
A Omitted Statements and Proofs

A.1 The Relation between Estimation Bias and Approximate Fixed Points

An intuitive characterization of such fixed point solutions is considering one-step estimation bias
with respect to the maximum expected value, which is defined as

E(T̃ , V, s) = E[(T̃ V )(s)]− (T V )(s), (9)

where (T V )(s) corresponds to the precise state value after applying the ground truth Bellman
operation. The amount of estimation bias E characterizes the deviation from the standard Bellman
operator T , which can be regarded as imaginary rewards in fixed point solutions.

Every approximate fixed point solution under a stochastic Bellman operator can be characterized as
the optimal value function in a modified MDP where only the reward function is changed.

Proposition 5. Let Ṽ denote an approximation fixed point under a stochastic Bellman operator T̃ .
Define a modified MDP M̃ = 〈S,A, P,R + R̃, γ〉 based onM, where the extra reward term is
defined as

R̃(s, a) = E(T̃ , Ṽ , s) = E[(T̃ Ṽ )(s)]− (T Ṽ )(s),

where E is the one-step estimation bias defined in Eq. (9). Then Ṽ is the optimal state-value function
of the modified MDP M̃.

Proof. Define a value function Q̃ based on Ṽ , ∀(s, a) ∈ S ×A,

Q̃(s, a) = R(s, a) + R̃(s, a) + E
s′∼P (·|s,a)

[Ṽ (s′)].

We can verify Q̃ is consistent with Ṽ , ∀s ∈ S,

Ṽ (s) = E[(T̃ Ṽ )(s)]

= E[(T̃ Ṽ )(s)]− (T Ṽ )(s) + max
a∈A

(
R(s, a) + γ E

s′∼P (·|s,a)
[Ṽ (s′)]

)
= max

a∈A

(
R(s, a) + R̃(s, a) + γ E

s′∼P (·|s,a)
[Ṽ (s′)]

)
= max

a∈A
Q̃(s, a).

Let TM̃ denote the Bellman operator of M̃. We can verify Q̃ satisfies Bellman optimality equation
to prove the given statement, ∀(s, a) ∈ S ×A,

(TM̃Q̃)(s, a) = R(s, a) + R̃(s, a) + γ E
s′∼P (·|s,a)

[
max
a′∈A

Q̃(s′, a′)

]
= R(s, a) + R̃(s, a) + γ E

s′∼P (·|s,a)
[Ṽ (s′)]

= Q̃(s, a).

Thus we can see Ṽ is the solution of Bellman optimality equation in M̃.

A.2 The Existence of Approximate Fixed Points

The key technique for proving the existence of approximate fixed points is Brouwer’s fixed point
theorem.
Lemma 1. Let B = [−L,−L]d denote a d-dimensional bounding box. For any continuous function
f : B → B, there exists a fixed point x such that f(x) = x ∈ B.

Proof. It refers to a special case of Brouwer’s fixed point theorem (Brouwer, 1911).
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Lemma 2. Let T̃ denote the stochastic Bellman operator defined by Eq. (3). There exists a real
range L, ∀V ∈ [L,−L]|S|, E[T̃ V ] ∈ [L,−L]|S|.

Proof. Let Rmax denote the range of the reward function for MDPM. Let Re denote the range of
the noisy term. Formally,

Rmax = max
(s,a)∈S×A

|R(s, a)|,

Re = max
s∈S

E
[
max
a∈A
|e(s, a)|

]
.

Note that the L∞-norm of state value functions satisfies ∀V ∈ R|S|,

‖E[T̃ V ]‖∞ ≤ Rmax +Re + γ‖V ‖∞.

We can construct the range L = (Rmax +Re)/(1− γ) to prove the given statement.

Lemma 3. Let T̃ denote the stochastic Bellman operator defined by Eq. (4). There exists a real
range L, ∀V ∈ [L,−L]|S|, E[T̃ V ] ∈ [L,−L]|S|.

Proof. Let Rmax denote the range of the reward function for MDPM. Formally,

Rmax = max
(s,a)∈S×A

|R(s, a)|.

Note that the L∞-norm of state value functions satisfies ∀V ∈ R|S|,

‖E[T̃ V ]‖∞ ≤ Rmax + γ‖V ‖∞.

We can construct the range L = Rmax/(1− γ) to prove the given statement.

Proposition 1. Assume the probability density functions of the noise terms {e(s, a)} are continuous.
The stochastic Bellman operators defined by Eq. (3) and Eq. (4) must have approximate fixed points
in arbitrary MDPs.

Proof. Let f(V ) = E[T̃ V ] denote the expected return of a stochastic Bellman operation. This
function is continuous because all involved formulas only contain elementary functions. The given
statement is proved by combining Lemma 1, 2, and 3.

A.3 The Induced Policy of Double Q-Learning

Definition 2 (Induced Policy). Given a target state-value function V , its induced policy π̃ is defined
as a stochastic action selection according to the value estimation produced by a stochastic Bellman
operation π̃(a|s) =

P
[
a = arg max

a′∈A

(
R(s, a′) + γEs′ [V (s′)]︸ ︷︷ ︸

(TQ)(s,a′)

+e1(s, a′)

)]
,

where {e1(s, a)}s,a are drawing from the same noise distribution as what is used by double Q-
learning stated in Eq. (4).
Proposition 3 (Fixed-Point Characterization). Assume the noise terms e1 and e2 are independently
generated in the double estimator stated in Eq. (4). Every approximate fixed point V is equal to the
ground truth value function V π̃ with respect to a stochastic policy π̃.

Proof. Let V denote an approximate fixed point under the stochastic Bellman operator T̃ defined
by Eq. (4). By plugging the definition of the induced policy into the stochastic operator of double
Q-learning, we can get

V (s) = E[T̃ V (s)]

= E
[
(T̃ Q2)

(
s, arg maxa∈A(T̃ Q1)(s, a)

)]
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= E
[
(T̃ Q2) (s, arg maxa∈A ((T Q1)(s, a) + e1(s, a)))

]
= E
a∼π̃(·|s)

[
(T̃ Q2)(s, a)

]
= E
a∼π̃(·|s)

[
R(s, a) + γ E

s′∼P (·|s,a)
V (s′) + e2(s, a)

]
= E
a∼π̃(·|s)

[
R(s, a) + γ E

s′∼P (·|s,a)
V (s′)

]
,

which matches the Bellman expectation equation.

As shown by this proposition, the estimated value of a non-optimal fixed point is corresponding to
the value of a stochastic policy, which revisits the incentive of double Q-learning to underestimate
true maximum values.

A.4 A Sufficient Condition for Multiple Fixed Points

Proposition 2. Let fs ({(T Q)(s, a)}a∈A) = E[(T̃ V )(s)] denote the expected output value of a
learning algorithm on state s. Assume fs(·) is differentiable. If the algorithmic procedure fs(·)
satisfies Eq. (5), there exists an MDP such that it has multiple approximate fixed points.

∃s, ∃i, ∃X ∈ R|A|,
∂

∂xi
fs(X) > 1, (5)

where X = {xi}|A|i=1 denotes the input of the function fs.

Proof. Suppose fs is a function satisfying the given condition.

Let xi = x̄ and X denote the corresponding point satisfying Eq. (5).

Let g(x) denote the value of fs while only changing the input value of xi to x. Note that, according
to Eq. (5), we have g′(x̄) > 1.

Since fs is differentiable, we can find a small region x̄L < x̄ < x̄R around x̄ such that ∀x ∈
[x̄L, x̄R], g′(x) > 1. And then, we have g(x̄R)− g(x̄L) > x̄R − x̄L.

Consider to construct an MDP with only one state (see Figure 6a as an example). We can use
the action corresponding to xi to construct a self-loop transition with reward r. All other actions
lead to a termination signal and an immediate reward, where the immediate rewards correspond to
other components of X . By setting the discount factor as γ = x̄R−x̄L

g(x̄R)−g(x̄L) < 1 and the reward
as r = x̄L − γg(x̄L) = x̄R − γg(x̄R), we can find both x̄L and x̄R are solutions of the equation
x = r + γg(x), in which g(x̄L) and g(x̄R) correspond to two fixed points of the constructed
MDP.

Proposition 6. Vanilla Q-learning does not satisfy the condition stated in Eq. (5) in any MDPs.

Proof. In vanilla Q-learning, the expected state-value after one iteration of updates is

E[V (t+1)(s)] = E
[
max
a∈A

Q(t+1)(s, a)

]
= E

[
max
a∈A

(
(T Q(t))(s, a) + e(t)(s, a)

)]
=

∫
w∈R|A|

P[e(t) = w]

(
max
a∈A

(
(T Q(t))(s, a) + w(s, a)

))
dw.

Denote

f(T Q(t), w) = max
a∈A

(
(T Q(t))(s, a) + w(s, a)

)
.

Note that the value of f(T Q(t), w) is 1-Lipschitz w.r.t. each entry of T Q(t). Thus we have
E[V (t+1)(s)] is also 1-Lipschitz w.r.t. each entry of T Q(t). The condition stated in Eq. (5) cannot
hold in any MDPs.
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A.5 A Bad Case for Clipped Double Q-Learning

The stochastic Bellman operator corresponding to clipped double Q-learning is stated as follows.

∀i ∈ {1, 2}, Q
(t+1)
i (s, a) = R(s, a) + γ E

s′∼P (·|s,a)

[
V (t)(s′)

]
+ e

(t)
i (s, a),

V (t)(s) = min
i∈{1,2}

Q
(t)
i

(
s, arg maxa∈AQ

(t)
1 (s, a)

)
.

(10)

An MDP where clipped double Q-learning has multiple fixed points is illustrated as Figure 6.

s0

R0,0=1.35

�� R0,1=100// done

ε = 1.0 γ = 0.99

(a) A simple construction

V (s0) π̃(a0|s0)
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(b) Numerical solutions of fixed points
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(c) Visualizing non-monotonicity

Figure 6: (a) A simple MDP where clipped double Q-learning stated as Eq. (10) has multiple
approximate fixed points. Ri,j is a shorthand of R(si, aj). (b) The numerical solutions of the fixed
points produced by clipped double Q-learning in the MDP presented above. (c) The relation between
the input state-value V (t)(s0) and the expected output state-value E[V (t+1)(s0)] generated by clipped
double Q-learning in the constructed MDP.

A.6 Provable Benefits on Variance Reduction

Lemma 4. Let x denote a random variable. y denotes a constant satisfying y ≤ E[x]. Then,
Var[max{x, y}] ≤ Var[x].

Proof. Let µ = E[x] denote the mean of random variable x. Consider

Var[x] =

∫ ∞
−∞

P[x = t](t− µ)2dt

=

∫ µ

−∞
P[x = t](t− µ)2dt+

∫ ∞
µ

P[x = t](t− µ)2dt

≥
∫ µ

−∞
P[x = t](µ−max{t, y})2dt+

∫ ∞
µ

P[x = t](t− µ)2dt

=

∫ ∞
−∞

P[x = t](µ−max{t, y})2dt

≥
∫ ∞
−∞

P[x = t](E[max{x, y}]−max{t, y})2dt (11)

= Var[max{x, y}],
where Eq. (11) holds since the true average point E[max{x, y}] leads to the minimization of the
variance formula.

Proposition 4. Given an arbitrary stochastic operator T̃ Boots and a deterministic estimator V DP,

∀V, ∀s ∈ S, Var[(T̃ DBV )(s)] ≤ Var[(T̃ BootsV )(s)],

where (T̃ DBV )(s) is defined as Eq. (8).

Proof. When V DP(s) is larger than all possible output values of (T̃ BootsV )(s), the given statement
directly holds, since Var

[
max

{
(T̃ BootsV )(s), V DP(s)

}]
would be equal to zero.
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Otherwise, when E[V Boots(s)] is smaller than V DP(s), we can first apply a lower bound cut-off
by value y = E[V Boots(s)] < V DP(s), which gives Var[max{y, V Boots(s)}] ≤ Var[V Boots(s)] and
E[max{y, V Boots(s)}] > E[V Boots(s)]. By repeating this procedure several times, we can finally get
V DP(s) ≤ E[max{y, V Boots(s)}] and close the proof.

B Experiment Settings and Implementation Details

B.1 Evaluation Settings

Probability Density of V (s0) on Two-State MDP. All plotted distributions are estimated by 103

runs with random seeds, i.e., suffering from different noises in approximate Bellman operations.
When applying doubly bounded Q-learning, we only set lower bound for V (s0) and do nothing for
V (s1). The initial Q-values are set to 100.0 as default. The main purpose of setting this initial value
is avoiding the trivial case where doubly bounded Q-learning learns V (s0) faster than V (s1) so that
does not get trapped in non-optimal fixed points at all. We utilize seaborn.distplot package to
plot the kernel density estimation curves and histogram bins.

Cumulative Rewards on Atari Games. All curves presented in this paper are plotted from the
median performance of 5 runs with random initialization. To make the comparison more clear, the
curves are smoothed by averaging 10 most recent evaluation points. The shaded region indicates 60%
population around median. The evaluation is processed in every 50000 timesteps. Every evaluation
point is averaged from 5 trajectories. Following Castro et al. (2018), the evaluated policy is combined
with a 0.1% random execution.

Standard Deviation of Target Values. The evaluation of target value standard deviations contains
the following steps:

1. Every entry of the table presents the median performance of 5 runs with random network
initialization.

2. For each run, we first perform 106 regular training steps to collect an experience buffer and
obtain a basis value function.

3. We perform a target update operation, i.e., we use the basis value function to construct
frozen target values. And then we train the current values for 8000 batches as the default
training configuration to make sure the current value nearly fit the target.

4. We sample a batch of transitions from the replay buffer as the testing set. We focus on the
standard deviations of value predictions on this testing set.

5. And then we collect 8000 checkpoints. These checkpoints are collected by training 8000
randomly sampled batches successively, i.e., we collect one checkpoint after perform each
batch updating.

6. For each transition in the testing set, we compute the standard deviation over all checkpoints.
We average the standard deviation evaluation of each single transition as the evaluation of
the given algorithm.

B.2 Tabular Implementation of Doubly Bounded Q-Learning

Algorithm 1 Tabular Simulation of Doubly Bounded Q-Learning

1: Initialize V (0)

2: for t = 1, 2, · · · , T − 1 do
3: for (s, a) ∈ S ×A do
4: Q(t)(s, a)← E[r + γV (t)(s′)]

5: Q1 ← Q(t) + noise
6: Q2 ← Q(t) + noise
7: for s ∈ S do
8: V (t+1)(s)← (1− α)V (t)(s) + αmax{Q2(s, arg maxaQ1(s, a)), VDP(s)}
9: return V (T )
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B.3 DQN-Based Implementation of Double Bounded Q-Learning

Algorithm 2 DQN-Based Implementation of Doubly Bounded Q-Learning

1: Initialize θ, θtarget

2: D ← ∅
3: for t = 1, 2, · · · , T − 1 do
4: Collect one step of transition (st, at, rt, st+1) using the policy given by Qθ
5: Store (st, at, rt, st+1) in to replay buffer D
6: Update the DP value on state st, . Prioritized sweeping (Moore and Atkeson, 1993)

V DP (st)← max
a:(st,a)∈D

1

|D(st, a)|
∑

(r̂,ŝ′)∈D(st,a)

(
r̂ + γV DP (ŝ′)

)
7: Perform one step of gradient update for θ, . Estimated by mini-batch

θ ← θ − α∇ E
(s,a,r,s′)∼D

[(
r + γmax

{
max
a′∈A

Qθtarget(s′, a′), V DP(s′)

}
−Qθ(s, a)

)2
]
,

where α denotes the learning rate
8: if t mod H = 0 then . Update target values
9: θtarget ← θ

10: Update the DP values over the whole replay buffer D
11: return θ

B.4 Implementation Details and Hyper-Parameters

Our experiment environments are based on the standard Atari benchmark tasks supported by OpenAI
Gym (Brockman et al., 2016). All baselines and our approaches are implemented using the same set
of hyper-parameters suggested by Castro et al. (2018). More specifically, all algorithm investigated
in this paper use the same set of training configurations.

• Number of noop actions while starting a new episode: 30;

• Number of stacked frames in observations: 4;

• Scale of rewards: clipping to [−1, 1];

• Buffer size: 106;

• Batch size: 32;

• Start training: after collecting 20000 transitions;

• Training frequency: 4 timesteps;

• Target updating frequency: 8000 timesteps;

• ε decaying: from 1.0 to 0.01 in the first 250000 timesteps;

• Optimizer: Adam with ε = 1.5 · 10−4;

• Learning rate: 0.625 · 10−4.

For ensemble-based methods, Averaged DQN and Maxmin DQN, we adopt 2 ensemble instances to
ensure all architectures presented in this paper use comparable number of trainable parameters.

All networks are trained using a single GPU and a single CPU core.

• GPU: GeForce GTX 1080 Ti

• CPU: Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz

In each run of experiment, 10M steps of training can be completed within 36 hours.
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B.5 Abstracted Dynamic Programming for Atari Games

State Aggregation. We consider a simple discretization to construct the state abstraction function
φ(·) used in Eq. (6). We first follow the standard Atari pre-processing proposed by Mnih et al. (2015)
to rescale each RGB frame to an 84 × 84 luminance map, and the observation is constructed as a
stack of 4 recent luminance maps. We round the each pixel to 256 possible integer intensities and
use a standard static hashing, Rabin-Karp Rolling Hashing (Karp and Rabin, 1987), to set up the
table for storing VDP. In the hash function, we use two large prime numbers (≈ 109) and select their
primary roots as the rolling basis. From this perspective, each image would be randomly projected to
an integer within a range (≈ 1018).

Conservative Action Pruning. To obtain a conservative value estimation, we follow the sugges-
tions given by Fujimoto et al. (2019) and Liu et al. (2020) to prune the unseen state-action pairs in
the abstracted MDP. Formally, in the dynamic programming module, we only allow the agent to
perform state-action pairs that have been collected at least once in the experience buffer. The reward
and transition functions of remaining state-action pairs are estimated through the average of collected
samples.

Computation Acceleration. Note that the size of the abstracted MDP is growing as the exploration.
Regarding computational considerations, we adopt the idea of prioritized sweeping (Moore and
Atkeson, 1993) to accelerate the computation of tabular dynamic programming. In addition to
periodically applying the complete Bellman operator, we perform extra updates on the most recent
visited states, which would reduce the total number of operations to obtain an acceptable estimation.
Formally, our dynamic programming module contains two branches of updates:

1. After collecting each complete trajectory, we perform a series of updates along the collected
trajectory. In the context of prioritized sweeping, we assign the highest priorities to the most
recent visited states.

2. At each iteration of target network switching, we perform one iteration of value iteration to
update the whole graph.

Connecting to Parameterized Estimator. Finally, the results of abstracted dynamic programming
would be delivered to the deep Q-learning as Eq. (7). Note that the constructed doubly bounded
target value yDB

θtarget
is only used to update the parameterized value function Qθ and would not affect

the computation in the abstracted MDP.

C Visualization of Non-Optimal Approximate Fixed Points

Figure 7: Visualization of a non-optimal
approximate fixed point in Zaxxon.

As shown in Figure 4, the sample efficiency of our
methods dramatically outperform double DQN in an
Atari game called Zaxxon. We visualize a screen snap-
shot of a scenario that the double DQN agent gets stuck
in for a long time (see Figure 7), which may refer to a
practical example of non-optimal fixed points.

In this scenario, the agent (i.e., the aircraft at the left-
bottom corner) needs to pass through a gate (i.e., the
black cavity in the center of the screen). Otherwise it
will hit the wall and crash. The double DQN usually
gets stuck in a policy that cannot pass through this gate,
but our method can find this solution very fast. We
provide a possible interpretation here. In this case, the
agent may find the path to pass the gate by random
exploration, but when it passes the gate, it will be easier
to be attacked by enemies. Due to the lack of data, the
value estimation may suffer from a large amount of error or variance in these states. It would make
the agent be confused on the optimal action. By contrast, the dynamic programming planner used by
double bounded Q-learning is non-parametric that can correctly reinforce the best experience.
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D Additional Experiments on Random MDPs

In addition to the two-state toy MDP, we evaluate our method on a benchmark task of random MDPs.

Experiment Setting. Following Jiang et al. (2015), we generate 1000 random MDPs with 10
states and 5 actions from a distribution. For each state-action pair (s, a), the transition function is
determined by randomly choosing 5 non-zero entries, filling these 5 entries with values uniformly
drawn from [0, 1], and finally normalizing it to P (·|s, a). i.e.,

P (s′|s, a) =
P̂ (s′|s, a)∑
s′′∈S P̂ s

′′|s, a)
where P̂ (s′|s, a) ∼ Uniform(0, 1).

The reward values R(s, a) are independently and uniformly drawn from [0, 1]. We consider the
discount factor γ = 0.99 for all MDPs. Regarding the simulation of approximation error, we consider
the same setting as the experiments in section 5.1. We consider Gaussian noise N (0, 0.5) and use
soft updates with α = 10−2.

Approximate Dynamic Programming. Our proposed method uses a dynamic programming mod-
ule to construct a second value estimator as a lower bound estimation. In this experiment, we consider
the dynamic programming is done in an approximate MDP model, where the transition function of
each state-action pair (s, a) is estimated by K samples. We aim to investigate the dependency of our
performance on the quality of MDP model approximation.

Experiment Results. We evaluate two metrics on 1000 random generated MDPs: (1) the value
estimation error (V − V ∗), and (2) the performance of the learned policy (V π − V ∗) where π =
arg maxQ. All amounts are evaluated after 50000 iterations. The experiment results are shown as
follows:

Evaluation Metric Estimation Error (V − V ∗) Policy Performance (V π − V ∗)
double Q-learning -16.36 -0.68

Q-learning 33.15 -0.73

ours (K = 10) 0.53 -0.62
ours (K = 20) 0.54 -0.62
ours (K = 30) 0.37 -0.61

Table 1: Evaluation on random MDPs.

We conclude the experiment results in Table 1 by two points:

1. As shown in the above table, Q-learning would significantly overestimate the values, and
double Q-learning would significantly underestimate the values. Comparing to baseline
algorithms, the value estimation of our proposed method is much more reliable. Note that
our method only cuts off low-value noises, which may lead to a trend of overestimation. This
overestimation would not propagate and accumulate during learning, since the first estimator
yBoots has incentive to underestimate values. The accumulation of overestimation errors
cannot exceed the bound of yDP too much. As shown in experiments, the overestimation
error would be manageable.

2. The experiments show that, although the quality of value estimation of Q-learning and
double Q-learning may suffer from significant errors, they can actually produce polices
with acceptable performance. This is because the transition graphs of random MDPs are
strongly connected, which induce a dense set of near-optimal polices. When the tasks have
branch structures, the quality of value estimation would have a strong impact on the decision
making in practice.
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E Additional Experiments for Variance Reduction on Target Values

Table 2: Evaluating the standard deviation of target values w.r.t. different sequences of training
batches. The presented amounts are normalized by the value scale of corresponding runs. “†” refers
to ablation studies where we train the network using our proposed approach but evaluate the target
values computed by bootstrapping estimators.

TASK NAME DB-ADP-C DB-ADP-C† CDDQN DB-ADP DB-ADP† DDQN

ALIEN 0.006 0.008 0.010 0.008 0.009 0.012
BANKHEIST 0.009 0.010 0.010 0.009 0.011 0.013

BATTLEZONE 0.012 0.012 0.031 0.014 0.014 0.036
FROSTBITE 0.006 0.007 0.012 0.007 0.007 0.015
JAMESBOND 0.010 0.010 0.009 0.010 0.011 0.010
MSPACMAN 0.007 0.009 0.012 0.007 0.009 0.013

QBERT 0.008 0.010 0.011 0.009 0.011 0.012
ROADRUNNER 0.009 0.010 0.010 0.009 0.011 0.012
STARGUNNER 0.009 0.010 0.009 0.009 0.010 0.010

TIMEPILOT 0.012 0.013 0.012 0.011 0.013 0.011
WIZARDOFWOR 0.013 0.017 0.029 0.017 0.018 0.034

ZAXXON 0.010 0.012 0.010 0.011 0.011 0.010

As shown in Table 2, our proposed method can achieve the lowest variance on target value estimation
in most environments.

F Additional Experiments for Baseline Comparisons and Ablation Studies
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Figure 8: Learning curves on a suite of Atari benchmark tasks for comparing two additional baselines.

We compare our proposed method with two additional baselines:

• ADP (ablation): We conduct an ablation study that removes Bellman error minimization
from the training and directly optimize the following objective:

LADP(θ) = E
(st,at)∼D

(
Qθ(st, at)− yDP(st, at)

)2
,

where yDP(st, at) denotes the target value directly generated by dynamic programming.
As shown in Figure 8, without integrating with Bellman operator, the abstracted dynamic
programming itself cannot find a good policy. It remarks that, in our proposed framework,
two basis estimators are supplementary to each other.

• Multi-Step DDQN: We also compare our method to a classical technique named multi-step
bootstrapping that modifies the objective function as follows:

LMulti-Step(θ; θtarget,K) = E
(st,at)∼D

(
Qθ(st, at)−

(
K−1∑
u=0

rt+u + γKVθtarget(st+K)

))2

,

where we select K = 3 as suggested by (Castro et al., 2018). As shown in Figure 8, our
proposed approach also outperforms this baseline.
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