1 APPENDIX

1.1 OVERVIEW

The Appendix contains the following content.

* Failure Taxonomy (Appendix [I.2): more thorough definition and figure to discussions
about the different failure modes.

+ FailGen Data Generation Pipeline (Appendix [I.3): more discussion of FailGen imple-
mentation with example configurations files.

* AHA Datasets (Appendix [1.4): more details on the instruction-tuning dataset and evaluation
datasets.

* Additional Experimental Results (Appendix [1.5): more details and experiments with
instruction finetuning.

* Downstream Robotic Application: VLM Reward Generation (Appendix [I.6): more
policy rollouts, generated reward function examples, and prompts.

* Downstream Robotic Application: VLM Task-plan Generation(Appendix [I.7): more
policy rollouts, generated task-plan examples, and prompts.

» Downstream Robotic Application: VLM Sub-task Verification(Appendix [I.8): more
policy rollouts.

1.2 FAILURE TAXONOMY

We conducted an in-depth study of recent real-world, diverse robot datasets (such as Open-X (Padalkar|
et al.} 2023)), DROID (Khazatsky et al.,[2024), and EGO4D (Grauman et al., 2022)) and the policies
trained using these datasets. Through this analysis, we identified several common modes of failure,
which can be categorized into seven types: incomplete grasp, inadequate grip retention, misaligned
keyframe, incorrect rotation, missing rotation, wrong action sequence, and wrong target object.

Incomplete Grasp (No_Grasp) Failure: No_Grasp is an object-centric failure that occurs when
the gripper reaches the desired grasp pose but fails to close before proceeding to the next keyframe.

Inadequate Grip Retention (S1ip) Failure: S11ip is an object-centric failure that occurs after the
object has been successfully grasped. As the gripper moves the object toward the next task-specific
keyframe, the grip weakens, causing the object to slip from the gripper. For generating the AHA
dataset for training and evaluation, we configured a 5-timestep activation for the S1ip failure mode,
triggering the object to drop from the gripper.

Misaligned keyframe (Translation) Failure: This action-centric failure occurs when the gripper
moves toward a task keyframe, but a translation offset along the X, Y, or Z axis causes the task to fail.
For the AHA training and evaluation dataset, we introduced a translation offset of [-0.5, 0.5] meters.
In the ManiSkill-Fail dataset, we applied a translation noise of [0, 0.1] meters along either the X, Y,
or Z axis from the original waypoint. The translation coordinate system is depicted in Figure [3] (Left).

Incorrect Rotation (Rotation) Failure: Rotation is an action-centric failure that occurs when
the gripper reaches the desired translation pose for the sub-task keyframe, but there is an offset in roll,
yaw, or pitch, leading to task failure. For the AHA dataset, we set a rotation offset of [-3.14, 3.14] in
radians along roll, yaw, or pitch. The rotation coordinate system is depicted in Figure 3] (Right).

Missing Rotation (No_Rotation) Failure: No_Rotation is an action-centric failure that
happens when the gripper reaches the desired translation pose but fails to achieve the necessary
rotation (roll, yaw, or pitch) for the sub-task, resulting in task failure.

Wrong Action Sequence (Wrong_action) Failure: Wrong_action is an action-centric failure
that occurs when the robot executes actions out of order, performing an action keyframe before the
correct one. For example, in the task put_cube_in_drawer, the robot moves the cube toward
the drawer before opening it, leading to task failure.

Wrong Target Object (Wrong_object) Failure: Wrong_object is an object-centric failure
that occurs when the robot acts on the wrong target object, not matching the language instruction. For

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: Failure mode reference coordinate systems. (Left) Translation coordinate system, and
(Right) rotation coordinate system.

example, in the task pick_the_red_cup, the gripper picks up the green cup, causing failure. We
perform a sweep through all manipulable objects, swapping them with the target object in the scene.

1.3 FAILGEN DATA GENERATION PIPELINE

We developed FailGen, an environment wrapper that can be easily integrated into any simulator.
It leverages pre-defined or hand-crafted robot demonstrations for imitation learning, where each
trajectory is represented as a waypoint-based system. Two consecutive waypoints form a sub-
task, with each sub-task linked to a predefined set of language descriptions. FailGen allows for
modifications to environment parameters, such as gripper end-effector translation, rotation, and
open/close state. By altering these parameters, we systematically generate failures at every waypoint.
However, for the 79 tasks collected from RLBench, we do not initially know which sub-task will fail
due to specific failure modes. To address this, we perform a systematic sweep, using RLBench’s built-
in success conditions to explore all possible combinations. This generates a configuration of failures
for each task, which we then use to procedurally generate all failure training data. Additionally, we
manually annotate each sub-task with natural language instructions describing the task, and pair this
with failure mode explanations to serve as language input for instruction-tuning. Example of the
configuration files are depicted at Figure 5]

1.4 AHA DATASET

Using FailGen, we curated two datasets from RLBench (James et al.,2020). The first is the training
dataset, AHA dataset (train), which is used for instruction-tuning AHA alongside the co-train dataset.
The second is the testing dataset, AHA dataset (test), used for evaluation. AHA dataset (train) contains
approximately 49k image-query pairs of failures derived from 79 tasks, while AHA dataset (test)
consists of around 11k image-query pairs from 10 hold-out tasks.

1.5 ADDITIONAL EXPERIMENTAL RESULTS

We conducted additional experiments to better understand and visualize AHA’s predictions. We
trained two versions of the AHA model with 13B parameters, using different language models for
fine-tuning: Llama-2-13B and Vicuna-1.5-13B. The results showed less than a 2.5% performance
difference between the two models, indicating that our fine-tuning data is effective regardless of the
base language model. These results are presented in Table[3] Additionally, we visualized the output

: [256, 2561
[e, 1, 2, 3]

i grasp

Figure 2: (Left) Example of config file of one task for Maniskill-Fal. (Right) Example of config

file for AHA task

AHA dataset (Train) Distribution

wrong_object
rotation_x

no_rotation

), rotation_y

AHA dataset (Test) failure distribution

wrong_sequent§on9-obiect grasp

rotation_y

translation_x

Figure 3: Data distribution of AHA dataset for both train and test.

predictions from various baselines compared to our model and evaluated performance across all three

datasets, with the results shown in Figure E[

AHA model performance uncertainty estimation. To evaluate the relationship between uncertainty
estimation and model performance, we conducted additional experiments across various evaluation
datasets. Specifically, we compared the sentence token prediction probabilities of AHA-13B with
those of LLaVA v1.5-13B. AHA-13B exhibited significantly higher average prediction probabilities,
reflecting its superior accuracy. These findings underscore the positive impact of fine-tuning with the
AHA failure dataset on model confidence and performance as depicted in Table 2]

Figure 4: Examples of different failure modes. Row 1: No_grasp and Rotation_x.
Row 2: Rotation_y and Rotation_z. Row 3: Slip and Wrong_sequence. Row 4:
Translation_xand Translation_y. Row 5: Translation_z and Wrong_object.

Effects of Viewpoints on Evaluation. We evaluated the reasoning capabilities of the AHA model
on the ManiSkill-Failure dataset across three different viewpoint configurations (one, two, and three
viewpoints). Interestingly, we observed a slight performance advantage when using single-viewpoint
images. We attribute this to the resolution limitations of the LLaVA-1.5 visual encoder (256x256),
where single-viewpoint inputs offer clearer and more focused visual information for failure reasoning,
as summarized in Table[Tl

Model: AHA-13B (Viewpoints) Binary Success ROUGE-L LLM Fuzzy Match Cosine Similarity

One viewpoint 1.000 0.673 0.587 0.712
Two viewpoints 1.000 0.615 0.587 0.671
Three viewpoints 1.000 0.600 0.633 0.681

Table 1: Performance comparison across different numbers of viewpoints for AHA-13B

Dataset AHA-13B (Output Probabilities / Cosine Similarity) LLaVA-13B-v1.5 (Output Probabilities / Cosine Similarity)

AHA Dataset (Test) 0.670/0.583 0.066/0.208
Maniskill Fail 0.457/0.681 0.024/0.208
RoboFail 0.292/0.471 0.000/0.203

Table 2: Performance against model prediction sentence probabilities likelihood evaluated across
datasets.

Table 3: Ablation on Different Base LLMs for Fine-Tuning. We fine-tuned AHA-13B using both LLaMA-
2-13B and Vicuna-1.5-13B as base LLM models. The quantitative results show that the average performance
difference between the two models is less than 2.5%, indicating that our failure formulation and the AHA dataset
are effective regardless of the base model selection.

AHA dataset (Test) ManiSkill-Fail RoboFail

Models ROUGEL 7 CosSim1 BinSucc(%)] Fuzzy Maich] ROUGEL 1 CosSim1 BinSucc(%)1 Fuzzy Match 1 ROUGEL 1 CosSim7 BinSucc(%) 1 Fuzzy Match |
AHA-13B (Llama-2) 0.446 0583 0.702 0.768 0.600 0.681 1.000 0.633 0.280 0471 0.643 0.465
AHA-13B (Vicuna-1.5) 0458 0.591 0709 0.695 0574 0.657 1.000 0.851 0.290 0.468 0.661 0.605

1.6 VLM REWARD GENERATION

In this section, we present reward functions generated by GPT-40 and AHA for comparison, as shown
in Figure 5] Additionally, we demonstrate RL policy rollouts improved through AHA ’s failure
feedback across all five tasks along with all the final dense reward function modified by AHA shown
in Figure[6|and[7] For all tasks, except put_sphere_on_holder (trained with PPO for 10M steps),
PPO was trained for 25M steps prior to reflection and evaluation.

Simulation task Details We describe each of the 4 tasks in detail, along with their Maniskill variations
and success condition.

1.6.1 PpIckKUP YCB

Filename: pick_single_ycb.py
Task: Pick up the single YCB object and lift it up to target height.
Success Metric: The object position is within goal_thresh (default 0.025) euclidean distance of the

goal position.

1.6.2 pusu T

Filename: push_T.py
Task: Push the T into the T shaped area.
Success Metric: The 3D T block covers at least 90

1.6.3 PLACE SPHERE

Filename: place_sphere_vl.py
Task: Pick up the sphere and place it into the bin.

Success Metric: the sphere is on top of the bin. That is, the sphere’s xy-distance to the bin goes near
0, and its z-distance to the bin goes near the sphere radius + the bottom bin block’s side length the
object is static. That is, its linear and angular velocities are bounded with a small value the gripper is
not grasping the object.

1.6.4 sSTACK CUBE

Filename: stack_cube_vl.py
Task: Pick up the red cube and stack it onto the green cube.

Success Metric: the red cube is on top of the green cube (to within half of the cube size), the red
cube is static, the red cube is not being grasped by the robot (robot must let go of the cube).

Table 4: Examples of detection and reasoning over failures by various VLMs. We sampled one
evaluation data point from each of the three evaluation datasets and compared the reasoning predic-
tions generated by different state-of-the-art VLMs alongside our AHA-13B. Our model consistently
provides the most semantically similar reasoning to the ground-truth answers for the given queries.

Evaluation Datasets

AHA dataset (Test)

Maniskill-Fail

RoboFail (Liu et al.}[2023)

?i

.

L B R

s\? ' Ak

Jii Wit ;‘W ;}f!“” ;ﬁ“uh

Question

At the current sub-task, the
robot is picking up the hockey
stick. First, determine whether it
has succeeded by choosing from
["yes", "no"]. If not, explain why
it failed?

At the current sub-task, the robot
is picking up the red cube. First,
determine whether it has suc-
ceeded by choosing from ["yes",
"no"]. If not, explain why it
failed?

At the current sub-task, the robot
is placing the apple into the
bowl. First, determine whether it
has succeeded by choosing from
["yes", "no"]. If not, explain why
it failed?

LLaVA 1.5-13B

The image displays a time-lapse
sequence of a robotic arm grab-
bing a hockey stick.

Based on the image, it depicts a
different sub-task of a robot grasp-
ing a red block.

For the pick-up task, i would say
the robot arm has succeeded in
picking.

GPT4o

No, the robot arm fails to hold the
hockey stick securely.

Yes, the robot arm has success-
fully picked up the red block.

No, the robot gripper failed to pick
up the bowl in the second frame.

Gemini 1.5 Flash

Yes.

Yes, Yes, Yes.

Frame 1, no the gripper is not
grasping the bowl and move it.

AHA-13B (Ours)

No, the robot slip the object out of
its gripper.

No, the robot gripper fails to close
the gripper.

No, this is not the right action se-
quence for the task.

Ground-truth Answer

No, the robot slip the object out of
its gripper.

No,the robot gripper fails to close.

No, this is not the right action se-
quence for the task.

1.6.5

OPEN DRAWER

Filename: open_cabinet_drawer_vl.py

Task: Pull open the drawer.

Success Metric: The drawer is open at least 90% of the way, and the angular/linear velocities of the
drawer link are small.

cuber_height_revard

self.cubeh.pose.pl..,

sel. cube.pose.pl.., 21)

Figure 5: (Left) Example of improved dense reward function using GPT-4o for reflection. (Right)
Example of improved dense reward function using AHA for reflection

I

14
Timesteps

Figure 6: RL policy roll-outs via improved with AHA. Row 1: pickup_YCB. Row 2: push_T.
Row 3: Place_sphere. Row 4: stack_cube. Row 5: open_drawer

1.7 VLM TASK-PLAN GENERATION

In this section, we present the policy rollouts improved by AHA in Figure[8] along with the modified
task plans in Figure[9]

Simulation task Details We describe each of the 3 tasks in detail, along with their PyBullet variations
and success condition.

1.7.1 PUT BANANA CENTRE

Filename: ours_raven_ycb_pick.py
Task: Pick up the banana and place it onto the centre of the table.

Success Metric: The success condition on the final location of the banana with respect to the table
area.

1.7.2 STACK BANANA

Filename: ours_ycb_banana_spam_stack.py
Task: Pick up the banana and place it onto the spam can.

Success Metric: The position of the banana should be on the spam can, and rest stably.

"Push T to shaped T area" "Stack the red cube onto green cube” "Put sphere into sphere holder"

[der compute_dense_revara(selr, obs: Any, action: toren Temsor, info: Dict) [dat computa_sanss_revssa(sais, oba: any. action: tarch Tansor, tato: bict) [der compute_dense_ravard(seir, obs: Any, action: toren Temsor, tafe: Diet):
o 4 7Cr (Fool Cancel fuine) to cuber
Cop o, eaan dise = vorch
Calculate the distance from the TC? to the I-shaped peg ST Ciben pose.p - seit avent. icp pase.p, axisei # Compute the distance from the TCE (gripper) to the object (sphere)
tep_ts_obj_dist = torch 1inalg.norm(self tse.poss.p - Self agent.tcp poss.p,) oo et = torch 1f agent &
laxta=2) reaching_reward = 1 - torch.tanh(S + tep_to_cuber_dist) laxsa=1)

reaching reward = 1 - torch.tanh(s * tcp_to_obj dist)
reward = reaching_revard

ard = reaching_revard Teaching revacd = 1 - toreh.am(s * tep_to_sb_dist)
revard = reaching_reward

raspad = info[-is_cuber grasped-] # 2da grasping reward i the object is being grasped
casped 1s_grasped = info["is_ob)_grasped"]
revard += is_graspad

Calculate the psendo-rendered intersection area for the T-shaped peg in

= selt pseuds_render_incersection () o cubea to cubes along the x and y directions (ignors 1)
- _area _thresh cubea_to % xy = torch.linalg.nemm(! Compute the distance from the object (sphers) to the bin
B ob)_to_bin dist = selr

o
reward += infersection reward

Corch_cann (5 * cuber_to_cubes_dist_xy)

oy =1 - canh (s = o)t
oy _revard my + 1o, Cuben_oraspea

eing revara - in geased

bin_dtsr)
Calculate the distance from the TC? to the end-effector goal position
toreh 1inalg norm(self. ce_goal pos pose.p

¥ Penalty for misalignment in the z direction # 2dd an additional z-axis penal <cise placesent inco the bin
rd = 1 - toreh.tanh(s * tcp_to_goal dist) = offset penalty = torch.abs(self.cubeB.pose.p(-.., 2] - § Sefuan penaiey = tore-abe (seLe bin-pose Bl . os 21 © sait.an) posa Bl

fevaza - Goal_reward + (intersection. zea o reis Swen sosep 1 2)) a8
sie. intersaction_thrash) Axd = 1_oteast panalty » is_cube grasped reward = 5 + toren tamn(s ¢ = offsst_penslty) * 1s_grased
Revard for keeping cabeh stati # 3dd xevard i the cbject is on the bin and the robot ia static
1 ating s pansacy carm or sisstigrment siong e x sirection O Y Seuavie) favard v info(-ia oby_Static-) * nfol-ts oby_on bin']
top_to_ob3_x diat = torch abs (self tee.poss pl:, 0] - atatio revard = 1
cee agonc-reppone Bl 1) corcn2inalq.nora (se1f apant Fovot.gev el (). -, :-2], axke=1)) # Set xevard to maximua if the task is successfully cospleted
sl gy + 0.3 - coren-camn < ep_to 2 x o) Texard 95 Static revard + infolis_cubeh on cibes] revard(into (“success-]] = 13

reward += aligmment_penal
Fevaralinfor-suceesa 11 = 8
wing the task success eondition return revard

1= 3.0

¥ Reward o

"Pick up the mustard bottle" "Pick up the mustard bottle"

tep_to_ob:

1a g 1a_gs
revard += is_graspad

Introducing a penalty for missing the
nisaed grasp penaicy « torch e (1 . Graspes == 0, 0.3, 0.0)
iard += missed_grasp_penalt

Feward for grasping ¥ith proper rotation (introducing a reward for
rotation alignment)
otation_alignment = 1 - torch tanh(5 + torch abs(self.agent.tcp pose.q -
it by pose-q) sum()
Tevard += rotation_alignsent * is_grasped

Introducing a penaity for misaligament during gras
Rivalimaent paneiy = Coreh whers (revation A1Ldument < 0.3, 0.3, .01
rexard += misalignment penalty * is_grasped

Distance from object to goal
o03_to_goal_ist = toreh. Linaig s

T Goat.sita. pove.p - mait oby pose.p, axisnl
)

can(s + ob)_to_goal dist)
Tevard o= piace. eware = 1 gtesped

0, 0.0
heighe for 1ifring

Figure 7: Examples of modified reward function via AHA

1.7.3 STACKS CUBES

Filename: ours_raven_bowl_stack.py

Task: Pick up the green cube and place into the green bowl, and then take the yellow cube and stack
it on top of the green.

Success Metric: When the yellow cube is stably stack on top of the green in the green bowl.

1.8 VLM SUB-TASK VERIFICATION

In this section, we leverage Manipulate-Anything (Duan et al.| |[2024) as the main policy
framework, integrating it with AHA. AHA functions as a sub-task verifier VLM, playing a crucial
role in ensuring task success when using Manipulate-Anything. Examples of the roll-outs are
shown in Figure [10]

Simulation task Details We describe each of the 4 tasks in detail, along with their RLBench variations
and success condition.

1.8.1 PpuT BLOCK
Filename: put_block.py
Task: Pick up the green block and place it on the red mat.

Success Metric: The success condition on the red mat detects the target green block.

1.8.2 PpIcKUP cCUP

Filename: pickup_cup.py
Task: Pick up the red cup.

Success Metric: Lift up the red cup above the pre-defined location.

>

»
Timesteps

Figure 8: TAMP policy roll-outs via improved with AHA. Row 1: put_banana_centre. Row
2: stack_banana. Row 3: stack_cubes

1.8.3 SORT MUSTARD

Filename: sort_mustard.py
Task: Pick up the yellow mustard bottle, and place it into the red container.

Success Metric: The yellow mustard bottle inside red container.

1.8.4 PIcCK & LIFT

Filename: pick_and_lift.py
Task: Pick up the red cube.

Success Metric: The red cube is lifted up.

1.9 LIMITATIONS AND OPPORTUNITIES

While AHA is quite capable, it is not without limitations. In the following sections, we discuss some
of these limitations and potential risks for real-world deployment.

Does not cover all failure cases. While AHA is instruction-tuned to address the seven most common
failure modes in robotic tabletop manipulation, and provides fine-grained failure identification down
to axis-level translation or orientation offsets of the gripper, it is inevitable that certain edge cases
remain uncovered. These edge cases fall outside the distribution of failure modes considered in our
approach and may occur in real-world scenarios. To address this limitation, future work could focus
on distilling policies already trained with action-based "artifacts" to generate naturally occurring
failures. These could then be labeled using human annotations or a hybrid approach combining AHA
and a GPT-4o0-based labeling system. Such efforts could enhance the robustness and applicability of
failure detection across a broader range of scenarios.

Improving policies directly with AHA Currently, we have demonstrated AHA’s effectiveness
in enhancing existing robotics systems that utilize off-the-shelf VLMs/LLMs to automate various
pipeline components. AHA has shown significant impact in improving code generation, task-plan

"Stack banana onto spam can"

[rmank you vor che clararication, Given that the rabot gripper Bovas ©o e desirod GoEAEion with an orfsat alang the Z airection,
© r nen ana on top of the potted neat can

FESET 2. e/ L use €his of fset o adjust the plaement pose accordingly

python
|GRIPPER_OFFSET_Z = 0.02 # Example offsst value, adjust as necessary

oo gn_plantanstiats Ravendetse, gras: faventrasp)
up the banana
Suan-appendlactionwpick, ["abjoct 1%, arasp)))

Get the pose of the
Spanpose Cinicial onjects("obsect 8'1.pose

Placenent pose for the banana on top of the potted meat can
= Ravenposs(

pott

Place the banana on top of the potted meat can
plan.append(Action("place”, ["object 17, grasp, banana_place_pose]))

return plan

et gen donasn(inicsats Ravensotior)
n (

p: Graspsempler()
e

[s#e Expranation

1+ 11picking the sanana::: The plan starts by piking up the banana (‘object 1) using a grasp sempled fron the “Graspampler
lo. *+catcunating Placement Pose* 5') 15 retrieved fron the initial state. Tne placenent o
Base. ror the basana- 1o calcutared by adeing ehe nelont of tre bunans (asprotinated oe. BLOGK SIZE') and. the grimper orfect

|(GRIPPER OFFSET 2') to the z-coordinate of the potted meat can's pose. The roll, pitch, and yaw are kept the same to ensure proper
latignnent

5. **Placing the Banana**: The plan then places the banana at the

calculated pose on top of the potted meat can

[## Wy Tnis WiLL Atays satisty the coal

|- +orasp sampting:

The grasp 15 sampled fron a “GraspSampler’, ensuring that 3 Valio grasp 1S used for pACking up the banana

#Placenent Calculation': The placement pose is calculated based on the current pose of the potted meat can and adjusted for the
n o

laynan: as"the’ placer

[This approach ensures that the banana will always be stacked on top of the potted meat can, accounting for the gripper offset along
lthe z direct on.

"Stack two cubes into a bowl"

[Thank you for pointing that out. Let’s correct the plan to account for the z-offsot wion placing the second cube.
Py

et ger

an(initial:RavenBelief, x offset:Float, y offset:float, z_offset:Float)
plan = []

4 pick w the gr
gre: t\nb;x[nj ¢ o7
“pick”, green block snc))

& placs

g cts["object
on_bowL_pose point
Plahappend(Action("pacet, Lx + x offset, y + y_offset, z + offsetl))

Pick up the yellow block
yollow block - initial chjects(obtect 4-)

Stack_the yellow block onto the green block
green.block new pose =[x ¥ CoTfaet, ¢ yoffset, 2 o roftaet « BLOCKSIZE)

nd{Action("place", [green block new pose[0], green_block newposs[1], gresn_block new_pose[2] + BLOCK_SIZE]))
return plan

SnitialiRavens

Jaet gen_dor Belser)

Feturn

€
orfsets
y_offset”
"2 offset®

ontinuoussanpler (-0.02, 0.62),
sswpler(-0.02 0.0
ssanpler (0.01, 0.03).

)
j### Explanation

[L. *pick up the green block
o *-ptace tho reen brock into e greon bowt

(‘x offset’, 'y offset’, “zoffset’) allow for
pick up tne ye\\w biocke:: Tne
nto the

15 The pian starts by picking up he green block (cbject ©').
The areen block 1t than places inco the groen bout (‘abject 5°). The arrsees

o varlabiisty i the eract: placusert. vt U i

plan continues by wmnw w the ye\\aw plock (o

n gre g, o < plac op of the green black, whic! i

o bour. e Tisght. 15 aalustad by seding the. SLOCK SIZE. to the .coordinats of the Oreen Sleck's new position, onsuring the

lvoLiow block 15 stacked correctly.

s Wy the Function WiLL Always Satisfy the Goal

Tne xoffsec:, 'y offset’, and 'z offset paraseters allow for SUight variations in the placement of the green block wichin the
e e

“The yetlow block eq i top of the green bloc 1ng a o
Somain Tor tho offsets Ls chasen to by SRty anoudh o ensure. <he bicks Sre piaced sorrectiy But large anougn co ation for
jsome variabitity.
st Constrasnts and Potential Failures
If the offsets are too large, the green block might not be placed correctly WiEhin the bowl, or the yellow block might not stack

- The domain for the offsets is chosen to mininize these risks, BUt If a fallure occurs, the offsets can be adjusted to snatler
ranges.

[This plan should achieve the goal of placing the green block into the bowl and then stacking the yellow block onto the green block,
lgiven the initial state and the defined domain

"Move banana to centre"

IWe Will add an additional parameter
lpositior

0 the gen_plan

JHere"s the updated inplenentation

5n e

gentiied as "objec

ke, [obje grasp]))

F Rk the y position oy the orragt when placig the ovject

asjustedy = TABLE CONTER[1) © v o
pesction(place’

et gen donain(initial: Ravengilicf)
rrrrrr

aspsampter(),
et eac! Contnsousbampter (9.5, 0.05)

ae with o entrics
cing tho-orhepsa

lairectior

[## uny Tis WilL Aleays satisty the G

e’y o

jadjustment.

Long as the offset is within the Specitied range

fo account for the suignt ofrset along the y Giroction when orasping the ObJSCt, e can adjust tho placoment position dscoraingly-
unction to specify the y offset and use it to cor

oor” gew n\zw(mn)a\ Ravengolier, grasp: RavenGrasp, y_ offsot: Tloat):
0
n ect

<2t name, grasp, Raverbose(x<TABLE_CENTER[O], y-adjusted.y, 2-0.02)1))

Allowing for a seall offset range

: kes an additionsl paramster 'y offset’ to account for the sLight offset along the y direction
- When placing the object, the y position is a0justed by adding the 'y Offset’ to Che table center's y coordinate.
e
y rser’: Samplea uSing a ContinuousSaRpler” wih a range of -0.05 to 0.05, allosing for a smALL adjustaent in the y

- e plan still explicily picks w Ere sanana and places 1¢ at the center of the table, but now with an adjustment for the y

frsot paramoter allows for correcting the placement position to account for the SLght offset during grasping
The table center coordinates are fixed and known, ensuring the banana is aluays moved to the correct location with the necessary

Ihis approach ensures that the ol 13 achioved regardless of the speciic grasp sampled and the SLiGn: offsot during arasping, as

ct the placenent

Figure 9: Examples of modified task-plan via AHA

generation, and sub-task success detection. However, AHA is not yet capable of directly influencing
low-level trained policies through failure language reasoning. A potential next step would involve
training low-level policies with language-conditioned demonstrations covering a diverse range of
corrective actions tied to various failure modes. This would enable low-level policies to interpret
failure reasoning in a counterfactual manner and generate corrective actions directly.

REFERENCES

Jiafei Duan, Wentao Yuan, Wilbert Pumacay, Yi Ru Wang, Kiana Ehsani, Dieter Fox, and Ranjay
Krishna. Manipulate-anything: Automating real-world robots using vision-language models. arXiv

preprint arXiv:2406.18915, 2024.

Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit
Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in
3,000 hours of egocentric video. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 18995-19012, 2022.

10

Figure 10: Examples of zero-shot data generator trajectories with AHA as sub-tasks verifier.
Row 1: pickup_cube, pickup_cup. Row 2: put_block, sort_mustard

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davison. Rlbench: The robot
learning benchmark & learning environment. /EEE Robotics and Automation Letters, 5(2):3019—
3026, 2020.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis,
et al. Droid: A large-scale in-the-wild robot manipulation dataset. arXiv preprint arXiv:2403.12945,
2024.

Zeyi Liu, Arpit Bahety, and Shuran Song. Reflect: Summarizing robot experiences for failure
explanation and correction. arXiv preprint arXiv:2306.15724, 2023.

Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex Bewley, Alex Herzog, Alex Irpan, Alexander
Khazatsky, Anant Rai, Anikait Singh, Anthony Brohan, et al. Open x-embodiment: Robotic
learning datasets and rt-x models. arXiv preprint arXiv:2310.08864, 2023.

11

	Appendix
	Overview
	Failure Taxonomy
	FailGen Data Generation Pipeline
	Aha Dataset
	Additional Experimental Results
	VLM Reward Generation
	pickup YCB
	push T
	place sphere
	stack cube
	open drawer

	VLM Task-plan Generation
	put banana centre
	stack banana
	stacks cubes

	VLM Sub-task Verification
	put block
	pickup cup
	sort mustard
	pick & lift

	Limitations and Opportunities

