
A Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] In the abstract and introduction, we claimed to have
designed a supervised contrastive learning framework for the clustering and retrieval
of cardiac signals. We also claimed to outperform several baseline methods. Results
substantiating these claims are shown in Secs 6.2 and 6.3.

(b) Did you describe the limitations of your work? [Yes] We discussed limitations around
using discrete attribute values and the scalability of our framework to many attributes
(see Sec. 7).

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] The supplemen-
tary material contains in-depth implementation details to reproduce our experiments.
Moreover, all datasets are publicly-available. Code is currently undergoing a patent
examination and can be released on a case-by-case basis.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Details about the hyperparameters are provided in Sec. 5. Further
implementation details are provided in the supplementary material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We always report our results with a standard deviation
across five random seeds, e.g., Table 1, 2, and 3 in Secs. 6.2, 6.3, and 6.4, respectively.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] These details can be found in
Appendix C.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We use, and appropri-
ately cite, two publicly-available electrocardiogram datasets (see Sec. 5).

(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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B Datasets

B.1 Data pre-processing

For all of the datasets, frames consisted of 2500 samples and consecutive frames had no overlap with
one another. Data splits were always performed at the patient-level.

Chapman [35]. Each ECG recording was originally 10 seconds with a sampling rate of 500Hz.
We downsample the recording to 250Hz and therefore each ECG frame in our setup consisted of
2500 samples. We follow the labelling setup suggested by [35] which resulted in four classes: Atrial
Fibrillation, GSVT, Sudden Bradychardia, Sinus Rhythm. The ECG frames were normalized in
amplitude between the values of 0 and 1.

PTB-XL [36]. Each ECG recording was originally 10 seconds with a sampling rate of 500Hz. We
extract 5-second non-overlapping segments of each recording generating frames of length 2500
samples. We follow the diagnostic class labelling setup suggested by [37] which resulted in five
classes: Conduction Disturbance (CD), Hypertrophy (HYP), Myocardial Infarction (MI), Normal
(NORM), and Ischemic ST-T Changes (STTC). Furthermore, we only consider ECG segments with
one label assigned to them. The ECG frames were standardized to follow a standard Gaussian
distribution.

B.2 Data samples

In this section, we outline the number of instances used during training, validation, and testing for the
Chapman and PTB-XL datasets (see Table 4).

Table 4: Number of instances (number of patients) used during training. These represent sample sizes
for all 12 leads.

Dataset Train Validation Test

Chapman 76,614 (6,387) 25,524 (2,129) 25,558 (2,130)
PTB-XL 22,670 (11,335) 3,284 (1,642) 3,304 (1,152)
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C Implementation details

In this section, we outline the neural network architectures used for our experiments. More specifically,
we use the architecture shown in Table 5 for all experiments pertaining to the Chapman dataset. Given
the size of the PTB-XL dataset and the relative complexity of the corresponding task (at least at the
disease class level), we opted for a more complex network. We modified the ResNet18 architecture
whereby the number of blocks per layer was reduced from two to one, effectively reducing the number
of parameters by a factor of two. We chose this architecture after experimenting with several variants.
Experiments were conducted using PyTorch [43] and an NVIDIA Quadro RTX 6000 GPU. Each
training and validation epoch took approximately 2 minutes, and 20 seconds to complete, respectively.

Table 5: Network architecture used for experiments conducted on the Chapman dataset. K, Cin,
and Cout represent the kernel size, number of input channels, and number of output channels,
respectively. A stride of 3 was used for all convolutional layers. E represents the dimension of the
final representation.

Layer Number Layer Components Kernel Dimension

1

Conv 1D 7 x 1 x 4 (K x Cin x Cout)
BatchNorm

ReLU
MaxPool(2)
Dropout(0.1)

2

Conv 1D 7 x 4 x 16
BatchNorm

ReLU
MaxPool(2)
Dropout(0.1)

3

Conv 1D 7 x 16 x 32
BatchNorm

ReLU
MaxPool(2)
Dropout(0.1)

4 Linear 320 x E
ReLU

Table 6: Batchsize and learning rates used for training with different datasets. The Adam optimizer
was used for all experiments.

Dataset Batchsize Learning Rate

Chapman 256 10-4

PTB-XL 128 10-5
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D Baseline implementations

DeepCluster In the implementation by Caron et al. [39], a forward pass of each instance in the
training set is performed. This generates a set of representation which are then clustered, in an
unsupervised manner, using k-means. This involves a decision regarding the value of K, i.e., the
number of clusters. In our supervised setting, we have this information available and therefore set the
value of K to be equal to the number of distinct cardiac arrhythmia classes. Once the clustering is
complete, each instance is assigned a pseudo-label according to the cluster to which it belongs. Such
pseudo-labels are used as the ground-truth for supervised training during the next epoch. We repeat
this process after each epoch for a total of 30 epochs after realizing that the validation loss plateaus at
that point.

IIC In this implementation, the network is tasked with maximizing the mutual information between
the representation of an instance and that of its perturbed counterpart. Such perturbations must be
class-preserving and, in computer vision, consist of random crops, rotations, and modifications to
the brightness of the images. In our setup involving time-series data, we perturb instances by using
additive Gaussian noise in order to avoid erroneously flipping the class of a particular instance. In
addition to the aforementioned, we implement the auxiliary over-clustering method suggested by the
authors. This approach allows one to model additional ’distractor’ classes that may be present in
the dataset, and was shown by [40] to improve generalization performance. In our setup, we set the
number of total clusters to the number of attribute combinations, M .

SeLA In this implementation, each instance is assigned a posterior probability distribution. For all
instances, this results in an assigned matrix of posterior probability distributions. Each instance’s
label is obtained by identifying the index associated with the largest posterior probability distribution.
Deriving the aforementioned matrix is the crux of SeLA. It does by solving the Sinkhorn-Knopp
algorithm under the assumption that the dataset can be evenly split into K clusters. Our setup does
not deviate from the original implementation found in [41].

DeepTransferCluster In this implementation, the distance between each representation and each
cluster prototype is calculated to generate a probability distribution over classes, p. The distribution,
p, is encouraged to be similar to a target distribution, z, by minimizing the KL divergence of these two
distributions. In the original unsupervised implementation, the target distribution is a sharper version
of the empirical distribution [38]. In our supervised implementation, we initialize the prototypes
similarly to our approach and modify the target distribution to incorporate labels. As with our soft-
assignment, we aim for a target distribution that reflects discrepancies, d, between the representation
attributes, Ai, and the prototype attributes, Aj . Mathematically, our target distribution, z, is as
follows:

zj =
eωij∑|L|
l eωil

(6)

ωij =

{
ed(Ai,Aj)∑|L|
l ed(Ai,Al)

if αi1 = αj1

0 otherwise
(7)

d(Ai, Aj) =
1

τω
· [δ(αic = αjc) + δ(αis = αjs) + δ(αia = αja)] (8)

K-means EP In this implementation by Gee et al. [11], each instance is first passed through the
encoder network to generate a representation. This representation serves multiple functions: a) it
is passed through the decoder network to reconstruct the input, and b) passed through a prototype
network that works as follows. The Euclidean distance between the representation and M randomly-
initialized embeddings (prototypes) is calculated to generate a single M -dimensional representation.
This newly-generated representation is then passed through a linear classification head to predict the
cardiac arrhythmia class associated with the original instance. In our setup, we set the number of
prototypes to coincide with the number of clinical prototypes that we use. For clustering, we apply
the k-means algorithm to the representations learned via this framework.
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Deep Temporal Clustering Representation In this implementation by Ma et al. [16], the network
consists of three main components: 1) an encoder, 2) a decoder, and 3) a classifier head. A synthetic
version of each instance is first generated by permuting a certain fraction, α, of the time-points in
the original instance. The original instance and its synthetic counterpart are then passed through the
encoder to obtain a pair of representations (a real and synthetic one). The classifier is tasked with
identifying whether such representations are real or fake (binary classification akin to discriminator
in generative adversarial networks). Moreover, the decoder reconstructs the original instance by
operating on the real representation. Lastly, the k-means loss is approximated based on the Gram
matrix of the mini-batch of real representations. We follow the original implementation, and choose
α = 0.2, and λ = 10−3 as the coefficient of the k-means loss in the objective function.

E Effect of embedding dimension, E, on clustering

In this section, we explore the effect of the embedding dimension, E, on the clustering performance
of our framework. Specifically, we experiment with E ∈ {32, 64, 128, 256} on the Chapman dataset
and present the accuracy of the attribute assignments (disease class, sex, and age) in Fig. 6. We find
that the embedding dimension has minimal impact on the clustering performance of our framework
when evaluated on the disease class and sex patient attributes. This is evident in Fig. 6a where the
Acc(class) ≈ 0.85 across all embedding dimensions and in Fig. 6b where the Acc(class) ≈ 0.55
across all embedding dimensions. We do, however, find that an embedding dimension, E = 128, is
favourable when evaluating the clustering performance based on the patient age assignments. This
can be seen in Fig. 6c where Acc(class) ≈ 0.38 at E = 128, whereas Acc(class) < 0.34 for the
remaining embedding dimensions.

(a) (b)

(c)

Figure 6: Effect of embedding dimension, E, on the clustering performance of our framework.
Results are shown for the (a) disease class, (b) sex, and (c) age attributes across five random seeds.
The error bars represent one standard deviation from the mean. We find that the embedding dimension
has a minimal effect on the performance when evaluating based on disease class and sex attributes.
An effect is more pronounced when clustering based on the age attribute.
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F Effect of β on clustering and retrieval

In this section, we examine the effect of β, as used in the regularization term (Eq. 3), on the clustering
and retrieval performance of our framework. We conduct the same clustering and retrieval experiments
as those found in the main manuscript and experiment with β = [0.05, 0.1, 0.2, 0.4]. The results of
these experiments are presented in Tables 7 and 8. In both settings, we find that β = 0.2 is preferable
to the remaining values of β. This is evident by the higher clustering and retrieval performance. For
example, at β = 0.2, Acc(class) = 76.0 whereas at the remaining β values, Acc(class) ≈ 66.0,
reflecting a difference of 11%. Furthermore, in the retrieval setting, with K = 1 and the # attribute
matches ≥ 1, the precision at β = 0.2 is 68.8 whereas at the remaining values of β, the precision
< 67.5. These findings are consistent with our expectations given that β controls the distance between
clinical prototypes, which, in turn, impacts their utility as centroids for clustering and as queries for
retrieval.

Table 7: Effect of β on the clustering performance on representations in the validation set of PTB-XL.
Evaluation is based on (a) class attribute and (b) sex and age attributes. Results are averaged across
five random seeds. Brackets indicate standard deviation and bold reflects the top-performing β value.

(a) Cardiac arrhythmia class attribute

β
PTB-XL

Acc AMI

0.05 66.0 (0.3) 33.3 (0.0)
0.1 65.7 (0.0) 33.0 (0.6)
0.2 76.0 (0.3) 35.9 (0.4)
0.4 65.9 (0.6) 34.7 (0.2)

(b) Sex and age attributes

Method PTB-XL
Sex Age

0.05 72.2 (0.2) 32.4 (0.0)
0.1 72.9 (0.8) 31.6 (0.5)
0.2 73.5 (0.6) 19.5 (0.2)
0.4 72.5 (0.8) 32.8 (0.2)

Table 8: Effect of β on precision of CROCS when retrieving the closest K representations from the
validation set of PTB-XL. Results shown are based on the number of attributes shared between the
prototypes and the retrieved cardiac signals, and are averaged across five random seeds. Brackets
indicate standard deviation and bold reflects the top-performing β value.

# attribute matches β
PTB-XL

K = 1 5 10

≥ 1

0.05 63.5 (0.0) 100.0 (0.0) 100.0 (0.0)
0.1 63.5 (7.0) 100.0 (0.0) 100.0 (0.0)
0.2 68.8 (8.1) 100.0 (0.0) 100.0 (0.0)
0.4 67.5 (7.7) 97.0 (2.4) 100.0 (0.0)

≥ 2

0.05 18.0 (4.5) 55.0 (5.0) 69.0 (9.3)
0.1 15.5 (1.0) 49.5 (4.0) 70.5 (6.2)
0.2 19.4 (6.4) 78.8 (11.9) 93.8 (4.4)
0.4 13.0 (4.0) 50.0 (1.6) 80.5 (1.0)

= 3

0.05 1.5 (2.0) 6.0 (2.0) 10.0 (0.0)
0.1 0.5 (1.0) 5.5 (1.0) 8.0 (1.0)
0.2 1.3 (2.5) 14.4 (7.0) 26.3 (8.0)
0.4 0.5 (1.0) 2.5 (0.0) 10.0 (1.6)
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G Performance of CROCS with Less Labelled Data

In this section, we explore the effect of less labelled data on the performance of CROCS. More
precisely, we reduce the amount of labelled training data 10-fold while keeping the amount of
unlabelled data fixed. In Tables 9 and 10, we present the results of these experiments in the clustering
and retrieval settings, respectively.

Table 9: Clustering performance on the validation set of Chapman and PTB-XL when CROCS
is trained with 10% of labelled data. Evaluation is based on (a) class and (b) sex and age attributes.
Results are averaged across five random seeds. Brackets indicate standard deviation and bold reflects
the top-performing method. The asterisk (∗) indicates that the algorithm could not be solved. We
show that CP CROCS outperforms the remaining methods regardless of patient attribute.

(a) Cardiac arrhythmia class attribute

Method Chapman PTB-XL
Acc AMI Acc AMI

SeLA [41] ∗ ∗ 0.10 (0.0) 0.02 (0.0)
DC [39] 21.0 (0.0) 0.5 (0.6) 10.5 (0.0) 4.3 (0.9)
IIC [40] 27.2 (0.3) 0.6 (0.01) 24.3 (2.8) 0.4 (0.7)

DTCR [16] 34.3 (0.9) 3.3 (0.0) 24.1 (0.5) 0.8 (0.3)
DTC [38] 46.3 (2.6) 11.8 (2.2) 48.4 (3.9) 0.3 (0.5)
KM raw 28.4 (1.2) 0.3 (0.0) - -

KM EP [11] 64.9 (4.7) 44.3 (3.4) 45.1 (1.9) 20.7 (1.3)
KM CROCS 71.1 (4.6) 52.7 (2.3) 47.7 (3.4) 20.1 (0.9)
TP CROCS 75.5 (0.2) 56.8 (0.5) 47.3 (2.8) 19.9 (1.4)
CP CROCS 82.7 (0.4) 61.8 (0.8) 71.4 (0.0) 28.8 (0.8)

(b) Sex and age attributes

Method Chapman PTB-XL
sex age sex age

DTCR [16] 52.2 (1.2) 26.7 (0.3) 51.7 (1.4) 29.3 (1.2)
DTC [38] 53.1 (0.6) 26.8 (0.0) 52.2 (0.0) 33.5 (1.6)

KM EP [11] 56.4 (0.1) 30.2 (0.9) 51.0 (0.7) 37.1 (1.5)
KM CROCS 56.2 (0.1) 30.9 (0.8) 51.1 (0.7) 36.0 (1.1)
TP CROCS 53.1 (1.4) 29.0 (0.6) 60.6 (2.3) 36.7 (1.0)
CP CROCS 51.0 (0.4) 29.7 (1.0) 67.5 (1.0) 42.0 (6.5)

Table 10: Precision of K retrieved representations, v, in the validation set of Chapman and
PTB-XL, that are closest to the query when CROCS is trained with 10% of labelled data.
Results are shown for partial and exact matches of the attributes (# attribute matches) represented
by the query and retrieved cardiac signals, and are averaged across five random seeds. Brackets
indicate standard deviation and bold reflects the top-performing method. The strong performance of
TP CROCS provides evidence in support of our CROCS framework.

# attribute Query Chapman PTB-XL
matches K = 1 5 10 1 5 10

≥ 1
DTC [38] 71.9 (0.0) 100.0 (0.0) 100.0 (0.0) 70.0 (0.0) 100.0 (0.0) 100.0 (0.0)

TP CROCS 91.3 (1.3) 98.1 (3.8) 100.0 (0.0) 91.8 (3.4) 99.5 (1.0) 100.0 (0.0)
CP CROCS 89.4 (2.5) 98.1 (3.8) 100.0 (0.0) 88.0 (6.2) 100.0 (0.0) 100.0 (0.0)

≥ 2
DTC [38] 25.0 (0.0) 71.3 (1.3) 89.0 (4.6) 21.0 (0.0) 50.1 (5.0) 78.5 (8.0)

TP CROCS 53.8 (3.6) 85.6 (7.0) 92.5 (1.5) 62.6 (12.7) 91.3 (4.8) 94.9 (1.6)
CP CROCS 51.3 (2.5) 86.9 (7.5) 93.8 (7.1) 57.5 (5.2) 90.0 (5.2) 97.5 (3.2)

= 3
DTC [38] 3.1 (0.0) 12.5 (0.0) 21.9 (2.0) 2.5 (0.0) 12.0 (1.0) 20.5 (4.0)

TP CROCS 11.3 (1.5) 30.0 (3.2) 40.6 (4.4) 10.3 (3.2) 28.7 (4.4) 37.9 (6.4)
CP CROCS 11.3 (1.5) 28.8 (7.0) 43.8 (5.2) 9.5 (1.9) 27.5 (0.0) 39.0 (5.2)

We find that, in both the clustering and retrieval settings, our framework, CROCS, continues to
generalize well and outperform the baseline methods. For example, on Chapman, CP CROCS achieves
Acc(class) = 0.83, whereas KM EP, the next best baseline method, achieves Acc(class) = 0.65.
This relative improvement also holds on the PTB-XL dataset. Overall, such a finding provides
evidence that CROCS is relatively robust to the amount of labelled training data that are available
and can thus be useful in realistic settings characterized by scarce, labelled data.
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H Deploying clinical prototypes in the retrieval setting

H.1 Chapman

In the main manuscript, we qualitatively evaluated the retrieval performance of a DTC-derived
prototype and a clinical prototype on the Chapman dataset. In this section, we continue this evaluation
however for a different query; a TP CROCS query, which reflects the average of representations
associated with a set of patient attributes. In Fig. 7 (top row), we present the distributions of the
Euclidean distance between the query and the representations in the validation set of Chapman. In
Fig. 7 (bottom row), we illustrate the six cardiac signals that are closest to the query. We find that the
query is closer to representations of the class attribute than to those of a different class attribute. This
is evident by the long tail of distance values exhibited between representation with SR and the query
{SR,male,under 49}.

(a) TP CROCS query {SR,male, under 49}

Figure 7: Qualitative retrieval performance of a TP CROCS query. (top row) Euclidean distance
from a query to representations in the validation set of Chapman. (bottom row) Six closest cardiac
signals to each query. The query is associated with a set of patient attributes {disease, sex, age}.
Retrieved cardiac signals with green borders indicate those whose class attribute matches that of the
query. We see that the mean representation query is closer to representations of the same class (SR)
than to those of a different class, and thus retrieves relevant cardiac signals.
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H.2 PTB-XL

In this section, we continue our qualitative evaluation of the retrieval performance of various methods.
In Fig. 8 (top row), we present the distributions of the Euclidean distance between the query (DTC-
derived prototype or clinical prototype) and the representations in the validation set of PTB-XL. In
Fig. 8 (bottom row), we illustrate the six cardiac signals that are closest to the respective prototypes. As
with the results in the main manuscript, we find that the clinical prototype is closer to representations
of the same class attribute than to those with a different class attribute. This is evident by the
long tail of distance values exhibited between representation with MI and the clinical prototype
{MI, female, over 95}. This behaviour, which is non-existent for the DTC-derived prototype, can
explain the relatively improved retrieval performance of clinical prototypes. This is further supported
by the retrieved cardiac signals (Fig. 8 bottom row) where the DTC-derived prototype and the clinical
prototype retrieve relevant instances 0% and 50% of the time, respectively.

(a) DTC query {MI, female, over 95} (b) CP CROCS query {MI, female, over 95}

(c) TP CROCS query {MI, female, over 95}

Figure 8: Qualitative retrieval performance of two distinct queries. (top row) Euclidean distance
from a query (a) DTC (b) CP CROCS or (c) TP CROCS query, to representations in the validation
set of PTB-XL. (bottom row) Six closest cardiac signals to each query. Each query is associated with
a set of patient attributes {disease, sex, age}. Retrieved cardiac signals with green borders indicate
those whose class attribute matches that of the query. We show that the clinical prototype is closer to
representations of the same class (MI) and thus retrieve relevant cardiac signals.
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I Investigating marginal impact of design choices

In this section, we quantify the marginal impact of the design choices of our CROCS framework on
the retrieval performance. In Table 11, we present the precision of retrieved cardiac signals when
evaluated based on both partial and exact matches of attributes also represented by the query. Each
query is a clinical prototype that is learned in a variant of the CROCS framework. These variants
are shown in Sec. 4 of the main manuscript. We find that clinical prototypes learned via our full
framework (LNCE−soft + Lreg) add value relative to those learned under the Hard assignment
framework. For example, at K = 1, and when # attribute matches ≥ 2, LNCE−hard, LNCE−soft
τω = ∞, τω 6= ∞, and LNCE−soft + Lreg achieve a precision of 27.5, 51.5, 58.5, and 63.0,
respectively.

Table 11: Marginal impact of design choices of CROCS on the precision of K retrieved rep-
resentations, v, in the validation set of Chapman and PTB-XL, that are closest to the query.
Results are shown for partial and exact matches of the attributes (# attribute matches) represented by
the query and retrieved cardiac signals, and are averaged across five random seeds. Brackets indicate
standard deviation and bold reflects the top-performing method.

# attribute Query PTB-XL
matches K = 1 5 10

≥ 1

LNCE−hard 70.0 (3.9) 100.0 (0.0) 100.0 (0.0)

LNCE−soft

τω =∞ 91.5 (2.0) 100.0 (0.0) 100.0 (0.0)
τω 6=∞ 88.0 (6.0) 100.0 (0.0) 100.0 (0.0)
+Lreg 92.5 (0.0) 100.0 (0.0) 100.0 (0.0)

≥ 2

LNCE−hard 27.5 (3.9) 67.5 (0.0) 93.0 (4.0)

LNCE−soft

τω =∞ 51.5 (2.0) 94.5 (1.0) 100.0 (0.0)
τω 6=∞ 58.5 (2.0) 100.0 (0.0) 100.0 (0.0)
+Lreg 63.0 (1.9) 96.5 (2.0) 99.5 (1.0)

= 3

LNCE−hard 7.0 (1.0) 16.0 (3.0) 26.5 (4.6)

LNCE−soft

τω =∞ 9.5 (1.0) 30.5 (4.0) 38.5 (3.0)
τω 6=∞ 12.5 (0.0) 36.5 (2.0) 43.5 (1.2)
+Lreg 12.5 (0.0) 33.5 (3.0) 43.0 (4.0)
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J Discovering attribute-specific features within clinical prototypes

We have shown that clinical prototypes can be deployed successfully for retrieval and clustering
purposes while managing to capture relationships between attributes. In this section, we aim to
quantify the relationship between clinical prototypes and explore their features further. In Fig. 9,
we illustrate a matrix of the clinical prototypes (M = 32) along the rows and their corresponding
features (E = 128) along the columns. By implementing the hierarchical agglomerative clustering
(HAC) algorithm, we cluster these clinical prototypes and arrive at the dendrogram presented along
the rows of Fig. 9. In addition to being correctly clustered according to class labels, they are also
more similar to one another based on their attributes. This can be seen by the attribute combination
descriptions in the right column. This finding supports our earlier claim that clinical prototypes do
indeed capture relationships between attributes.

Motivated by recent work on disentangled representations, whereby representations can be factorized
into multiple sub-groups each of which correspond to a particular abstraction, we chose to cluster
the features of the clinical prototypes, resulting in the dendrogram presented along the columns of
Fig. 9. The intuition is that by clustering we may discover attribute-specific feature subsets. We show
that these features can indeed be clustered into three main groups, potentially coinciding with our
pre-defined attributes. Such a process can improve the interpretability of clinical prototypes and lead
to insights about how they can be further manipulated for retrieval purposes, for instance, by altering
a subset of features.

Figure 9: Hierarchical agglomerative clustering of the clinical prototypes. (rows) Clustering is
performed using the 128-dimensional features resulting in 4 major clusters corresponding to the 4
classes. Clinical prototypes with similar attributes are also clustered together. The rows are labelled
according to the attribute combination, m. (columns) Clustering is performed whereby each of
the 128 features is treated as an instance, resulting in 3 major clusters which are hypothesized to
correspond to the 3 attributes: class, sex, and age. This suggests that disentangled, attribute-specific
features may have been learned.
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