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A Dataset details and extension to real-world data

Details of PCN dataset. Since all our experiments (e.g., semantic completion, surface reconstruc-
tion, global/part-wise manipulation) are evaluated on the PCN dataset [1], we now provide more
details with some examples of this dataset. As mentioned in Sec. 4.1 of our main paper, we combine
the PCN completion dataset and the ShapeNetPart [2] segmentation dataset to acquire part labels for
both the partial input point clouds and the complete ground truth point clouds. To be more specific,
we extract the intersection objects of both datasets and match the ground truth points by normalizing
each pair of the same object from both datasets with the corresponding bounding box. Then we label
both the partial point clouds and the complete point clouds of each object in the PCN dataset by
taking the semantic label of the nearest point of the same object in the ShapeNetPart dataset. We
visualize some examples of the parsed PCN dataset in Figure 1, showing that we indeed obtain correct
part labels for both partial inputs and complete ground truths.

Further extension. To show the capability of our SPoVT on real-world data, we follow PoinTr [3]
to test the model trained with the "Car" category of PCN dataset on the KITTI dataset [4], which
contains incomplete point clouds of cars in real-world scenes captured from LiDAR sensors. Since
these point clouds are original without semantic labels, we pre-train a DGCNN [5] segmentation
model for partial point clouds of cars in the PCN dataset. Similarly, we also test the "Chair" and the
"Table" models on chairs and tables extracted from the ScanNet [6] dataset. Our comparison with
PoinTr is shown in Figure 2 and Figure 3. We can see that our results better preserve the details from
the partial inputs, while PoinTr gives relatively sparse results.

B Architecture of Refiner θR

As described in Sec. 3.2.2, our Refiner θR takes the concatenation of the point coordinates of Xin

and Xc as input, along with the corresponding Semantic Prototype fm of each point. The architecture
of θR is depicted in Figure 4, which is similar to the coarse Decoder θD.

C Semantic point cloud completion and their point number distributions.

Qualitative comparisons of part segmentation are visualized in Figure 5, which shows that our SPoVT
correctly completes each part of the point clouds. This verifies the design of obtaining part prototypes
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Table 1: Evaluation of point number distributions in predicted point clouds. We compare the
L2-distance between rout and rGT , while rout are produced by different methods. Note that the
rout of other methods are obtained from part segmentation results predicted by DGCNN [5].

Method Airplane Car Chair Lamp Table Avg.
PCN [1] 0.0640 0.1365 0.1580 0.3660 0.1772 0.1803
PMP-Net++ [7] 0.0902 0.0419 0.0847 0.0572 0.0549 0.0658
VRC-Net [8] 0.1097 0.1660 0.1117 0.1918 0.1699 0.1498
PoinTr [3] 0.2513 0.0371 0.1233 0.5187 0.1722 0.2205
Ours 0.0195 0.0093 0.0238 0.0044 0.0127 0.0139

f1:M in Sec. 3.2.1 in our main paper that aims to preserve the semantic information of each part.
We further show the quantitative comparisons of our predicted point number distribution rout with
PCN [1], PMP-Net++ [7], VRC-Net [8], and PoinTr [3] by evaluating the L2-distance with the ground
truth point number distribution rGT in Table 1. With more accurate rout, our predictions are more
visually uniform on each semantic part than the others.

D Calculation of mIoU

Since the predicted completion Xout and the ground truth XGT of a point cloud object are two
different point sets, we are not able to directly apply traditional mIoU for evaluation (as part
segmentation tasks [5, 9] do). Instead, inspired by Chamfer Distance, we calculate the mIoU by
averaging IoU of each point in Xout with the nearest point in XGT and IoU of each point in XGT

with the nearest point in Xout. This evaluation is applied as the mIoU shown in Table 2 of our main
paper.

E More results on point cloud completion, surface reconstruction, and
part-wise manipulation.

We now provide more qualitative visualization results on point cloud completion, surface reconstruc-
tion, and part-wise manipulation in Figure 6, Figure 7, and Figure 8, respectively. Note that for the
surface reconstruction in Figure 7, we directly convert the point clouds into meshes using the Alpha
Shape method in Open3D [10]. For the point clouds with resolutions of 16384, such as VRCNet,
PoinTr, Ours(16k), and GT, the Alpha values that decide the fineness of reconstructed mesh (the
smaller, the finer) are chosen between 0.03 and 0.04 to make sure that the surface reconstruction is
not broken. On the other hand, the Alpha value can be chosen as 0.01 for our results with 300k points
and show more details without creating shattered surfaces. This verifies the importance of having the
property of varying resolutions that is able to predict dense point clouds.
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Figure 1: Samples from the PCN dataset with segmentation labels.
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Figure 2: Qualitative results on the KITTI dataset. We compare our method with PoinTr [3]. Note
that we pre-train a DGCNN [5] segmentation model for generating the part labels for the partial input.

Chairs Tables

Pa
rt

ia
l

Po
in

tT
r

O
ur

s

Figure 3: Qualitative results on the ScanNet dataset. We compare our method with PoinTr [3].
Note that the first three columns are chairs and the last three columns are tables.

Figure 4: Architecture of our proposed Refiner θR.
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Partial PCN PMPNet++ PoinTr VRCNet Ours GT

Figure 5: Qualitative results of completed point cloud with predicted part labels. We compare
the results produced by PCN [1], PMPNet++ [7], PoinTr [3] and VRCNet [8]. Note GT represents
the ground truth point cloud with NGT = 16384. The color of each point denotes the corresponding
part label.
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Partial PCN PMPNet++ PoinTr VRCNet Ours GT

Figure 6: Qualitative evaluation of completed point cloud. We compare the results produced by
PCN [1], PMPNet++ [7], PoinTr [3] and VRCNet [8]. Note GT represents the ground truth point
cloud with NGT = 16384.
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VRCNet (16k) PoinTr (16k) Ours (16k) Ours (300k) GT (16k)

Figure 7: Surface reconstruction with varying resolutions. Note that GT denotes the mesh obtained
from the ground truth point cloud.
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Source 0.2 0.4 0.6 0.8 1.0 Target

Figure 8: Point cloud completion with part-level manipulation. For each row, we select one
semantic part (in red) of the source object to interpolate with the same part of the target, with the
interpolation step as 0.2.
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