellar performance on a wide range
of tasks, including in-context tasks only revealed
during inference, vanilla transformers and vari-
ants trained for next-token predictions (a) do not
learn an explicit world model of their environment
which can be flexibly queried and (b) cannot be
used for planning or navigation. In this paper, we
consider partially observed environments (POEs),
where an agent receives perceptually aliased ob-
servations as it navigates, which makes path plan-
ning hard. We introduce a transformer with (mul-
tiple) discrete bottleneck(s), TDB, whose latent
codes learn a compressed representation of the
history of observations and actions. After train-
ing a TDB to predict the future observation(s)
given the history, we extract interpretable cog-
nitive maps of the environment from its active
bottleneck(s) indices. These maps are then paired
with an external solver to solve (constrained) path
planning problems. First, we show that a TDB
trained on POEs (a) retains the near-perfect pre-
dictive performance of a vanilla transformer or
an LSTM while (b) solving shortest path prob-
lems exponentially faster. Second, a TDB extracts
interpretable representations from text datasets,
while reaching higher in-context accuracy than
vanilla sequence models. Finally, in new POEs, a
TDB (a) reaches near-perfect in-context accuracy,
(b) learns accurate in-context cognitive maps (c)
solves in-context path planning problems.

1. Introduction
Large vanilla transformers (Vaswani et al., 2017) trained
for next-token prediction have been successfully applied
to a wide range of applications such as natural language

1Google DeepMind. Correspondence to: Antoine Dedieu
<adedieu@google.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Observations

Actions

Figure 1. An agent is trained on random walks in an aliased room
with no reward and unknown layout. At test time, given a novel
random walk (in fuchsia), it has to find a shortest path (in red)
between room positions A and B. While a vanilla transformer
solves this path planning problem with forward rollouts, which can
be exponentially expensive due to aliasing, our transformer variant
pairs its learned cognitive map with an external solver.

processing (Radford et al., 2018; Chowdhery et al., 2022),
text-conditioned image generation (Ramesh et al., 2021), re-
inforcement learning (Chen et al., 2021a), and code writing
(Chen et al., 2021b). These large language models (LLMs)
also exhibit emergent abilities (Wei et al., 2022), among
which is their capacity to in-context learn (ICL), i.e., to
adapt to a new task at inference time given a few exam-
ples (Brown et al., 2020). However, these models suffer
from shortcomings that prevent them from being used for
planning (Valmeekam et al., 2022; Mialon et al., 2023).

Herein, we consider a suite of partially observed environ-
ments (POEs) (Chrisman, 1992) where the agent receives
perceptually aliased observations as it navigates; and can-
not deterministically recover its spatial positions from its
observations. Path planning in these POEs is hard: the
planner has to disambiguate aliasing to locate itself, which
requires modeling its history of observations and actions.
Path planning in POEs is particularly hard for LLMs, as
these models do not learn an interpretable cognitive map
(Momennejad et al., 2023; Whittington et al., 2022)—i.e. an
action-conditioned latent graph modeling the POE dynamics
(George et al., 2021)—which can be flexibly queried.

Example of a path planning problem in a POE that a
vanilla transformer cannot solve: We consider the par-
tially observed 15× 20 room in Fig.1, which only contains
four unique observations. The room also has global aliasing:

1

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

the 4× 4 patch with a black border appears twice. An agent
executes a series of discrete actions, each action leading
to a discrete observation. The agent does not have access
to any reward or to the room layout. If an action takes an
agent to an invalid location (e.g. the agent hits a wall), the
action is executed but the agent remains in place. At test
time, the agent wants to find a shortest path (in red) between
two room positions (A and B) it has been to. A transformer
trained to predict the next observation given the history of
past observations and actions can only perform forward roll-
outs, which, due to aliasing, (a) scale exponentially in the ℓ1
distance between A and B (b) prevents it from even knowing
when it reaches the target B.

In this paper, we propose the transformer with discrete bot-
tleneck(s), TDB, which adds a single, or multiple, discrete
bottleneck(s) (Van Den Oord et al., 2017) on top of a trans-
former to compress the transformer outputs into a finite
number of latent codes. We train TDB with an augmented
objective, then extract a cognitive map (Whittington et al.,
2022; George et al., 2021) from its active bottleneck(s) in-
dices. First, we demonstrate that, on aliased rooms, on
aliased cubes with non-Euclidean dynamics, and on visually
rich 3D environments (Beattie et al., 2016), these learned
cognitive maps (a) disambiguate aliasing (b) nearly recover
the ground truth dynamics and (c) can be paired with exter-
nal solvers to solve path planning problems—like the one
in Fig.1. Consequently, TDB (a) retains the nearly perfect
predictive abilities of vanilla transformers and LSTMs, (b)
solves (constrained) path planning problems exponentially
faster. Second, we show that a TDB extracts an interpretable
latent graph from a text dataset (Xie et al., 2021) while
achieving higher test accuracies than vanilla sequence mod-
els. Finally, when exploring a new POE at test time, TDB
can (a) in-context predict the next observation given his-
tory (b) solve in-context path planning problems (c) learn
accurate in-context cognitive maps.

The rest of this paper is organized as follows. Sec.2 dis-
cusses related work. Sec.3 details our proposed TDB model.
Finally, Sec.4 compares our method with vanilla transformer
and LSTM in a variety of navigation and text experiments.

2. Related Work
Planning with LLMs: Despite their success on simple
benchmarks including maths (Cobbe et al., 2021) and log-
ics (Srivastava et al., 2022), growing evidence suggests
that LLMs performance collapse on benchmarks that re-
quire stronger planning skills (Valmeekam et al., 2022).
While Pallagani et al. (2022) finetune LLMs for planning,
Guan et al. (2023) extract an approximate world model with
LLMs, then further refine it with an external planner.

Interpretable circuits: Some works try to reverse-engineer

LLMs to extract interpretable circuits, i.e., internal struc-
tures that drive certain model behaviors (Elhage et al., 2021;
Olsson et al., 2022; Nanda et al., 2023). While circuit anal-
ysis can be performed at scale (Lieberum et al., 2023), it is
labor intensive (Conmy et al., 2023), and does not extract
explicit structures to solve planning or navigation tasks.

Decision transformers: Decision transformers (Chen et al.,
2021a) abstract reinforcement learning (RL) as sequence
modeling: they can play Atari games and stack blocks with a
robot arm (Reed et al., 2022). However, they only have been
applied to shortest path problems on small graphs with 20
nodes. Decision transformers have also access to a reward,
which reveals information about the environment. They
would struggle to solve the shortest path in Fig.1, where
aliasing is high and no external reward is provided.

Learning spatial representations and world models
in POEs: Fraccaro et al. (2018) propose an action-
conditioned generative model that uses a spatial memory to
store disentangled spatial and visual representations. When
tested in 2D and 3D POEs, their model is able to correctly
predict future observations given future actions, over hun-
dreds of timesteps. Similarly, Guo et al. (2022) learns a
forward model in latent space to predict future latent repre-
sentations from current latent representations. The authors
use the model uncertainty as an intrinsic reward to solve
hard exploration tasks in POEs. However, both works (a)
do not try to extract interpretable world models of their
environments and (b) do not solve planning problems at
inference time in highly aliased environments. In a recent
work, Lamb et al. (2022) use a discrete bottleneck on top
of a visual encoder. The authors showed that a multi-step
inverse dynamics loss can be used to learn control-sufficient
representations that discard visual distractors. They also
build a transition graph from the learned representation they
use to solve navigation tasks. However, the authors consider
fully visible settings and learn representations for each ob-
servation by discarding the history: their approach would
not solve the shortest path problem in Fig.1 or in Section 4,
where the observations are highly aliased.

Clone-structured causal graphs (CSCGs): CSCG
(George et al., 2021) is an interpretable probabilistic model
that learns cognitive maps in aliased POEs and solves path
planning tasks. However, CSCGs learn a block-sparse tran-
sition matrix over a large latent space via the expectation-
maximization (EM) algorithm (Dempster et al., 1977). This
large transition matrix occupies a large amount of memory
and limits CSCGs’ scalability—see Appendix B.1 for a de-
tailed discussion. CSCGs would also struggle to solve the
ICL experiments in Sec.4.5 without an external algorithm—
see Swaminathan et al. (2023). In contrast, the transformer
variant we introduce in this paper, TDB, builds this same
transition matrix sparsely, via local counts. Appendix B.2

2

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

discusses a CSCG-inspired variant of our proposed model.

QMDP-Net: The QMDP-Net (Karkus et al., 2017) is a
neural network architecture for planning in POE with aliased
observations. QMDP-Net assumes that the agent has access
to (a) a map of its environment, (b) a goal defined in an
unaliased way, (c) an initial aliased observation. During
training, QMDP-net has access to expert trajectories that go
from the initial state to the known goal. The agent is then
trained via behavioral cloning on these expert trajectories. In
contrast, our proposed TDB never has access to a cognitive
map of its unknown environment. It builds a map after
training, from the transformer quantized representations.
Second, aliasing is never broken for TDB: it never has access
to unaliased goal states. Third, our TDB model is trained to
predict the next observation on random walks in an unknown
environment. In fact, during training, TDB does not know
that it will be asked to solve planning problems at test time.

3. A Path Planning-Compatible Transformer
3.1. Problem statement

Problem: We consider an agent executing a series of
discrete actions a1, . . . , aN−1 with an ∈ {1, . . . , Nactions},
e.g. walking in a room. As a result of each action, the
agent receives a perceptually aliased observation (Chrisman,
1992), resulting in the stream x1, . . . , xN . The agent does
not have access to any reward at any time. Our goal is to
(a) predict the next observation given the history of past
observations and actions and (b) build a world model that
disambiguates aliased observations and that can be called
by an external planner to solve path planning tasks.

Trajectory representation: We represent a trajectory
τ = (x1, a1, . . . , aN−1, xN) by alternating observations
and actions. This representation allows us to consider the
autoregressive objective of predicting the next observation
given the history of past observations and actions:

Lobs =

N−1∑
n=1

Lobs(n) = −
N−1∑
n=1

log p(xn+1|x1, a1, . . . , xn, an)

(1)

3.2. Predicting the next observation with a transformer

We propose to train a vanilla transformer (Vaswani et al.,
2017) to minimize Equation (1). To do so, we first map
each categorical observation xn (resp. action an) of τ to a
linear embedding Eobs(xn) ∈ RD (resp. Eact(an) ∈ RD).
Second, we feed the sequence of input embeddings z =
(Eobs(x1), Eact(a1), . . . , Eobs(xN), Eact(aN)) to a trans-
former with causal mask (Radford et al., 2018), resulting
in the output sequence (T1, . . . , T2N). We only retain the
outputs with even indices (T2, T4, . . . , T2N): T2n ∈ RD

is derived after applying the successive self-attention lay-
ers to the intermediate representations of x1, a1, . . . , xn, an.

Finally, a linear mapping applied to T2n returns the pre-
dicted logits for the next observation xn+1. We display this
transformer architecture in Fig.6, Appendix A.

As we show in Sec.4, this transformer almost perfectly pre-
dicts the next observation on a suite of perceptually aliased
POEs. However, it can only solve the path planning problem
in Fig.1 with forward rollouts, which have an exponential
cost in the ℓ1 distance between the room positions A and B.

3.3. A transformer with a discrete bottleneck

To address these inherent limitations, we add a discrete
bottleneck on top of a vanilla transformer, which compresses
all the information needed to minimize Equation (1).

After applying the causal transformer from Sec.3.2 to the
sequence z of observations and actions embeddings, we now
only extract the encodings with odd indices, which results
in the stream (T1, T3, . . . , T2N−1): T2n−1 ∈ RD is derived
from x1, a1, . . . , an−1, xn, but is not aware of the action
an. We then apply vector quantization (Van Den Oord et al.,
2017) and map each vector T2n−1,∀n to the closest entry
in a dictionary of latent codes D = (d1, . . . , dK), where
dk ∈ RD, ∀k1. That is, we introduce the operator

ϕ(y) = argmin
k=1,...,K

∥y − dk∥22, ∀y. (2)

The quantized output of T2n−1 is dϕ(T2n−1). Because T2n−1

has not been exposed to an, we derive the next observations
logits via f

(
dϕ(T2n−1) ⊕ Eact(an)

)
, where f is a two lay-

ers MLP and ⊕ represents the concatenation operator. We
refer to our proposed transformer with a discrete bottleneck
as TDB, and visualize it in Figure 2.

3.4. Augmenting the objective value

The discrete bottleneck in Sec.3.3 introduces the additional
objective term Lbot =

∑N
n=1 Lbot(n) with

Lbot(n) = ∥dϕ(e) − sg(e)∥22 + β∥ sg
(
dϕ(e)

)
− e∥22, (3)

where e = T2n−1, β = 0.25 and sg the stop-gradient op-
erator (Van Den Oord et al., 2017). However, we show
in Fig.7, Appendix G, that a TDB trained with the simple
objective Lobs + Lbot fails at disambiguating observations
with identical neighbors. To allow the TDB to learn richer
representations of the observations, we propose to augment
the transformer objective via two solutions.

Solution 1: Predicting the next S observations. At each
timestep n, instead of only predicting the next observation—
which corresponds to S = 1—we predict the next S obser-
vations and replace the loss Lobs(n) in Equation (1) with

1We explored using Finite Scalar Quantization (FSQ) (Mentzer
et al., 2023) as an alternative to vector quantization. While FSQ
guarantees dense codebooks, we were unable to solve the challeng-
ing in-context learning experiments in Section 4.5.

3

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

Causal
Transformer

Embedder Vector quantizer Prediction MLP

Figure 2. Our proposed transformer with a (single) discrete bottleneck. The respective linear embeddings of observations and actions go
through a causal transformer. The observation outputs are compressed by the vector quantizer, then concatenated with the next action
embedding in order to predict the next observation. Finally, a cognitive map of the environment is built from the active bottleneck indices.

LS
obs(n) = − 1

S

S−1∑
s=0

log p(xn+s+1|x1, a1, . . . , xn, an, . . . , an+s)

(4)
The model does not have access to any observation
after xn: it only sees the S actions an, . . . , an+S−1.
The logits of the observation xn+s+1 are predicted via
f (s)

(
dϕ(T2n−1) ⊕ Eact(an)⊕ . . .⊕ Eact(an+s)

)
, where

f (s) is a two-layers MLP. In Sec.4, we set S = 3.

Solution 2: Predicting the next encoding. Our second
solution is to predict future latent representations (Guo et al.,
2022). We refer to the TDB described so far as a student
network, with weights Θ, and introduce a teacher network
(Grill et al., 2020), with the same architecture and whose
weights Θteacher are an exponential moving average of Θ. At
each gradient update, we set Θteacher ← αΘteacher+(1−α)Θ,
where α is the decay rate, which we fix to 0.99.

The student network predicts both (a) the next observation
and (b) the next teacher network’s quantized encoding. This
introduces the objective term Lenc =

∑N−1
n=1 Lenc with

Lenc(n) = (5)∥∥∥∥∥∥∥∥∥
g
(
dϕ(T2n−1) ⊕ Eact(an)

)
∥g
(
dϕ(T2n−1) ⊕ Eact(an)

)
∥2︸ ︷︷ ︸

using Θ

− sg

 dϕ(T2n+1)

∥dϕ(T2n+1)∥2︸ ︷︷ ︸
using Θteacher


∥∥∥∥∥∥∥∥∥
2

2

where g is a two-layer MLP with same hidden layer as f .

3.5. Extension to multiple discrete bottlenecks

TDB supports M > 1 discrete bottlenecks. Each bottle-
neck induces its own (a) dictionary of latent codes D(i) =

(d
(i)
1 , . . . , d

(i)
K), (b) function ϕ(i) which acts as in Equa-

tion (2) and (c) objective L(i)
bot. The transformer output

T2n−1 passes through the discrete bottlenecks in parallel:
the ith bottleneck returns the latent code d

(i)

ϕ(i)(T2n−1)
. We

get back to the previous case by defining (a) dϕ(T2n−1) =

⊕M
i=1d

(i)

ϕ(i)(T2n−1)
and (b) Lbot =

∑M
i=1 L

(i)
bot. As we show

in Sec.4, multiple discrete bottlenecks make training faster
and sometimes better. However, Appendix F introduces
a disentanglement metric which shows that the represen-
tations learned by multiple discrete bottlenecks are highly
redundant and not disentangled.

3.6. Learning a cognitive map from bottleneck indices

When we use a single bottleneck, TDB maps each obser-
vation xn to the latent code index sn = ϕ(T2n−1) ∈
{1, . . . ,K}. We define a count tensor C which counts the
empirical latent transitions: Cijk =

∑
(sn,an,sn+1)

1(sn =

i, an = j, sn+1 = k). We then threshold C to build an
action-augmented empirical transition graph G. That is,
G has an edge between the vertices i and k with the ac-
tion j∗ = argmaxj Cijk iff. Cij∗k ≥ tratio · c∗, where
c∗ = maxijk Cijk and tratio is a threshold. This edge indi-
cates that the action j∗ leads from the latent node i to the
latent node k a large number of times.

In practice (a) we use multiple discrete bottlenecks (see
Sec.3.5) and cluster the bottleneck indices using the Ham-
ming distance with a threshold dHamming and (b) we map
each discarded node of C to a retained node in G so that we
can solve all the path planning problems in Sec.4. We detail
(a) and (b) in Appendix C. As a result, each node in G is
paired with a collection of tuples of bottleneck indices.

G is a cognitive map of the agent’s environment which (a)
is interpretable, (b) is action-conditioned, hence, models the
agent’s dynamics, and (c) can be paired with an external
planner to solve path planning problems—see Sec.4. In
particular, we show in Sec.4.2 that it can be used to solve
the motivation example from Sec.1.

3.7. Why does TDB learn an accurate map?

The TDB latent index ϕ(T2n−1) associated with an observa-
tion xn given its history corresponds to a node in the latent
graph G in Sec.3.6. For G to correctly model the environ-
ment’s dynamics, when this node is active, the agent must
always be at the same ground truth spatial position.

4

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

Method TestAccu (%) ↑ ImpFallback (%) ↑ RatioSP ↓ NormGED ↓

Vanilla transformer 99.00 (0.01) 29.53 (0.75) 16.82 (0.92) —

Vanilla LSTM 98.85 (0.01) 31.97 (0.66) 16.81 (0.83) —

TDB(S = 1,M = 1) 98.94 (0.05) 6.61 (0.53) 1.00 (0.00) 0.532 (0.005)

TDB(S = 1, enc,M = 1) 98.74 (0.04) 99.20 (0.20) 1.00 (0.00) 0.118 (0.022)

TDB(S = 3,M = 1) 99.06 (0.01) 99.55 (0.13) 1.00 (0.00) 0.124 (0.019)

TDB(S = 3,M = 4) 99.00 (0.01) 96.59 (0.15) 1.00 (0.00) 0.186 (0.018)

Table 1. Results averaged over 10 aliased 15× 20 rooms with O = 4 observations. See main text for a description of the metrics. Arrows
pointing up (down) indicate that higher (lower) is better. Our TDB with either multi-step objective or next encoding prediction (a) retains
the nearly perfect test accuracy of vanilla sequence models, (b) consistently solves the shortest paths problems when paired with an
external solver—while both transformer or LSTM catastrophically fail—(c) learns cognitive maps nearly isomorphic to the ground truth.

dϕ(T2n−1) does not know the next action an; and compresses
all the information needed to minimize the loss at the nth
step. When TDB predicts the next observation, dϕ(T2n−1)

must then encode the next observation that each next possi-
ble action leads to. As we show in Appendix G, dϕ(T2n−1)

may not disambiguate distinct spatial positions with identi-
cal neighbors. When TDB predicts the next S observations
(Solution 1, Sec.3.4), dϕ(T2n−1) must now encode all the
observations xn+s, 1 ≤ s ≤ S, that each sequence of S
actions leads to. For a large S, the latent index ϕ(T2n−1)
is encouraged to only be active at a unique spatial location.
An alternative approach is to augment dϕ(T2n−1) so that it
compresses all its neighbors’ encoding (Solution 2).

4. Computational Results
We assess the performance of our proposed TDB on four
experiments: (a) synthetic 2D aliased rooms and aliased
cubes, (b) simulated 3D environments, (c) text datasets and
(d) mixtures of 2D aliased rooms. Each experiment is run
on a 2× 2 grid of Tensor Processing Unit v2.

4.1. Methods compared

Each experiment compares the following methods:

• The causal transformer described in Sec.3.2, trained with
the autoregressive objective in Equation (1). The architec-
ture considered has 4 layers, 8 attention heads, a context
length of 400, an embedding dimension D = 256, and an
MLP hidden layer dimension of 512. We use relative posi-
tional embedding (Dai et al., 2019) and Gaussian error linear
units activation functions (Hendrycks & Gimpel, 2016).

• Several TDBs, using the same causal transformer. We
refer to each model as TDB(S,M) where (a) S ∈ {1, 3} is
the number of prediction steps (Solution 1, Sec.3.4), (b)
M ∈ {1, 4} is the number of discrete bottlenecks (see
Sec.3.5)—each one contains K = 1000 latent codes. We
note TDB(S, enc,M) when we predict the next encoding
(Solution 2, Sec.3.4). After training, we build a cognitive

map as in Sec.3.6 using dHamming = 0.25, tratio = 0.1.

• A vanilla LSTM (Hochreiter & Schmidhuber, 1997) with
hidden dimension of 256.

4.2. Random walks in 2D aliased rooms

Problem: We consider a 2D aliased ground truth (GT)
room of size 15×20, containing O = 4 unique observations,
and a 4 × 4 patch repeated twice—similar to Fig.1. An
agent walking selects, at each timestep, a discrete action
an ∈ {1, 2, 3, 4} and collects the categorical observation
xn ∈ {1, . . . , O}. The actions have unknown semantics:
the agent does not know that an = 1 corresponds to moving
up. No assumptions about Euclidean geometry are made
either. The training and test set contains 2048 random walks
of observations and actions of length 400 each.

Training: We train each method in Sec.4.1 with Adam
(Kingma & Ba, 2014) for 25k training iterations, using a
learning rate of 0.001 and a batch size of 32. For regulariza-
tion, we use a dropout of 0.1.

Solving path planning problems at test time: For a
test sequence xtest of length N = 400, let posn be the GT
unknown 2D spatial position of the observation xn. At test
time, given a context C = 50, the path planning task is
to derive a shortest path, i.e. a sequence of actions, which
leads from posC to posN−C in the GT room. We emphasize
that (a) the model only observes xn and does not know posn
(b) the path (aC , . . . , aN−C−1) is a solution, referred to as
fallback path. Fig.1 shows this problem for N = 40, C = 5.

For a vanilla sequence model, we autoregressively sample
100 random rollouts of length N − 2C each and collect
all the candidates, i.e., the observations equal to xtest

N−C .
Because of aliasing, the model cannot know whether a can-
didate is at the target position posN−C . We use the tail
of the last C observations and actions and only return the
candidates estimated to be at posN−C . For a TDB, after
learning the cognitive map G, we map xC and xN−C to the
bottleneck indices ϕ(T2C−1) and ϕ(T2(N−C)−1), then to

5

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

Simulated 3D environment Cluster centers Latent graph learned with a TDB

Figure 3. [Left] Top: 2D aliased room of size 15× 20 with O = 4 unique observations and 2 identical 4 × 4 patches (in fuchsia).
Bottom: Aliased cube of edge size 6 with O = 12 and non-Euclidean dynamics. [Center left] Top: cognitive map learned with a
TDB(S = 3,M = 1). For visualization, each latent node is mapped with the observation (resp. is placed at the 2D GT spatial position)
with higher empirical frequency when this node is active. Bottom: similar, but we use the Kamada-Kawai algorithm. [Center] Isometric
view of a simulated 3D environment. The agent navigates with egocentric actions and collects RGB images. [Center right] Three cluster
centers: the cluster indices serve as categorical observations. [Right] Cognitive map learned with a TDB(S = 3,M = 4): each location is
represented by four nodes in the latent graph, corresponding to the four agent’s heading directions. Also see Fig.12, Appendix J.

two nodes of G using the Hamming distance. We then call
the external solver networkx.shortest path (Hagberg
et al., 2008) to find the shortest path between these two
nodes. See Appendix D for details about both procedures.

Metrics: We evaluate each method for four metrics.
• A prediction metric, TestAccu: next observation accu-
racy on the test random walks—regardless of whether the
agent was trained to predict the S > 1 future observations.
• Two path planning metrics: we consider 200 shortest
paths problems and report (a) ImpFallback, the percent-
age of problems for which a model finds a valid path which
improves over the fallback path—a path (i.e. a sequence of
actions) is valid if it correctly leads from posC to posN−C

in the GT room—and (b) RatioSP, when a better valid
path is found, the ratio between its length and an optimal
path length—we derive an optimal path using the GT room.
• Normalized graph edit distance, defined for
two graphs G1,G2 as NormGED(G1,G2) =
GED(G1,G2)/(GED(G1, ∅) + GED(G2, ∅)) where
GED is the graph edit distance (Sanfeliu & Fu, 1983) and
∅ is the empty graph. NormGED is lower than 1.0 and
is equal to 0.0 iff. G1 and G2 are isomorphic. We use a
timeout of 15 minutes and empirical positions to accelerate
the GED computation—see Appendix H.

Results: Table 1 averages the metrics over 10 experiments:
each run considers a different GT room. First, we observe
that both vanilla LSTM and transformer almost perfectly
predict the next observation given the history. However,
both sequence models struggle to solve path planning prob-
lems with forward rollouts: they only improve over the
fallback path ∼ 30% of the same. When they do so, they
find shorter paths 16 times longer than an optimal path3.

Second, all the TDBs retain the predictive performance of
vanilla models. However, TDB(S = 1,M = 1) fails at path

planning: it only finds better valid paths ∼ 7% of the time
as it only solves the simplest problems2. Indeed, the learned
cognitive maps merge the observations with identical neigh-
bors, which introduces unrealistic shortcuts in the latent
graphs—see Fig.7, Appendix G. In contrast, TDB with ei-
ther (a) multi-step or (b) next encoding objective learns
cognitive maps that recover the GT dynamics and reach
low NormGED—see Fig.3[center left]. They are able to al-
most consistently find an optimal shortest path. As a result,
ImpFallback is above 99% while RatioSP is 1.00.

Multiple discrete bottlenecks accelerate training: Table
4, Appendix E, reports the average number of training steps
to reach a 98% train accuracy: for S = 3, this number goes
from 8300 for M = 1 down to 4000 for M = 4. In addi-
tion, multiple discrete bottlenecks seem more robust to the
environment. Table 8, Appendix I.2, shows that, when the
room contains O = 12 unique observations, all the TDBs
with M = 4 outperform their M = 1 counterparts.

Multiple discrete bottlenecks do not learn a factorized
latent space: We test whether multiple discrete bottlenecks
learn a disentangled representation by training a logistic re-
gression to predict each bottleneck index given the other
indices—see Appendix F for details. If the bottlenecks
were independent, test disentanglement accuracy would be
0.10%. However, it is 84.99%(±0.56%), which shows the
strong redundancy in the representations learned by each
bottleneck. This is explained by the fact that, the same
transformer output, T2n−1, passes through the discrete bot-
tlenecks in parallel (see Sec. 3.5). Each bottleneck then
compresses T2n−1 in a very similar way, to extract informa-
tion that help predict the next observation: the bottlenecks
are not incentivized to learn a factorized representation.

2When TDB(S = 1,M = 1) finds a better valid path, it does
finds an optimal path, which explains its RatioSP of 1.00

6

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

Method TestAccu (%) ↑ ImpFallback (%) ↑ RatioSP ↓ NormGED ↓

Vanilla transformer 99.80 (0.00) 26.60 (0.58) 16.38 (0.87) —

Vanilla LSTM 99.79 (0.00) 26.85 (0.58) 16.38 (0.87) —

TDB(S = 1, enc,M = 1) 72.88 (2.86) 2.85 (1.33) 1.32 (0.21) 0.733 (0.082)

TDB(S = 3,M = 1) 58.51 (1.43) 1.35 (0.27) 1.35 (0.13) 0.946 (0.007)

TDB(S = 1, enc,M = 4) 99.79 (0.01) 97.55 (0.42) 1.03 (0.01) 0.005 (0.001)

TDB(S = 3,M = 4) 99.79 (0.00) 99.95 (0.05) 1.02 (0.00) 0.017 (0.004)

Table 2. Metrics averaged over 10 simulated 3D environments. Training a TDB with a single discrete bottleneck does not converge. In
contrast, a TDB with multiple discrete bottlenecks can almost perfectly (a) predict the next observation given history, (b) solve shortest
paths problems and (c) learn cognitive maps nearly isomorphic to the ground truth map.

The agent can locate itself after a short context: Ap-
pendix I.3 first shows that, on test random walks, accuracy
is initially low then quickly increases: it is above 99.50%
after the 30th observation—see Fig.9. Second, the latent
codes can be divided into two clusters. The first cluster con-
tains codes with low empirical frequencies, which model the
agent’s uncertainty in the early steps of the random walks.
The second cluster contains latent codes with high empir-
ical frequencies, which appear later in the random walks
when the agent is confident about its location—see Fig.10.
Finally, the agent can “teleportate” in the room but such
behavior appears less than 1% of the time after the 60th
observation—see Fig.11.

TDB can solve constrained path planning problems:
TDB can inject constraints on demand into the external
solver. To illustrate this, we consider a path planning prob-
lem variant: the new task is to find the shortest path from
posC to posN−C which avoids, when possible, a randomly
picked color. To avoid a color, we simply call the short-
est path solver with a large penalty for all the edges con-
necting to a node with this color. TDB(S = 3,M = 1)
is still able to almost consistently solve the problem:
ImpFallback is still 99.55%(±0.13%) while RatioSP
is still 1.00(±0.00). The average length of the shortest paths
is now 13.13(±0.23), as opposed to 10.73(±0.08) when all
the colors are allowed.

TDB learn maps for non-Euclidean dynamics: Since
TDB does not make any assumptions about its environment
or its dynamics, it can be applied to aliased environments
with non-Euclidean dynamics. We generate data from a
3D aliased cube with edge size 6 and O = 12 unique
observations—see Fig.3[bottom left]. Table 7, Appendix
I.1 shows that the prediction and planning performance of a
TDB are near perfect. Fig.3[bottom - center left] visualizes
the learned graph with the Kamada-Kawai algorithm (Ka-
mada et al., 1989) and reveals that TDB recovers the POE
non-Euclidean dynamics.

TDB handles noise during training: We explore how

the performance of TDB varies as we increase the amount
of noise in the training data. We replace a ratio pnoise ∈
{0.1, 0.15, 0.2, 0.25, 0.3} of the training observations by
randomly selected observations, and increase the number of
sequences in the training set to 8092. As we see in Table
3, even when 30% of the training observations are flipped
at random, the test accuracies of both vanilla transformers
and TDB are above 90%, which demonstrates that both mod-
els are robust to noise. In addition, TDB still significantly
outperforms the vanilla transformer for solving planning
problems in the presence of noise: it is still able to solve
∼ 95% of the planning problems on aliased environments
when 20% of the observations are randomly replaced.

pnoise TestAccu (%) ImpFallback (%)

Transformer TDB Transformer TDB

0.10 98.88 (± 0.04) 99.08 (± 0.01) 29.50 (± 1.42) 99.49 (± 0.20)

0.15 98.45 (± 0.05) 98.85 (± 0.03) 22.66 (± 1.27) 98.84 (± 0.37)

0.20 97.58 (± 0.10) 98.30 (± 0.06) 19.87 (± 0.65) 94.18 (± 1.37)

0.25 95.98 (± 0.16) 96.98 (± 0.13) 15.83 (± 1.08) 83.70 (± 3.21)

0.30 91.92 (± 0.33) 93.92 (± 0.33) 8.11 (± 1.02) 58.20 (± 2.80)

Table 3. Test accuracies and planning performance of a vanilla
transformer and a TDB(S = 3,M = 1) with increasing amount
of noise in the training data.

4.3. Egocentric views in 3D simulated environments

Problem: We consider a suite of visually rich 3D simulated
environments (Beattie et al., 2016) with a similar setting as
Guntupalli et al. (2023)—see Fig.3[center, center right]. At
each step, the agent can take any of three discrete egocentric
actions—move 1m forward, rotate 90 deg left, rotate 90 deg
right—and it sees a new view, which is a 64 × 64 RGB
image. The agent’s egocentric views are clustered with a k-
means quantizer—with k = 128— and the clusters indices
are used as categorical observations. The training and test
set sizes are identical to Sec.4.2.

Training: We train the same models as in Sec.4.2, with the
same parameters, on 10 synthetic 3D rooms.

7

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

0 10 20 30 40 50 60
Num. of examples

0.2

0.3

0.4

0.5

0.6

0.7

In
-c

on
te

xt
 a

cc
ur

ac
y

k=3

0 10 20 30 40 50 60
Num. of examples

0.7

0.8

0.9

k=5

0 10 20 30 40 50 60
Num. of examples

0.80

0.85

0.90

0.95
k=8

0 10 20 30 40 50 60
Num. of examples

0.85

0.90

0.95

k=10

LSTM Transformer TDB(S=1, M=1) TDB(S=1, M=4) TDB(S=5, M=1)

Latent graph of a TDB on the GINC dataset

Figure 4. [Left] For all context lengths k, TDB(S = 1,M = 4) achieves higher in-context accuracies than an LSTM and a vanilla
transformer on the GINC test dataset (Xie et al., 2021)—while TDB(S = 5,M = 1) is the best model for large contexts. [Right] The
learned latent graph of TDB(S = 5,M = 1) exhibits five clusters, each corresponding to a color-coded concept.

Results: Table 2 averages the metrics over 10 3D envi-
ronments. Despite their excellent predictive performance,
vanilla sequence models only find a path better than fallback
for 26.60%(±0.60%) of the problems: these “better” paths
are 16.38(±0.87) times longer than optimal paths3. Com-
pared with Sec.4.2, training TDBs with a single bottleneck
do not converge. Consequently, these models reach a low
test accuracy and cannot solve the path planning problems.
In contrast, for TDBs with M = 4 discrete bottlenecks, av-
eraged train accuracies are at least 99.70% after 1000 only
training steps (see Table 5, Appendix E). These models
reach nearly perfect (a) test accuracy and (b) path plan-
ning performance. Their latent maps accurately model the
POEs dynamics—see Fig.3[right] and Fig.12, Appendix
J. However, the multiple bottlenecks learn a highly redun-
dant representation: the test disentanglement accuracy of a
TDB(S = 3,M = 4) is 99.06% (±0.06%).

4.4. Extension to text via the GINC dataset

Problem: Herein, we extend TDB to text datasets to show
that it can extract interpretable latent graphs on this other
modality. We consider the text GINC dataset, introduced in
Xie et al. (2021) to study in-context learning (ICL). GINC4

is generated from a uniform mixture of five factorial HMMs
(Ghahramani & Jordan, 1995)—referred to as a concepts.
Each concept has two factorial chains with 10 states each.
Each state can emit 50 observations shared across concepts.
The training set consists of 1000 training documents with
a total of ∼10 million tokens: each document uniformly
selects a concept and samples independent sentences from
it. The test set consists of in-context prompts. Each prompt
has between n = 0 and n = 64 examples: each example
is of length k ∈ {3, 5, 8, 10}. There are 2500 prompts
for each setting (k, n). Each prompt uniformly selects a
concept, samples n−1 examples x(1)

:k , . . . , x
(n−1)
:k of length

k, and one example x
(n)
:k−1 of length k − 1. The in-context

3The transformer and LSTM performance are almost identical
because the same random walks are used for both models.

4available at https://github.com/p-lambda/
incontext-learning/tree/main/data.

task is to infer the most likely last token of the last example,
i.e., argmax

x
(n)
k−1

p
(
x
(n)
k−1|x

(1)
:k , . . . , x

(n−1)
:k , x

(n)
:k−1

)
.

Since the vocabulary is shared among the concepts, observa-
tions in GINC are aliased like in natural language. Solving
the task requires the model to disambiguate the aliased ob-
servations and correctly infer the latent concepts.

Training: We train the same models as above using the
same parameters, except the batch size which we set to 24.

Results: Fig. 4[left] reports the in-context accuracy—
defined as the average ratio of correct predictions—for each
pair (k, n) of the GINC test set. TDB(S = 1,M = 1) is out-
performed by vanilla sequence models. However, TDB(S =
1,M = 4) outperforms both transformer and LSTM for all
context lengths k. For larger contexts k ∈ {8, 10}, the best
model is TDB(S = 5,M = 1)—it is however slower to
converge (see Table 6, Appendix E). Finally, the highest in-
context accuracies for TDB are around 95% and are higher
than what was reported in Xie et al. (2021) for transformers.
The numerical values are in Table 9, Appendix K.

Fig. 4[right] displays the latent graph learned by TDB(S =
5,M = 1). We use tratio = 0.001 and the Kamada-Kawai
algorithm. Each latent node has a color corresponding to
the GT concept with higher empirical frequency when this
node is active. The learned latent graph has an interpretable
structure: TDB learns five latent subgraphs corresponding
to the five concepts in the GINC dataset.

4.5. In-context learning experiments

Problem: Our last experiment explores whether vanilla
models and TDB can, in a new test POE, (a) in-context
predict the next observation (b) solve in-context path plan-
ning problems (c) learn in-context latent graphs. Similar to
Sec.4.2, we first generate a 2D aliased room of size 6 × 8
with O = 4 unique colors, and with global aliasing: a 3× 3
patch is repeated twice. We define the room partition as
the partition S1, . . . ,SO of the GT room spatial positions
such that all the room spatial positions in a set Si have the
same observation. We then generate many aliased rooms of
the same size by preserving the room partition: each room

8

https://github.com/p-lambda/incontext-learning/tree/main/data
https://github.com/p-lambda/incontext-learning/tree/main/data

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

0 2k 4k 6k 8k 10k
Num. of training rooms

0.4
0.5
0.6
0.7
0.8
0.9
1.0

TestAccu ()

0 2k 4k 6k 8k 10k
Num. of training rooms

0.0

0.2

0.4

0.6

0.8

1.0
ImpFallback ()

0 2k 4k 6k 8k 10k
Num. of training rooms

0
10
20
30
40
50
60
70

RatioSP ()

0 2k 4k 6k 8k 10k
Num. of training rooms

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

NormGED ()

LSTM Transformer TDB(S=3, M=4)

Figure 5. [Left] In novel 2D aliased test rooms, TDB(S = 3,M = 4) perfectly (a) predicts the next observation (b) solves in-context path
planning problems. These in-context capacities emerge when the number of training rooms increases. A vanilla transformer only solves
the prediction problem (a)—which an LSTM struggles to do. [Right] Two latent graphs in-context learned by the TDB on two new test
rooms. By design (a) a 3× 3 fuchsia-coded patch is repeated twice and (b) the room partitions induced by the colors are the same.

picks 4 colors out of 30 without replacement, and assigns
all the room spatial positions in Si to the same color. See
Appendix L.1 for details.

We train each model for a varying number of training rooms:
200, 500, 1k, 2k, 5k, 10k 5. The training set contains 8092
sequences: each sequence picks a training room at random,
then generates a random walk of length 400 in it. The test set
only contains four random walks in each new test room. We
define in-context path planning problems as before, using a
context C = 100. Given a new test room, TDB derives the
test bottleneck indices, builds an in-context cognitive map,
and uses it to solve the in-context path planning problems.

Training in base: We map a sequence of observations
x = (x1, x2, . . . , xN) in a room—where xn is one of the
four room observations—to a room-agnostic sequence x̃ =
(x̃1, . . . , x̃N) where (a) x̃n ∈ {1, . . . , O} and (b) x̃n = k iff.
x̃n is the kth lowest observation seen between indices 1 and
n6. We train each model to take x as input and to predict x̃.
As the model predictions are always in the base {1, . . . , O},
it is encouraged to share structure across rooms—e.g. TDB
can reuse the same latent codes across rooms. As before,
we train for 25k Adam iterations, using a learning rate of
0.001, a batch size of 32 and a dropout of 0.1.

Results: Fig. 5[left] averages the results over 10 runs—
the numerical values are in Table 10, Appendix L.2. For
NormGED, we use a timeout of 20s. As the number of
training rooms increases, all the models display a phase
transition where both prediction and path planning perfor-
mance improve. When the number of training rooms is
larger than 5k, in-context learning emerges for the trans-
former and TDB: both achieve almost perfect in-context
accuracy on the new test rooms. In contrast, LSTM reaches
lower in-context accuracy. In addition, in-context path plan-
ning emerges in the TDB: it can nearly perfectly solve the
shortest paths problems, which both vanilla models struggle
with. The in-context latent graphs reach low NormGED and

5As there are 30× 29× 28× 27 = 657, 720 possible rooms,
we train on at most 1.52% of all the rooms.

6x̃n = 1 may map to different xn through the sequence.

are nearly isomorphic to the GT, and correctly model the
room’s dynamics—see Fig. 5[right]. TDB(S = 3,M = 4)
trained on 10k rooms has a disentanglement accuracy (see
Appendix F) of 94.02%(±0.27%): again, multiple discrete
bottlenecks do not learn a disentangled representation. Fi-
nally, Appendix L.4 studies how spatial exposure to base
targets in the training data drives in-context performance.

5. Conclusion
We propose TDB, a transformer variant that addresses the
shortcomings of vanilla transformers for path planning. TDB
(a) introduces discrete bottlenecks which compress the in-
formation necessary to predict the next observation given
history then (b) builds interpretable cognitive maps from the
active bottlenecks indices. On perceptually aliased POEs,
TDB (a) retains the near-perfect prediction of transform-
ers, (b) calls an external solver on its latent graph to solve
path planning problems exponentially faster, (c) learns inter-
pretable structure from text datasets, (d) exhibits emergent
in-context prediction and path planning abilities.

Our approach has two main limitations. First, TDB only
accepts categorical inputs. Second, though multiple discrete
bottlenecks accelerate training, they do not learn a disen-
tangled latent space. To address these points, we want to
modify the TDB architecture (a) to accept high-dimensional
continuous observations (images), and (b) so that different
bottlenecks learn non-redundant representations. Further-
more, we would like to extend this work into a framework
to build planning-compatible world models in rich envi-
ronments. To do so, we want to learn disentangled latent
dynamics in factored Markov decision processes by (a) ex-
tracting knowledge with transformers, (b) using multiple
discrete bottlenecks to compress this knowledge and to gen-
erate latent nodes—or local latent graphs—and (c) learning
factorized transition matrices over these latent nodes.

9

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

Acknowledgments
We thank Kevin Murphy, Daan Wierstra and Théophane
Weber for useful discussions during the preparation of this
manuscript.

Impact Statement
This paper aims to address some of the inherent shortcom-
ings of vanilla transformers for solving path planning and
navigation tasks. Consequently, it is possible that a future
generation of our proposed model is used to train agents
that build a cognitive map of their environment, and that are
able to solve real-time navigation tasks in the real world.

References
Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wain-

wright, M., Küttler, H., Lefrancq, A., Green, S., Valdés,
V., Sadik, A., et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Carbonneau, M.-A., Zaidi, J., Boilard, J., and Gagnon, G.
Measuring disentanglement: A review of metrics. arXiv
preprint arXiv:2012.09276, 2020.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing
systems, 34:15084–15097, 2021a.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021b.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Chrisman, L. Reinforcement learning with perceptual alias-
ing: The perceptual distinctions approach. In AAAI, vol-
ume 1992, pp. 183–188. Citeseer, 1992.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Conmy, A., Mavor-Parker, A. N., Lynch, A., Heimersheim,
S., and Garriga-Alonso, A. Towards automated circuit
discovery for mechanistic interpretability. arXiv preprint
arXiv:2304.14997, 2023.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., and
Salakhutdinov, R. Transformer-xl: Attentive language
models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum
likelihood from incomplete data via the em algorithm.
Journal of the royal statistical society: series B (method-
ological), 39(1):1–22, 1977.

10

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly, T.,
et al. A mathematical framework for transformer circuits.
Transformer Circuits Thread, 1, 2021.

Fraccaro, M., Rezende, D., Zwols, Y., Pritzel, A., Eslami,
S. A., and Viola, F. Generative temporal models with
spatial memory for partially observed environments. In
International conference on machine learning, pp. 1549–
1558. PMLR, 2018.

George, D., Rikhye, R. V., Gothoskar, N., Guntupalli, J. S.,
Dedieu, A., and Lázaro-Gredilla, M. Clone-structured
graph representations enable flexible learning and vicar-
ious evaluation of cognitive maps. Nature communica-
tions, 12(1):2392, 2021.

Ghahramani, Z. and Jordan, M. Factorial hidden markov
models. Advances in Neural Information Processing
Systems, 8, 1995.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P.,
Buchatskaya, E., Doersch, C., Avila Pires, B., Guo, Z.,
Gheshlaghi Azar, M., et al. Bootstrap your own latent-a
new approach to self-supervised learning. Advances in
neural information processing systems, 33:21271–21284,
2020.

Guan, L., Valmeekam, K., Sreedharan, S., and Kambham-
pati, S. Leveraging pre-trained large language models to
construct and utilize world models for model-based task
planning. arXiv preprint arXiv:2305.14909, 2023.

Guntupalli, J. S., Raju, R. V., Kushagra, S., Wendelken, C.,
Sawyer, D., Deshpande, I., Zhou, G., Lázaro-Gredilla,
M., and George, D. Graph schemas as abstractions for
transfer learning, inference, and planning. arXiv preprint
arXiv:2302.07350, 2023.

Guo, Z., Thakoor, S., Pı̂slar, M., Avila Pires, B., Altché, F.,
Tallec, C., Saade, A., Calandriello, D., Grill, J.-B., Tang,
Y., et al. Byol-explore: Exploration by bootstrapped
prediction. Advances in neural information processing
systems, 35:31855–31870, 2022.

Hagberg, A., Swart, P., and S Chult, D. Exploring net-
work structure, dynamics, and function using networkx.
Technical report, Los Alamos National Lab.(LANL), Los
Alamos, NM (United States), 2008.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Kamada, T., Kawai, S., et al. An algorithm for drawing
general undirected graphs. Information processing letters,
31(1):7–15, 1989.

Karkus, P., Hsu, D., and Lee, W. S. Qmdp-net: Deep learn-
ing for planning under partial observability. Advances in
neural information processing systems, 30, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Lamb, A., Islam, R., Efroni, Y., Didolkar, A. R., Misra,
D., Foster, D. J., Molu, L. P., Chari, R., Krishnamurthy,
A., and Langford, J. Guaranteed discovery of control-
endogenous latent states with multi-step inverse models.
Transactions on Machine Learning Research, 2022.

Lieberum, T., Rahtz, M., Kramár, J., Irving, G., Shah, R.,
and Mikulik, V. Does circuit analysis interpretability
scale? evidence from multiple choice capabilities in chin-
chilla. arXiv preprint arXiv:2307.09458, 2023.

Mentzer, F., Minnen, D., Agustsson, E., and Tschannen, M.
Finite scalar quantization: Vq-vae made simple. arXiv
preprint arXiv:2309.15505, 2023.

Mialon, G., Fourrier, C., Swift, C., Wolf, T., LeCun, Y., and
Scialom, T. Gaia: a benchmark for general ai assistants.
arXiv preprint arXiv:2311.12983, 2023.

Momennejad, I., Hasanbeig, H., Vieira, F., Sharma, H., Ness,
R. O., Jojic, N., Palangi, H., and Larson, J. Evaluating
cognitive maps and planning in large language models
with cogeval. arXiv preprint arXiv:2309.15129, 2023.

Nanda, N., Chan, L., Liberum, T., Smith, J., and Stein-
hardt, J. Progress measures for grokking via mechanistic
interpretability. arXiv preprint arXiv:2301.05217, 2023.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., et al. In-context learning and induction heads. arXiv
preprint arXiv:2209.11895, 2022.

Pallagani, V., Muppasani, B., Murugesan, K., Rossi, F.,
Horesh, L., Srivastava, B., Fabiano, F., and Loreggia, A.
Plansformer: Generating symbolic plans using transform-
ers. arXiv preprint arXiv:2212.08681, 2022.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. Improving language understanding by generative
pre-training. 2018.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Rad-
ford, A., Chen, M., and Sutskever, I. Zero-shot text-
to-image generation. In International Conference on
Machine Learning, pp. 8821–8831. PMLR, 2021.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G.,
Novikov, A., Barth-Maron, G., Gimenez, M., Sulsky,
Y., Kay, J., Springenberg, J. T., et al. A generalist agent.
arXiv preprint arXiv:2205.06175, 2022.

11

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

Sanfeliu, A. and Fu, K.-S. A distance measure between
attributed relational graphs for pattern recognition. IEEE
transactions on systems, man, and cybernetics, (3):353–
362, 1983.

Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A. M., Abid,
A., Fisch, A., Brown, A. R., Santoro, A., Gupta, A.,
Garriga-Alonso, A., et al. Beyond the imitation game:
Quantifying and extrapolating the capabilities of language
models. arXiv preprint arXiv:2206.04615, 2022.

Swaminathan, S., Dedieu, A., Raju, R. V., Shanahan, M.,
Lazaro-Gredilla, M., and George, D. Schema-learning
and rebinding as mechanisms of in-context learning and
emergence. arXiv preprint arXiv:2307.01201, 2023.

Valmeekam, K., Olmo, A., Sreedharan, S., and Kambham-
pati, S. Large language models still can’t plan (a bench-
mark for llms on planning and reasoning about change).
arXiv preprint arXiv:2206.10498, 2022.

Van Den Oord, A., Vinyals, O., et al. Neural discrete rep-
resentation learning. Advances in neural information
processing systems, 30, 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Met-
zler, D., et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Whittington, J. C., McCaffary, D., Bakermans, J. J., and
Behrens, T. E. How to build a cognitive map. Nature
neuroscience, 25(10):1257–1272, 2022.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
explanation of in-context learning as implicit bayesian
inference. arXiv preprint arXiv:2111.02080, 2021.

12

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

A. Vanilla transformer architecture
Fig.6 presents the vanilla transformer detailed in Sec.3.2. In our numerical experiments, Sec.4, we train this model to
minimize the autoregressive objective Equation (1).

Causal
Transformer

Embedder Prediction layer

Figure 6. A vanilla transformer with causal mask takes as inputs the respective linear embeddings of the observations and actions. A
linear layer on top of the action representations returns the next observation logits.

13

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

B. On the connection between TDB and CSCG
B.1. Computational and space complexity

A clone-structured causal graph (CSCG) (George et al., 2021) is a hidden Markov model variant used to model sequences
of categorical observations. The latent space of a CSCG is partitioned, such that all the latent variables in one set of the
partition deterministically emit the same observation. These latent variables are the clones of the observation. Because of its
latent structure, CSCG models a transition between two observations as a transition between their respective clones—as
opposed to a transition between all the latent variables.

We compare below the complexity between a vanilla CSCG and a vanilla self-attention layer when running inference on a
sequence of length N .

Computation complexity: For a vanilla CSCG with M clones per observation, the computational cost for computing the
forward and backward messages is O(M2N). In contrast, for a vanilla self-attention layer with a D-dimensional embedding,
the forward pass cost is O(N2D). In this paper, we use N = 400, D = 256. CSCG is then more expensive when the
number of clones per observation satisfies M ≫

√
ND = 320.

Space complexity: The memory cost of storing a vanilla CSCG with M clones per observation and E different observations
is O(M2E2). This large dense memory matrix can grow quickly as the number of observations increases, and prohibit
vanilla CSCGs from scaling to very large latent space. In contrast, a vanilla self-attention layer with a D-dimensional
embedding requires a O(N2 +ND) memory. The quadratic dependence on the sequence length is problematic for large
corpora, but not for the problem we study here, where N = 400.

B.2. A transformer with clone-structured discrete bottleneck

We propose herein a variant of the TDB architecture inspired by the CSCG model, which injects a “clone-structured” inductive
bias into its discrete bottlenecks. We consider the dictionary of latent codes introduced in Sec.3.3: D = (d1, . . . , dK), where
dk ∈ RD, ∀k. We now allocate a subset of the latent codes for each observation x in the vocabulary V . That is, we first
define a partition of the indices {C(x)}x∈V such that:⋃

x∈V

C(x) = {1, . . . ,K} ; C(x) ∩ C(y) = ∅, ∀x ̸= y ; C(x) ̸= ∅, ∀x.

Second, we generalize the operator ϕ in Equation (2) so that it now depends on both (a) the transformer output and (b) the
observation itself. That is, we define:

ϕ̃(y, x) = argmin
k∈C(x)

∥y − dk∥22, ∀y ∈ Rd, ∀x ∈ V (6)

For the observation xn which leads to the transformer output T2n−1, the discrete quantizer now returns the latent code of D
with index ϕ̃(T2n−1, xn). That is, each observation can now only activate a subset of the latent codes. We refer to this new
quantizer module as clone-structured discrete bottleneck.

Computational gain: This architecture change decreases the computational cost of the discrete bottleneck by a linear
term O(E)—which can be of interest when the number of observations E is large. However, the overall computational cost
is still dominated by the quadratic cost of computing the attention matrices in the causal transformer.

Performance gain: Overall, we did not find any major benefit from replacing the discrete bottleneck of a TDB with
its clone-structure variants. Our most promising result was that we were able to solve the 3D synthetic environments in
Sec.4.3 using a single clone-structured discrete bottleneck—where a TDB needs more than one discrete bottleneck. However,
a transformer with clone-structured bottlenecks would struggle to solve the in-context learning experiments in Sec.4.5.
Indeed, a new test room with observations 5, 6, 7, 8 would, by definition, use different latent codes than a training room with
observations 1, 2, 3, 4, which prevents the model from learning to share structure across rooms. This convinced us to not use
the clone-structured discrete bottleneck in our experiments.

14

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

C. Clustering steps to build the transition graph
In this section, we detail the clustering steps that we apply to learn a cognitive map from the bottleneck indices in Sec.3.6.

Step 1. Cluster the bottlenecks indices with Hamming distance: This first clustering step only applies in the case where
the TDB has multiple M > 1 discrete bottlenecks. In this case, TDB maps each observation xn to a tuple of latent code
indices:

sn =
(
ϕ(1)(T2n−1), . . . , ϕ

(M)(T2n−1)
)
∈ {1, . . . ,K}M .

Before building the cognitive map, we first collect in a set J all the unique tuples of latent indices appearing in the training
set. For two tuples s = (s(1), . . . , s(M)) ∈ J and ℓ = (ℓ(1), . . . , ℓ(M)) ∈ J , we compute their Hamming distance:

H(s, ℓ) =
1

M

M∑
j=1

1(s(j) ̸= ℓ(j)) ∈ [0, 1].

We introduce a distance threshold dHamming—which we set to 0.25 in Sec.4—and merge any pair of tuples such that
H(s, ℓ) ≤ dHamming. This means that we will not distinguish ℓ and s when we build the count tensor C—see Sec.3.6.
Consequently, these two tuples will be mapped to the same node on the cognitive map G—and any node in G will be
associated with a collection of tuples of bottleneck indices.

Intuitively, this means that when the entries of two tuples of bottleneck indices are “almost all the same”, then we assume
that their associated observations are at the same spatial position.

Step 2. Merge identical nodes: Second, we build the count tensor C (after this first clustering step), and threshold it with
tratio to build an action-augmented transition graph G—as detailed in Sec. 3.6. We only retain nodes that have at least two
incoming and outgoing neighbors. Finally, our second clustering step merges every pair of nodes in G that are connected to
the same set of neighbors.

Step 3. Map each discarded node to its closest retained node: Thresholding the count tensor C may discard some (tuple
of) bottleneck indices with low empirical counts. In particular, as we show in Fig.10, Appendix I.3, many bottleneck indices
that are active early in the sequences are discarded. This may be problematic for solving path planning problems, as it means
that the corresponding observations cannot be mapped to nodes in G. Indeed, when TDB activates a discarded (tuple of)
bottleneck indices, it cannot locate itself in the learned cognitive map G.

To remedy this, we divide the set of unique (tuples of) latent indices J , between the elements that are discarded—i.e. not
mapped to a node in C—and retained—i.e. mapped to a node in C. Our last clustering step maps any discarded (tuple of)
latent indices sdiscarded to its closest retained latent index for the ℓ1 distance, defined as:

ŝretained ∈ argmin
sretained

Nactions∑
a=1

K∑
ℓ=1

|p(ℓ | sretained, a)− p(ℓ | sdiscarded, a)| .

After this step, sdiscarded and ŝretained are mapped to the same node in C, and all the entries in J are retained.

15

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

D. Solving path planning problem at test time on partially observed environments
We detail herein how a vanilla sequence model and a TDB can solve the test shortest path problem presented in Sec.4.2.

Defining the shortest path problem: We consider a test sequence of observations x = (x1, . . . , xN) and actions
a = (a1, . . . , aN) in a POE—the environment can either be the 2D aliased rooms of Sec.4.2 and Sec.4.5, the aliased
cube of Sec.4.2, or the egocentric 3D synthetic environments of Sec.4.3. We also denote pos = (pos1, . . . ,posN) the
unobserved sequence of room spatial positions associated with each observation. Note that, because of aliasing, we cannot
deterministically infer posn from xn.

For the 2D aliased rooms (Sec.4.2), the spatial position of an observation is its 2D coordinates. For the egocentric 3D
synthetic environments (Sec.4.3), the spatial position of an observation is a 3D vector: the first two entries correspond to
the 2D coordinates of the observation, while the last entry corresponds to the agent’s heading direction, which is one of
{0◦, 90◦, 180◦, 270◦}

Let C be a context length—we set C = 50 or C = 100 in practice. The path planning problem we consider in Sec.4 consists
of finding the shortest path, i.e., the shortest sequence of actions, which leads from the room position posC (associated
with the observation xC) to the room position posN−C (associated with the observation xN−C). Naturally, the sequence
(aC , . . . , aN−C−1) is a path of length N − 2C from posC to posN−C , which we refer to as the fallback path. In addition,
for evaluating a model’s performance, we use an optimal shortest path, which solves the shortest path problem in the ground
truth room—note that the agent does not know the ground truth layout. While the optimal shortest path is not unique, all the
optimal shortest paths have the same length.

Fig.1 in the main text illustrates this path planning problem on a 2D aliased room—we use N = 40, C = 5 for the sake of
visualization.

We detail below our proposed procedure for solving this shortest path problem with a TDB; and with a vanilla transformer or
a vanilla LSTM. As mentioned in the main text, a vanilla sequence model finds this challenging because (a) it can only
perform forward rollouts—without being able to collapse redundant visitations of the same spatial position—and (b) it
cannot tell whether it has reached its destination. In contrast, a TDB solves this problem by querying its learned latent graph.

We are interested in measuring (a) whether each model can derive a path that improves over the fallback path and (b) when a
model derives such a better path, how much worse it is compared to the optimal shortest path.

Deriving shortest paths with TDB: When TDB is evaluated on the test sequences x and a, it maps each observation xn

to either (a) a single latent code index sn = ϕ(T2n−1) ∈ {1, . . . ,K} when we have a single discrete bottleneck or (b) a
tuple of latent codes indices sn =

(
ϕ(1)(T2n−1), . . . , ϕ

(M)(T2n−1)
)

when we have multiple discrete bottlenecks.

As a reminder, each node in the learned cognitive map G is associated with a collection of (tuples of) bottleneck indices—see
Appendix C. However, the (tuples of) bottleneck indices sC and sN−C may not be associated with a node in G. Consequently,
we find two tuples of bottleneck indices s̃C and s̃N−C (a) with lowest Hamming distance from sC and sN−C and (b) which
are associated with two nodes nC and nN−C in G . Finally, we call the external networkx.shortest path solver to find
a shortest path between the nodes nC and nN−C .

Deriving shortest paths from rollouts with vanilla sequence models: A naive option that finds the shortest path between
posC and posN−C with a vanilla sequence model consists in exploring all the possible sequences of observations and
actions. For a number of evaluations exponential in the length of the optimal shortest path, this approach is guaranteed to
find an optimal shortest path.

We propose herein an alternative approach, which (a) is more computationally efficient, (b) is not guaranteed to find the
optimal shortest path, and (c) in practice, often improves over the fallback path. Beforehand, let us define the subsequences of
observations context xcontext = (x1, . . . , xC) and actions context acontext = (a1, . . . , aC−1). We also define the subsequences
of observations tail xtail = (xN−C+1, . . . , xN) and actions tail atail = (aN−C , . . . , aN−1).

First, we generate Nrandom walks random sequences of actions, each of length N − 2C: we denote a(i) = (a
(i)
C , . . . , a

(i)
N−C−1)

the ith random sequence—we initialize the indices at C. In Sec.4.3, we set Nrandom walks = 10.

Second, we augment each sequence of actions (of length N − 2C) into two sequences of observations and actions, of
respective lengths N − 2C and N − 2C − 1, as follows. The first C observations and C − 1 actions are the shared context

16

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

xcontext and acontext. The next N − 2C actions correspond to a(i). The corresponding sequence of observations corresponds
to the sequence model’s autoregressive predictions. That is, for n = C, . . . , N − C − 1, we iteratively define x̂

(i)
n+1 as:

x̂
(i)
n+1 ∈ argmax

x
p

x

∣∣∣∣ x1, a1, . . . , aC−1, xC︸ ︷︷ ︸
shared context

, a
(i)
C , x̂

(i)
C+1, a

(i)
C+1, . . . , x̂

(i)
n , an


For each generated random walk, we look for all the observations equal to xN−C , and define the set of candidates:

C =
{
(i, n) : n ≥ C and x̂(i)

n = xN−C

}
.

Estimating whether the target is reached via tail evaluation: As we mentioned in the main text, because of aliasing, the
vanilla sequence model cannot know whether it has reached the target position when it observes a candidate. That is, it does
not know whether the spatial position associated with the candidate is equal to posN−C .

We could return all the candidates and evaluate them using the ground truth map. Instead, we propose herein to estimate
whether a candidate (i, n) is at the target position posN−C by evaluating it—with its history—on the tail subsequences of
observations xtail and actions atail. That is, for a candidate (i, n) we define, for k = 1, . . . , C:

x̂
(i)
tail,k ∈ argmax

x
p

x

∣∣∣∣ x1, a1, . . . , aC−1, xC︸ ︷︷ ︸
shared context

, a
(i)
C , x̂

(i)
C+1, a

(i)
C+1, . . . , x̂

(i)
n = xN−C︸ ︷︷ ︸

autoregressive random walk

, aN−C , xN−C+1, . . . , aN−C+k−1


We estimate that a candidate is at the target position posN−C when (x̂

(i)
tail,1, . . . , x̂

(i)
tail,C) = xtail. Note that, because of

aliasing, even when the tail evaluation succeeds, the candidate may not be at the target position.

Evaluating valid paths: For the TDB, we return a single shortest path proposal, which is estimated by the external solver.
For the transformer and the LSTM, we return all the path proposals that are estimated to be at the target position.

For each model, we first evaluate whether the proposed paths are valid. That is, we test whether the proposed sequence of
actions correctly leads from posC to posN−C in the ground truth environment. For a vanilla sequence model, when multiple
returned paths are valid, we only retain the shortest one. We then compute two metrics (a) a binary indicator of whether the
method has found a valid path and (b) if (a) is correct, the ratio between the length of the valid found path and the optimal
path length. Finally, ImpFallback averages (a) while RatioSP averages (b) over 200 shortest paths problems.

Tail evaluation improves the quality of the paths returned: For a transformer trained on 2D aliased rooms in Sec.4.2, if
we return all the candidates, then the ratio of valid paths among the paths returned is 0.78%(±0.03%). Indeed, most of the
candidates are not at the target spatial position. When we estimate whether we are at the target position via tail evaluation,
this ratio goes up to 38.76%(±1.17%)—prediction errors prevent it from being at 100%. Similarly, on the 3D synthetic
environments of Sec.4.3, a transformer without tail evaluation returns 1.75%(±0.20%) of valid paths while a transformer
with tail evaluation returns 25.78%(±1.17%). Finally, on the ICL experiments of Sec.4.5, for a transformer trained on
10k rooms, this same ratio goes from 2.58%(±0.05%) without tail evaluation up to 51.10%(±1.81%) with it. Overall, tail
evaluation drastically improves the quality of the paths returned by sequence models.

17

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

E. Multiple discrete bottlenecks accelerate training
Tables 4, 5 and 6 below illustrate that multiple discrete bottlenecks accelerate training.

2D aliased rooms: For each TDB trained on the 2D aliased rooms and reported in Sec.4.2, we compute, for every 1000
training steps, its training accuracy on the entire training set. We define a new metric, TrainingAbove98, which reports
the first evaluation when this training accuracy is higher than 98%. Table 4 averages this metric over the 10 experiments run
in Sec.4.2, for various TDB models.

Method TrainingAbove98 ↓

TDB(S = 1,M = 1) 9400 (290)
TDB(S = 1,M = 4) 4300 (145)

TDB(S = 1, enc,M = 1) 9300 (425)
TDB(S = 1, enc,M = 4) 4500 (158)

TDB(S = 3,M = 1) 8300 (284)
TDB(S = 3,M = 4) 4000 (0)

Table 4. On 2D aliased rooms, training a TDB with M = 4 discrete bottlenecks converges faster than training its counterpart with a single
discrete bottleneck.

3D synthetic environments: As discussed in Sec.4.2, we need M = 4 discrete bottlenecks for the TDB training to
converge in 3D synthetic environments. Table 5 illustrates this by reporting TrainingAfter1k—the training accuracy
after 1000 training steps—for the different models reported in Table 2.

Method TrainingAfter1k (%) ↑

TDB(S = 1,M = 1) 41.40 (0.09)
TDB(S = 1,M = 4) 99.72 (0.03)

TDB(S = 1, enc,M = 1) 40.81 (0.93)
TDB(S = 1, enc,M = 4) 99.71 (0.04)

TDB(S = 3,M = 1) 28.05 (1.88)
TDB(S = 3,M = 4) 99.63 (0.06)

Table 5. On the 3D synthetic environments, training a TDB with M = 4 discrete bottlenecks converges faster than training its counterpart
with a single discrete bottleneck.

GINC text dataset: Finally, on the GINC dataset, we also evaluate the training accuracy of each model reported in Sec.4.5
at every 1000 training steps. Here, TrainingAbove98 reports the first iteration when the training accuracy becomes
higher than 98% of the highest value it reaches during training.

Method TrainingAfter1k (%) ↑

TDB(S = 1,M = 1) 16000
TDB(S = 1,M = 4) 6000

TDB(S = 3,M = 1) 13000
TDB(S = 3,M = 4) 5000

TDB(S = 5,M = 1) 11000
TDB(S = 5,M = 4) 5000

Table 6. On the GINC dataset, training a TDB with M = 4 discrete bottlenecks converges faster than training its counterpart with a single
discrete bottleneck.

18

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

F. Do multiple discrete bottlenecks learn a disentangled representation?
Predicting a discrete bottleneck index given the other indices: We propose herein a metric to test whether multiple
discrete bottlenecks learn a disentangled representation of the observations.

If the discrete bottlenecks learn of a disentangled representation, then (a) they have to be independent (b) each one has to
explain a distinct factor of the data (Carbonneau et al., 2020). Given a TDB with M discrete bottlenecks, we propose to
estimate (a), that is, whether the bottlenecks are independent. To do so, we train a logistic regression estimator to predict
each bottleneck index given the other M − 1 bottleneck indices.

Given a sequence of observations (x1, . . . , xN), a TDB with M discrete bottlenecks maps each observation xn to the latent
codes

(
s
(1)
n , . . . , s

(M)
n

)
where s

(i)
n = ϕ(i)(T2n−1) ∈ {1, . . . ,K}—see Sec.3.5.

We denote e
(i)
n =

(
1(s

(i)
n = k)

)
1≤k≤K

the one-hot encoding of s(i)n .

Let us now assume that we want to predict the M th bottleneck index given the first M − 1 bottleneck indices.

We note z =
(
e
(1)
n , . . . , e

(M−1)
n

)
∈ {0, 1}(M−1)K and y = e

(M)
n ∈ {0, 1}K , where we drop the dependency over n. We

also introduce a matrix W ∈ RK×(M−1)K . The logistic regression objective at timestep n is:

L(M)
disentanglement(n) = −

K∑
i=1

yi log

(
exp(WT

i z)∑K
j=1 exp(W

T
j z)

)

We also define L(M)
disentanglement =

∑N
n=1 L

(M)
disentanglement(n). Note that we do not use an intercept term or a regularization term.

Training: Given a training and test set from Sec.4, each consisting of Nseq test sequences of length N , we first compute
all the active bottleneck indices, which gives us two tensors, Ttrain and Ttest, each of dimensions Nseq ×N ×M .

We train M logistic regression estimators on Ttrain: the ith estimator is trained to minimize L(i)
disentanglement, that is, to predict

the ith bottleneck index given the other M − 1. For training, we use Adam (Kingma & Ba, 2014) for 5, 000 iterations, with
a learning rate of 0.001 and a batch size of 32.

Disentanglement metric: Our proposed disentanglement metric is the averaged test accuracy of the M logistic regression
estimators on the test tensor Ttest.

Results: In Sec.4, we use K = 1000 latent codes for each discrete bottleneck: if the bottleneck representations are
independent, the test disentanglement accuracy would be 0.10%. However, all the test disentanglement accuracies reported
in the main paper, are above 85%, which shows that multiple discrete bottlenecks learn highly redundant representations.

19

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

G. TDB with single-step objective merges nodes with identical neighbors
In Sec.3.7, we make the argument that a TDB only trained to predict the next observation is not encouraged to disambiguate
observations with identical neighbors in the ground truth (GT) room and, as a result, may merge their representations. We
use this same argument in Sec.3.4 to justify the need for augmenting the loss via either (a) a multi-step objective or (b) next
encoding prediction.

Fig.7 demonstrates the argument. We consider a 2D aliased GT room from Sec. 4.2 with O = 12 unique observations—the
numerical results are presented in Table 8, Appendix I.2. Similar to Fig.1, the GT room contains a 4× 4 patch with black
borders repeated twice. Each 4× 4 patch contains an inner 2× 2 patch with fuchsia borders. For each node inside this inner
patch, all four actions in the GT room (move up, down, left, and right) lead to the same neighbors, regardless of whether the
node in the top-left 2× 2 patch or the bottom-right one.

Fig.7[right] shows the latent graph learned by a TDB(S = 1,M = 4) with single step prediction and four discrete bottlenecks.
Because this model is only trained to predict the next observation given the history, it learns the same representation for each
pair of nodes with same location inside the inner 2× 2 patch. This results in the presence of four merged nodes in the latent
graph—colored in fuchsia. When a merged node is active, the agent can (a) perfectly predict the next observation but (b)
it cannot know which one of the two possible 2 × 2 patches it is in. In addition, the merged nodes introduce unrealistic
shortcuts in the learned latent graph: nodes that are far apart in the GT room are close in the latent graph. Because the
learned cognitive map does not accurately model the ground truth dynamics, the external solver will propose shortest paths
that are invalid in the GT room. As a consequence, as indicated in Table 8, Appendix I.2, TDB(S = 1,M = 4) can only
solve 59.37%(±3.93%) of the path planning problems.

TDB(S=1, M=4) latent graph

Figure 7. [Left] A 2D aliased room with O = 12 unique observations: for each observation inside the 2 × 2 patches with fuchsia
boundaries, all four actions (move up, down, left, right) lead to the same neighbors, regardless of whether the node is in the top-left
2× 2 patch or the bottom-right one. [Right] The latent graph learned by a TDB with single step prediction fails at learning the ground
truth dynamics. TDB learns the same representation for the two elements of each pair. This results in four merged nodes—colored in
fuchsia—which are active at two spatial locations. While these merged nodes do not affect test prediction performance, they introduce
unrealistic shortcuts in the latent graph, which fool the external planner.

For aliased rooms with 4 colors: When O = 4, a higher frequency of observations have identical neighbors. The learned
latent graph merges these observations, which introduces a larger number of unrealistic shortcuts. This explains the poor
performance of TDB(S = 1,M = 1) in Table 1, which only improves 6.61%(±0.53%) of the time over the fallback path.
Because of this inherent failure, TDB(S = 1,M = 4) similarly only improves over the fallback path 6.21%(±0.62%) of
the time. In fact, TDB is only able to solve the easiest path planning problems, for which the optimal shortest path consists
of only a small number of actions. Indeed, the average length of the optimal shortest paths solved by TDB(S = 1,M = 4) is
2.15 (±0.07) while the average length of the optimal shortest paths over all the path planning problems is 10.80 (±0.08).

20

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

For 3D synthetic environments: Fig.8[middle] shows that, for a 3D environment from Section 4.3, the cognitive map
learned with a TDB(S = 1,M = 4) merges three pairs of nodes. These merged nodes introduce unrealistic shortcuts on the
learned latent graph: as a result, TDB(S = 1,M = 4) fails at path planning and only improves 65.30%(±4.24±%) of the
time over the fallback path.

Fig.8[right] shows the latent graph learned when the objective is augmented to predict the next three steps, and highlights
the three pairs of nodes merged in the middle image. Note that each node is mapped to the observation with higher empirical
frequency when this node is active. As before, we see that the merged nodes have identical neighbors7.

Simulated 3D environment TDB(S=1, M=4) latent graph

Figure 8. [Left] Top-down view of a 3D simulated rooms used in Sec.4.3. [Middle] Latent graph learned with a TDB(S = 1,M = 4)
with single-step objective: each pair of observations with identical neighbors are represented with the same node, which introduces
unrealistic shortcuts. [Right] Color-coded latent graph learned with a multi-step objective.

7Because there are 128 clusters, the reader cannot precisely infer the observation from the colors: we looked at the graph indices to
make sure that the neighbors of the merged nodes are identical.

21

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

H. Accelerating the graph edit distance
The graph edit distance (GED) (Sanfeliu & Fu, 1983) between two graphs G1 and G2 is a graph similarity measure defined
as minimum cost of edit path—i.e. sequence of node and edge edit operations—to transform the graph G1 into a graph
isomorphic to G2.

Computing the exact GED is NP-complete. We therefore rely on the networkx.optimize graph edit distance

(Hagberg et al., 2008) function to return a sequence of approximations. This method accepts as argument a function to
indicate which nodes (resp. edges) of G1 and G2 should be considered equal during matching.

To accelerate GED, we say that a node n1 of G1 and a node n2 of G2 have to be considered equal — and we note n1 ≈ n2 if
the ground truth spatial positions with higher empirical frequency when n1 (resp. n2) is active are the same. Similarly, we
say that an edge of G1 connecting the nodes (ns

1, n
t
1) and an edge of G2 connecting the nodes (ns

2, n
t
2) are considered to be

equal if either (a) ns
1 ≈ ns

2 and nt
1 ≈ nt

2 or (b) ns
1 ≈ nt

2 and nt
1 ≈ ns

2.

We use a timeout of 900s to compute GED in all the experiments but the ICL one, for which we use 20s (due to the large
number of normalized graph edit distances being computed).

22

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

I. Additional materials for aliased cube and for 2D aliased room cubes
I.1. Table of results for non-Euclidean aliased cube

Table 7 reports the prediction and path planning metrics for an aliased cube with edge size 6, similar to Fig. 3[bottom-left].
All the settings and parameters are the same as in Section 4.2. We average the results over 10 experiments: each experiment
considers a different cube.

Method TestAccu (%) ↑ ImpFallback (%) ↑ RatioSP ↓ NormGED ↓

Vanilla transformer 99.76 (0.00) 43.82 (1.17) 22.74 (0.84) —

Vanilla LSTM 99.76 (0.00) 43.82 (1.17) 22.74 (0.84) —

TDB(S = 1, enc,M = 1) 99.36 (0.06) 99.07 (0.88) 1.02 (0.00) 0.334 (0.016)

TDB(S = 3,M = 1) 99.76 (0.00) 99.05 (0.23) 1.03 (0.00) 0.304 (0.011)

Table 7. Results averaged over 10 aliased cubes of edge size 6. Our TDB with either multi-step objective or next encoding prediction (a)
retains the nearly perfect test accuracy of vanilla sequence models (b) consistently solves the shortest paths problems when paired with an
external solver—while both transformer or LSTM catastrophically fail—(c) learns cognitive maps almost isomorphic to the ground truth.

I.2. Table of results for 12 unique observations

Table 8 reports the prediction and path planning metrics for an aliased room with O = 12 unique observations and global
aliasing—as a 4× 4 patch is repeated twice. All the settings and parameters are the same as in Section 4.2.

First, during training, a TDB with a single discrete bottleneck either (a) is stuck in a local optimum or (b) converges after a
long time. As a consequence, contrary to Table 8 which considers O = 4, all the TDBs with a single bottleneck are here
outperformed by their counterparts with four bottlenecks. TDBs with a single bottleneck also learn worse cognitive maps
and solve a lower frequency of path planning problems.

Second, regardless of the number of bottleneck used, a TDB with single-step objective cannot disambiguate the global
aliasing and introduces unrealistic shortcuts—see Appendix G—which result in a drop in planning metrics.

In contrast, TDBs with M = 4 bottlenecks and either multi-step or next encoding objective (a) achieves nearly perfect
prediction accuracy, (b) are able to almost consistently find the optimal shortest path, and (c) learn cognitive maps that
recover the GT dynamics.

Method TestAccu (%) ↑ ImpFallback (%) ↑ RatioSP ↓ NormGED ↓

Vanilla transformer 99.75 (0.00) 29.89 (0.94) 17.45 (0.57) —

Vanilla LSTM 99.75 (0.00) 29.89 (0.94) 17.45 (0.57) —

TDB(S = 1,M = 1) 89.46 (2.48) 17.31 (4.52) 1.00 (0.00) 0.265 (0.053)
TDB(S = 1,M = 4) 99.75 (0.00) 59.37 (3.93) 1.00 (0.00) 0.033 (0.002)

TDB(S = 1, enc,M = 1) 92.57 (3.04) 58.21 (10.98) 1.00 (0.00) 0.145 (0.038)
TDB(S = 1, enc,M = 4) 99.71 (0.00) 96.58 (2.13) 1.01 (0.00) 0.157 (0.016)

TDB(S = 3,M = 1) 99.33 (0.01) 97.09 (2.06) 1.00 (0.00) 0.157 (0.010)
TDB(S = 3,M = 4) 99.73 (0.01) 99.75 (0.14) 1.01 (0.00) 0.160 (0.017)

Table 8. Prediction and path planning metrics averaged over 10 aliased 15× 20 rooms with O = 12 observations. Training a TDB single
bottleneck (M = 1) is slow and sometimes does not converge. A TDB with single-step objective cannot disambiguate global aliasing, fails
at recovering the ground truth dynamics. TDB with multiple discrete bottlenecks (M = 4) outperform their single bottleneck counterpart
(M = 1) for both prediction and path planning performance.

23

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

I.3. The agent can locate itself after a short context

Test accuracy by timestep: Fig.9 shows the average prediction accuracy as a function of the observation index for our
best TDB(S = 3,M = 1), reported in Sec.4.2 for the 2D aliased room with O = 4 observations.

Because of aliasing, at the start of a test random walk, the model cannot know its location in the 2D room: the prediction
accuracy for the first timesteps is low. The agent then quickly locates itself and test accuracy rapidly increases: it is above
99.50% after only 30 observations.

0 50 100 150 200 250 300 350 400
Observation index

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Te

st
 a

cc
ur

ac
y

Test accuracy by observation index

Figure 9. After a short context of 30 observations, TDB(S = 3,M = 4) predicts the next observations 99.50% of the time.

Some latent codes model early uncertainty while others represent late confidence: Fig.10 displays, for each latent
code active on the test data of a TDB(S = 3,M = 1) (a) the average timestep at which this latent code is active—on the
horizontal axis—and (b) its number of appearances on the entire test data—on the vertical axis. In addition, each bottleneck
is colored in green (resp. red) to indicate that it is retained (resp. discarded) when we threshold the empirical count tensor C
to build the cognitive map—as detailed in Sec.3.6.

0 50 100 150 200
Averaged observation index

0

500

1000

1500

2000

2500

Nu
m

. o
f a

pp
ea

ra
nc

es
 o

n
th

e
te

st
 se

t Bimodal distribution of bottleneck indices

Figure 10. A first cluster of latent indices, in red, has low appearance counts and models the early agent’s uncertainty in the test sequences.
A second cluster, in green, has high appearance counts and represents the agent’s confidence when it knows its location.

The figure displays two clusters, which highlight the two roles played by the latent codes. The first cluster represents a large
number of codes with low appearance counts, which appear early in the test sequences. These codes model the agent’s
uncertainty when it does not know its location.

The latent codes in the second cluster have a high number of appearances and appear later in the test sequences. They
represent the agent’s high confidence when it knows its locations. In addition, because we use a high count threshold

24

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

tratio = 0.1 (see Sec.3.6) to build the cognitive map, only the transitions between the latent codes of this second cluster are
used to build the graph. As a result, a vast majority of the nodes of the second (resp. first) cluster are green (resp. red).
Consequently, our third clustering step, detailed in Appendix C, maps the discarded (red) latent indices to their closest
retained (green) latent index.

The agent can “teleportate”: We finally study how TDB(S = 3,M = 1) moves in the learned latent graph. In particular,
we say that the agent “teleportates” when the node of the transition graph where it estimates its location at the nth timestep
is not a neighbor of its estimated position at the n− 1th timestep. That is, teleportation means that the shortest path between
two consecutive nodes is larger than one.

Fig.11 looks at the average number of teleportation as a function of the observation index. Around the 20th observation, the
agent still teleportates 5% of the time. As the agent becomes confident about its location, the teleportation rate drops below
1% after 100 observations and stays around 0.75%.

Interestingly, Fig.11[right] shows a subsequence of 10 observations (x10, . . . , x19) on a test random walks, with perfect
next observation accuracy. Nonetheless, the agent still “teleportates” five times out of ten.

Here, teleportation is an artifact of the clustering procedures that we use when we build the cognitive map—see Appendix.
C. For instance, our third clustering step may incorrectly map some discarded bottleneck indices to their closest bottleneck
index. As a consequence, when the agent activates a discarded bottleneck index, it may be mapped to an invalid room
location. If we use a lower threshold tratio, then teleportations should disappear but the learned latent graph would not
accurately model the environment’s dynamics.

0 50 100 150 200 250 300 350 400
Observation index

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 te
le

po
rta

tio
n

ra
tio

Test teleportation ratio by observation index

10

11
12

13

14

15

1617
1819

Agent teleportation in early steps

Figure 11. [Left] The agent frequently teleportates, i.e., moves between nodes that are not neighbors early in the test sequences.
Teleportation rate drops below 5% after 20 observations, and below 1% after 100 observations. [Right] Despite perfectly predicting the
next observation between indices 10 and 20, the agent also teleportates five steps out of ten. Here, teleportation is explained by incorrect
clustering when we build the cognitive map.

25

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

J. Additional materials for simulated 3D environment
Latent graphs visualizations: Second, Fig.12 presents the isometric views of four 3D simulated rooms, as well as the
respective cognitive maps learned with a TDB(S = 3,M = 4).

Figure 12. [Top] Isometric views of four 3D simulated rooms used in Sec.4.3. [Bottom] Corresponding cognitive maps learned with a
TDB(S = 3,M = 4): each location in the room is represented by four nodes in the latent graph, corresponding to the four possible
heading directions of the agent.

26

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

K. Additional materials for GINC dataset
Table 9 presents numerical results associated with Fig.4[left].

Context length Num. of examples LSTM Transformer TDB(S = 3,M = 4) TDB(S = 5,M = 1)

3 0 0.426 (0.01) 0.502 (0.01) 0.426 (0.01) 0.284 (0.009)
1 0.369 (0.01) 0.488 (0.01) 0.464 (0.01) 0.369 (0.01)
2 0.387 (0.01) 0.538 (0.01) 0.554 (0.01) 0.443 (0.01)
4 0.394 (0.01) 0.553 (0.01) 0.588 (0.01) 0.526 (0.01)
8 0.386 (0.01) 0.595 (0.01) 0.618 (0.01) 0.549 (0.01)
16 0.390 (0.01) 0.631 (0.01) 0.655 (0.01) 0.574 (0.01)
32 0.380 (0.01) 0.633 (0.01) 0.670 (0.009) 0.618 (0.01)
64 0.377 (0.01) 0.651 (0.01) 0.676 (0.009) 0.646 (0.01)

5 0 0.692 (0.009) 0.805 (0.008) 0.777 (0.008) 0.656 (0.01)
1 0.742 (0.009) 0.822 (0.008) 0.853 (0.007) 0.768 (0.008)
2 0.754 (0.009) 0.831 (0.008) 0.857 (0.007) 0.802 (0.008)
4 0.749 (0.009) 0.841 (0.007) 0.905 (0.006) 0.872 (0.007)
8 0.761 (0.009) 0.847 (0.007) 0.901 (0.006) 0.882 (0.006)
16 0.756 (0.009) 0.871 (0.007) 0.922 (0.005) 0.908 (0.006)
32 0.767 (0.008) 0.871 (0.007) 0.926 (0.005) 0.915 (0.006)
64 0.758 (0.009) 0.88 (0.006) 0.924 (0.005) 0.917 (0.006)

8 0 0.849 (0.007) 0.881 (0.006) 0.895 (0.006) 0.816 (0.008)
1 0.869 (0.007) 0.888 (0.006) 0.930 (0.005) 0.899 (0.006)
2 0.869 (0.007) 0.886 (0.006) 0.930 (0.005) 0.917 (0.006)
4 0.877 (0.007) 0.897 (0.006) 0.933 (0.005) 0.936 (0.005)
8 0.873 (0.007) 0.897 (0.006) 0.935 (0.005) 0.940 (0.005)
16 0.875 (0.007) 0.916 (0.006) 0.942 (0.005) 0.950 (0.004)
32 0.862 (0.007) 0.909 (0.006) 0.948 (0.004) 0.956 (0.004)
64 0.883 (0.006) 0.920 (0.005) 0.952 (0.004) 0.955 (0.004)

10 0 0.878 (0.007) 0.888 (0.006) 0.915 (0.006) 0.858 (0.007)
1 0.889 (0.006) 0.898 (0.006) 0.930 (0.005) 0.926 (0.005)
2 0.878 (0.007) 0.901 (0.006) 0.938 (0.005) 0.935 (0.005)
4 0.902 (0.006) 0.904 (0.006) 0.936 (0.005) 0.945 (0.005)
8 0.881 (0.006) 0.906 (0.006) 0.947 (0.004) 0.956 (0.004)
16 0.882 (0.006) 0.908 (0.006) 0.934 (0.005) 0.947 (0.004)
32 0.889 (0.006) 0.918 (0.005) 0.946 (0.005) 0.960 (0.004)
64 0.89 (0.006) 0.911 (0.006) 0.941 (0.005) 0.956 (0.004)

Table 9. In-context accuracy for vanilla sequence models and TDBs, for each each pair (k, n) of context length k and number of examples
n of the GINC test set. Our proposed TDBs consistently reach the highest in-context accuracies.

27

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

L. Additional materials for in-context learning
L.1. Defining the in-context learning problem

Preserving the room partition: We consider a first 2D aliased room of size 6× 8 with O = 4 observations, c1, . . . cO
such that ci ∈ {1, . . . , 30}. We represent this room by a matrix R ∈ {c1, . . . cO}6×8, where, for x ∈ {1, . . . , 6} and
y ∈ {1, . . . , 8}, Rxy is the room observation at the spatial position (x, y).

We define the room partition induced by the room colors as the partition S1, . . . ,SO of the 2D room spatial positions such
that, for each element Si of the partition, all the spatial positions in Si have the same observation.

Formally, the room partition is defined as
O⋃
i=1

Si = {(x, y) : 1 ≤ x ≤ 6, 1 ≤ y ≤ 8} ; Si ∩ Sj = ∅, ∀i ̸= j ; Si ̸= ∅, ∀i,

and satisfies

∀i ≤ O, ∀(x, y) ∈ Si, Rxy = oi.

For each injective mapping ϕ : {1, . . . , O} → {1, . . . , 30}, we can build a new room R̃ with (a) observations ϕ(1), . . . , ϕ(O)
and which (b) preserves the room partition, by assigning all the 2D spatial positions in Si to the observation ϕ(i). That is

∀i ≤ O, ∀(x, y) ∈ Si, R̃xy = ϕ(i).

The training sets in Sec.4.5 contain at most 10k such training rooms, each one preserving the room partition. Note that, for a
given partition, the number of possible rooms which preserves the room partition is the number of injective mapping from
{1, . . . , O} to {1, . . . , 30}, which is

∏O−1
i=0 30− i.

Learning in base: As discussed in the main text, given a sequence of inputs observations x = (x1, . . . , xN) in a room
defined as above, each model is trained to predict targets in the room-agnostic base, x̃n ∈ {1, . . . , O}, such that x̃n = k iff.
x̃n is the kth lowest observation seen between indices 1 and n.

In particular, let us define the permutation i1, . . . , iO of 1, . . . , O such that ϕ(i1) ≤ . . . ≤ ϕ(iO). Let n∗ be such a large
enough integer such that all the O different room observations have been seen between x1 and xn∗ . Then, for n ≥ n∗, the
target x̃n = k corresponds to the kth highest color of the room, which is equal to ϕ(ik).

L.2. Table of results

Table 10 reports the numerical results displayed in Fig. 5[left].

First, we observe that for each model, in-context capacities emerge when we increase the number of rooms.

Second, while vanilla LSTM performs best for a small number of training rooms, it cannot reach near-perfect in-context
accuracies when the number of training rooms increases—which a vanilla transformer can do. We believe that attention-like
mechanisms are important for in-context capacities to fully emerge in novel test rooms.

Third, as observed in other experiments, vanilla sequence models cannot solve path planning problems. Indeed, for a large
number of training rooms, a transformer improves at best 77% of the times over the fallback path. However, when it does
so, it finds paths that are on average 25 times longer than the optimal paths. In contrast, our best TDB(S = 3,M = 4) (a)
almost matches the nearly perfect in-context predictive performance of a vanilla transformer, (b) almost perfectly solves
in-context path planning problems and (c) learns in-context latent graphs nearly isomorphic to the ground truth.

Finally, our TDB(S = 3, enc,M = 4)—which also predicts the next latent encoding—performs worse than the other
models. This is explained by its large variances across the different experiments. In fact, we observe that for two out
of ten experiments, its training accuracy remains very low—below 40%—as the model struggles to learn to predict the
next observation. For the remaining eight runs, prediction and path planning performance are near optimal and the
model competes with our best TDB(S = 3,M = 4). We could try increasing the number of bottlenecks and training a
TDB(S = 3, enc,M = 16) to mitigate this issue.

28

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

Metric Num. training rooms LSTM Transformer TDB(S = 3,M = 4) TDB(S = 1, enc,M = 4)

TestAccu (%) ↑ 200 0.508 (0.009) 0.426 (0.005) 0.38 (0.004) 0.379 (0.002)
500 0.741 (0.039) 0.595 (0.006) 0.461 (0.009) 0.481 (0.007)
1000 0.899 (0.006) 0.864 (0.016) 0.568 (0.015) 0.58 (0.03)
2000 0.919 (0.009) 0.977 (0.003) 0.868 (0.03) 0.8 (0.056)
5000 0.848 (0.045) 0.985 (0.001) 0.974 (0.001) 0.784 (0.091)
10000 0.924 (0.007) 0.985 (0.001) 0.977 (0.001) 0.912 (0.059)

ImpFallback (%) ↑ 200 0.005 (0.001) 0.002 (0.001) 0.038 (0.005) 0.032 (0.004)
500 0.148 (0.04) 0.007 (0.002) 0.05 (0.004) 0.064 (0.004)
1000 0.382 (0.054) 0.189 (0.032) 0.115 (0.014) 0.124 (0.016)
2000 0.447 (0.059) 0.725 (0.024) 0.690 (0.067) 0.495 (0.092)
5000 0.312 (0.086) 0.809 (0.009) 0.964 (0.011) 0.605 (0.132)
10000 0.305 (0.072) 0.771 (0.011) 0.970 (0.009) 0.782 (0.084)

RatioSP ↓ 200 51.79 (20.83) 34.79 (11.07) 1.46 (0.09) 1.33 (0.06)
500 29.73 (3.67) 45.26 (23.87) 1.17 (0.05) 1.27 (0.06)
1000 25.52 (1.19) 26.14 (1.34) 1.18 (0.04) 1.20 (0.04)
2000 27.01 (0.89) 25.98 (0.83) 1.07 (0.03) 1.11 (0.04)
5000 24.79 (0.96) 24.53 (0.63) 1.01 (0.0) 1.06 (0.05)
10000 24.27 (1.73) 25.13 (0.45) 1.01 (0.0) 1.01 (0.0)

NormGED ↓ 200 — — 0.707 (0.005) 0.723 (0.006)
500 — — 0.658 (0.006) 0.660 (0.008)
1000 — — 0.579 (0.018) 0.602 (0.033)
2000 — — 0.164 (0.042) 0.29 (0.073)
5000 — — 0.019 (0.003) 0.294 (0.121)
10000 — — 0.017 (0.002) 0.118 (0.079)

Table 10. In-context metrics for vanilla sequence models and TDBs on the new test rooms. For a large number of training rooms, our best
TDB(S = 3,M = 4) (a) reaches nearly perfect in-context accuracy, close to the best performing transformer, (b) almost perfectly solves
the in-context path planning problems, and (c) learns in-context latent graphs nearly isomorphic to the ground truth.

L.3. In-context accuracy by timestep

Fig.13 shows the average in-context accuracy on the new test rooms, as a function of the observation index, for our best
TDB(S = 3,M = 4) trained on 5k rooms. Interestingly, in-context accuracy drops after a few iterations. Indeed, as the
model sees new observations in the new test rooms, the mapping between the base labels x̃n and the observations xn may
change—which may confuse the model. After a few tenths of iterations, TDB is able to locate itself in the new test room.
After 70 iterations, in-context accuracy becomes higher than 99%.

0 50 100 150 200 250 300 350 400
Observation index

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

In
-c

on
te

xt
 a

cc
ur

ac
y

In-context accuracy by observation index

Figure 13. After 70 timesteps, in-context accuracy for a TDB(S = 3,M = 4) trained on 5k training rooms becomes higher than 99%.

L.4. In-context learning is driven by spatial exposure to base targets in the training data

Restricting training rooms: For this experiment, we build training rooms such that the kth highest color (almost) never
appears at any of the spatial positions indicated by the set Sk of the room partition. With the notations of Appendix L.1,
each injective mapping ϕ used to generate a training room has to satisfy the rule

R = {∀k ≤ O : ik ̸= k}.

For instance, the mapping ϕ(1) = 5, ϕ(2) = 13, ϕ(3) = 20, ϕ(4) = 8 cannot be used to generate a training room. Indeed,
when we rank the entries we get i1 = 1, i2 = 4, i3 = 2, i4 = 3 and i1 = 1 violates R. Similarly ϕ(1) = 20, ϕ(2) =

29

Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments

2, ϕ(3) = 15, ϕ(4) = 11 violatesR as i3 = 3.

Given a training sequence x, let n∗ be such a large enough integer such that all the O different room observations have been
seen between x1 and xn∗ . For n ≥ n∗, let k ≤ O be such that the spatial position posn of the agent at timestep n belongs to
the set Sk of the room partition. Then, by definition, the base target x̃n satisfies x̃n ̸= k. Note that, by definition, when
n ≤ n∗ and we have not yet observed all the O different room observations, we may have x̃n = k when posn ∈ Sk.

Consequently, for each room spatial position, there is a position-specific base target that the agent will never see (when
n ≥ n∗) at this position on the training set.

We generate 5k such training rooms and train a TDB(S = 3,M = 4) as before.

In-context accuracies: We consider four families of test rooms:
(A): Test rooms whereR is respected.
(B): Test rooms whereR is violated once.
(C): Test rooms whereR is violated twice.
(D): Test rooms whereR is violated four times. These are the rooms satisfying ϕ(0) ≤ ϕ(1) ≤ ϕ(2) ≤ ϕ(3).

On test rooms (A), in-context accuracy is 98.05%(±0.07%).
On test rooms (B), in-context accuracy is 56.97%(±0.82%).
On test rooms (C), in-context accuracy is 50.25%(±0.51%).
On test rooms (D), in-context accuracy is 46.20%(±0.73%).

This drastic drop in in-context accuracy demonstrates that—in addition to the number of training rooms—in-context
capacities are also driven by spatial exposure to base targets during training.

30

