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ABSTRACT

Air quality prediction and modelling plays a pivotal role in public health and en-
vironment management, for individuals and authorities to make informed deci-
sions. Although traditional data-driven models have shown promise in this do-
main, their long-term prediction accuracy can be limited, especially in scenarios
with sparse or incomplete data and they often rely on black-box deep learning
structures that lack solid physical foundation leading to reduced transparency and
interpretability in predictions. To address these limitations, this paper presents a
novel approach named Physics guided Neural Network for Air Quality Prediction
(AirPhyNet). Specifically, we leverage two well-established physics principles of
air particle movement (diffusion and advection) by representing them as differ-
ential equation networks. Then, we utilize a graph structure to integrate physics
knowledge into a neural network architecture and exploit latent representations
to capture spatio-temporal relationships within the air quality data. Experiments
on two real-world benchmark datasets demonstrate that AirPhyNet outperforms
state-of-the-art models for different testing scenarios including different lead time
(24h, 48h, 72h), sparse data and sudden change prediction, achieving reduction
in prediction errors up to 10%. Moreover, a case study further validates that our
model captures underlying physical processes of particle movement and gener-
ates accurate predictions with real physical meaning. The code is available at:
https://github.com/kethmih/AirPhyNet

1 INTRODUCTION

Air pollution refers to the disruption of natural traits of the atmosphere through contamination of the
environment by chemical, physical, or biological substances. World Health Organization (WHO)
reveals that nearly the entire global population (99%) inhales polluted air surpassing the WHO
guideline limits (Kan et al., 2023). The resultant challenges have urged the need for advanced
solutions in mitigating air quality issues. Thus, air quality prediction, involving the forecasting of
future pollutant concentrations based on historical observations and other associated factors, has
become a focal point of research.

In the literature, the air quality prediction problem is addressed under two primary paradigms:
physics-based and data-driven. Physics-based models are inspired by atmospheric science and lever-

1

https://github.com/kethmih/AirPhyNet


Published as a conference paper at ICLR 2024

age domain-specific knowledge to formulate governing equations that can represent atmospheric
processes. For example, Chemical Transport Models (CTMs) simulate atmospheric dynamics such
as diffusion, advection, and deposition using ordinary or partial differential equations (Li et al., 2023;
Jacob, 1999). However, these models involve solving complex differential equations and are often
employed on larger spatial scales due to their higher computational overhead (Bauer et al., 2015;
2020). This restricts the real-time and fine-grained predictions. Moreover, the majority of these
models require parameter calibration which may limit their ability to intricate real-world conditions
such as complex human behaviors.

On the other hand, data-driven approaches utilize historical pollution data to learn complex re-
lationships without the need for knowledge of the underlying physical processes. Among these
methods, deep learning-based approaches have gained substantial attention over the past few years
due to their enhanced expressive ability. For example, Spatio Temporal Graph Neural Networks
(STGNNs) (Ji et al., 2023) which integrate GNNs and sequential models such as Recurrent Neural
Networks (RNNs) have been employed to learn both spatial and temporal dependencies, thereby
enhancing the prediction accuracy (Chen et al., 2021). Furthermore, recently attention-based mod-
els (Wang et al., 2022; Liang et al., 2023) have emerged as a robust alternative in the domain of air
quality prediction specifically enhancing forecasts in the long term. However, despite the promising
outcomes, these models also have their limitations. The majority of these models require extensive
training data to achieve accurate long-term predictions. Furthermore, the absence of physics con-
straints in these models can limit their generalizability, potentially compromising their effectiveness
in sparse data scenarios. Moreover, the inherent “black-box” nature of deep learning models raises
challenges on interpretability which affects the decision-making in urban planning.

To alleviate the respective limitations of each paradigm, we present a novel hybrid learning ap-
proach: Physics guided Neural Network for Air Quality Prediction (AirPhyNet). This model at-
tempts to leverage the strengths of both physics-based and data-driven methods contributing to a
comprehensive framework, which can generate accurate air quality forecasts with a physical mean-
ing. Specifically, the major motivation behind AirPhyNet is to use underlying physics related to air
particle movement as domain knowledge to design an efficient and interpretable learning system.
Accordingly, analogous to the differential equation-based traffic forecasting networks (Ji et al.,
2022), in this work we exploit diffusion and advection processes within an end-to-end deep learning
framework.

The overall AirPhyNet architecture consists of three components: i) an RNN-based encoder that ex-
tracts temporal information from the historical air quality data, ii) a GNN-based differential equation
network that captures the air pollutant dispersion and flow dynamics, and iii) a decoder that gen-
erates the final pollutant concentrations based on the learned dynamics of physical processes. We
evaluate our approach against several state-of-the-art baselines for forecasting air quality (PM2.5
concentrations in particular) up to 3 days ahead. Evaluations on two real-world benchmark air qual-
ity datasets show that AirPhyNet consistently outperforms baselines by a large margin, especially in
sparse data scenarios. In summary, our contributions are as follows:

• We investigate the fundamental physics processes governing air pollutant transport and
incorporate them into a comprehensive physics-guided deep learning framework. To the
best of our knowledge, this is the first physics-guided hybrid deep learning approach of its
kind introduced for outdoor air quality prediction.

• We propose a novel physics-guided deep learning model which integrates the physics-based
dispersion processes and neural networks into one framework with a tailored GNN-based
differential equation network.

• We conduct extensive experiments on two real-world air quality datasets and show that the
proposed model outperforms the state-of-the-art models by a significant margin. Further-
more, a case study validates our model’s ability to unveil the physical mechanism of air
pollutant transport, thereby verifying its interpretability.

2 RELATED WORK

Air Quality Prediction Air quality prediction is one of the fundamental objectives within the scope
of smart city and urban planning initiatives. Significant research efforts have been dedicated to

2



Published as a conference paper at ICLR 2024

this domain over the years. Existing approaches can be primarily divided into two classes. (1)
Physics based Models and (2) Data driven models. The former category generates predictions
by emulating the dispersion of different air pollutants, relying on the principles of physical laws
(Vardoulakis et al., 2003; Liu et al., 2005). These models portray the dynamics of air pollution,
including processes like diffusion, advection, and chemical transformation as a set of differential
equations, which are then solved through numerical simulations (Arystanbekova, 2004; Daly &
Zannetti, 2007). However, they often fail to capture the real-world air pollution dynamics and de-
mands for higher computational power. Recently, data-driven approaches have gained prominence,
where historical observations and other contextual data (POI distributions, weather data) are used to
capture spatiotemporal correlations (Han et al., 2021; 2023).The shallow machine learning methods
(Suárez Sánchez et al., 2013; Su et al., 2023) have a limited capacity to model complex relationships
while several deep learning models (Luo et al., 2019; Wang et al., 2022; Liang et al., 2023) have
showed enhanced performance capturing complex spatiotemporal dependencies. However, these
models require ample data for precise air quality prediction and they fail to encompass physical
knowledge leading to limited generalization capability and interpretability.

Physics Guided Deep Learning Recently, several studies have been introduced to incorporate phys-
ical knowledge for data driven approaches (Raissi et al., 2017; Peng et al., 2022). While some of
these approaches incorporate physical constraints into the loss function, other approaches present
hybrid frameworks. For example, Jia et al. (2019) introduces a physics based regularized loss func-
tion in predicting lake temperature.Wang et al. (2020a) proposes a composite framework for turbu-
lent flow prediction exploiting critical physical characteristics of the process while Ji et al. (2020)
and Wang et al. (2023) present an interpretable model for grid based traffic flow prediction based
on potential energy field. Similarly, Ji et al. (2022) presents a physics guided neural network ap-
proach for road network based traffic flow prediction. Moreover, Mohammadshirazi et al. (2023)
introduces a framework which combines physics based state-space models with machine learning
techniques for indoor air quality prediction. To the best of our knowledge, we introduce the pioneer-
ing work applying physics-guided deep learning in the realm of outdoor air quality prediction by
proposing a hybrid learning framework, that integrates the physics-based dispersion processes into
a deep learning framework with custom designed deep neural networks.

3 METHODOLOGY

3.1 AIR QUALITY PREDICTION PROBLEM

The goal of air quality prediction is to forecast future PM2.5 concentration based on historical con-
centrations and other related variables gathered from N monitoring stations within a sensor net-
work. We represent the sensor network as a directed graph G = (V, E,W ) where V is a set of
nodes |V| = N , E is a set of edges and W ∈ RN×N is a weighted adjacency matrix indicating the
proximity of nodes in terms of distance or flow field (see details in Section 2.3). A node vi ∈ V
represents an air quality monitoring station while Ei,j ∈ E corresponds to a directed edge from
node vi to node vj which is a potential pathway for air pollutant transport. Let Xt ∈ RN×1 and
Pt ∈ RN×2 denote the node features at time step t. The air quality prediction problem aims to learn
a function h(.) that predicts concentration over the next τ steps minimizing prediction error:

X̂(t+1:t+τ) = h(X(t−T+1:t), P(t−T+1:t), G) (1)

where X(t−T+1:t) ∈ RT×N×1 represents the historical PM2.5 concentrations, P(t−T+1:t) ∈
RT×N×2 represents the wind related attributes (i.e. wind speed and direction), G represents the
corresponding graph network and X̂(t+1:t+τ) ∈ Rτ×N×1 represents the predicted future PM2.5
concentrations.

3.2 PHYSICAL DYNAMICS OF AIR POLLUTANT TRANSPORT

This work aims to design a physics guided deep learning model that incorporates physics based
principles of air particle movement into a deep neural network. Thus, we first provide an overview
of the physical techniques which are utilized on this idea and formulate them in the context of
air pollutant transport as the foundation for this approach. All these techniques are derived based
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Figure 1: The overall architecture of AirPhyNet framework consisting of a RNN Encoder, GNN
based DE Network and a Decoder. Heatmap indicate the PM2.5 concentrations while the dashed
arrows represent the air pollutant transport between nodes due to diffusion and advection.

on the continuity equation which is one of the fundamental principles in physics and engineering.
It describes the principle of conservation of mass within a closed system in mathematical form
(Lienhard & Lienhard, 2008). In relation to our problem statement, here we use the continuity
equation to describe the movement of particles through space as:

∂X

∂t
+ divF⃗ = 0 (2)

where X is PM2.5 concentration, F⃗ is the flux of particles which describes the transport of PM2.5
particles and div is the divergence operator. In simple terms, divF⃗ describes how the concentration
changes at a particular point in space due to the transport of particles into or out of that point.

Diffusion is a key physical phenomenon that characterizes the random motion of particles from a
high concentration place to a low concentration place within a medium. Diffusion process can be
formulated using the continuity equation and Fick’s Law (Grady et al., 2010). Eq. 2 explains the
relation between the change of concentration of a substance and transport of that substance in space.
On the other hand, Fick’s Law (Paul et al., 2014) describes the flux of particles due to diffusion and
it states that the magnitude of flux is directly proportional to the concentration gradient, i.e. F⃗ =
−k∇X where k represents the diffusion coefficient and ∇X represents the concentration gradient.
In simple terms this equation indicates that the flux moves from high concentration regions to low
concentration regions, with a magnitude proportional to the concentration gradient. By substituting
the expression for the flux F⃗ into Eq.2 we obtain the diffusion equation for PM2.5 Concentration as
follows:

∂X

∂t
= k div∇X (3)

Advection is another fundamental physical process that describes the transport of particles due to
a flow field like bulk movement of air, typically driven by wind patterns or other large-scale air
motions. In contrast to the diffusion process which explains the transport of particles due to the
difference in concentration gradients, advection explains the transport of particles due to the effect
of an external flow field. Thus, in an advection process the flux is formulated in terms of a vector
field. i.e. F⃗ = v⃗ X (Grady et al., 2010). By substituting this formulation of flux F⃗ into Eq.2 we
obtain the the advection equation for PM2.5 Concentration as follows:

∂X

∂t
= −div (v⃗X) (4)
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3.3 DIFFUSION-ADVECTION DIFFERENTIAL EQUATION

Air pollutant transport is a classical scenario which is governed by the aforementioned processes
of diffusion and advection. Accordingly, in this section, we define these two processes on a sensor
network and thereby propose an equation for change of PM2.5 concentration over space and time
incorporating the air pollutant transport dynamics within a sensor network.

Diffusion on a sensor network refers to the dispersion of air pollutants within the network based
on the concentration gradients between neighbouring sensor nodes. According to Bronstein et al.
(2017), the graph laplacian operator ∆ can be expressed in terms of the divergence of the gradient
as ∆ = −div∇. Hence we re-write the diffusion equation (Eq.3) in terms of the graph laplacian as
follows:

(
∂X

∂t
)diff = −k∆X = − k LX (5)

where L is the scaled laplacian computed using the distance based weighted adjacency matrix Wd

such that W ij
d = 1/dij where dij is the haversine distance between nodes i and j. In this study we

consider the diffusion coefficient as k = 0.1 (Cussler, 2009).

Advection on a sensor network refers to the movement of air pollutants within a network, due to the
effect of a flow field. To define advection on the sensor network, we follow the formulation proposed
by Chapman & Chapman (2015). Accordingly, the discrete analogue of advection equation (Eq. 4)
can be stated as:

∂Xi

∂t
=

∑
∀j|j→i

Xjvj→i −
∑

∀k|i→k

Xivi→k = −[MGX]i (6)

which states that the rate of change of PM2.5 concentration of node i is the difference between the
flow of particles in and out of the node due to the effect of the flow field. Here we consider MG as
a modified laplacian determined using the flow field information as edge weights of the graph G.

Generally, the flow field represents a vector field that characterizes the velocity of air particles at
different locations and times within the system. In this work, we derive the flow field primarily
based on wind speed and direction. Accordingly, we initially take the wind features P(t−T+1:t) and
transform to a high dimensional space using a Multi Layer Perceptron (MLP). Then, we obtain the
edge weight by the difference of the transformed wind representation of each source and destination
node pair such that W ij

p = pi − pj where pi and pj are transformed wind representations of source
node (i) and destination node (j) respectively (see Appendix A.2 for more details). Accordingly, the
final advection differential equation can be stated in terms of scaled laplacian (M ) computed using
the flow-field based weighted adjacency matrix (Wp) as:

(
∂X

∂t
)adv = −[MX] (7)

Diffusion-Advection Differential Equation Function In a real world scenario, the chemical con-
centration undergoes changes due to both of the above explained physical processes. To consider
both diffusion and advection simultaneously, we use a gated fusion mechanism. This adaptive fu-
sion process results in the following function which we name as the Diffusion-Advection Differential
Equation (DE):

(
∂X

∂t
) = α⊙ (

∂X

∂t
)diff + (1− α)⊙ (

∂X

∂t
)adv

(
∂X

∂t
) = α⊙Hdiff + (1− α)⊙Hadv (8)

with
α = σ(HdiffWα,1 +HadvWα,2 + bα)

where Hdiff and Hadv are the outputs of the diffusion and advection processes respectively, Wα,1,
Wα,2 and bα are learnable parameters, ⊙ represents the element-wise product, σ(.) denotes the
sigmoid activation and α is the gate. Eq.8 describes the dynamic evolution of PM2.5 concentration
within the sensor network.
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3.4 PHYSICS GUIDED DIFFERENTIAL EQUATION NETWORK

Based on the physical processes elaborated above and the derived Diffusion-Advection DE, we
propose the Physics guided Neural Network for Air Quality Prediction (AirPhyNet). The model
architecture of AirPhyNet (see Figure 1) is inspired by the seq2seq Neural ODE (Chen et al., 2018)
which extends conventional neural networks into a continuous structure with ordinary differential
equations. AirPhyNet consists of three main components: an RNN-based encoder to encode PM2.5
concentrations into an initial state, a GNN-based differential equation network governed by Eq. 8
that captures the physical dynamics of air pollutant transport and a decoder that generates the final
PM2.5 concentrations based on the learnt dynamics of physical processes.

We initially employ a Gated Recurrent Unit (GRU) (Chung et al., 2014) as the RNN Encoder to
extract the temporal information from the historical PM2.5 concentration sequence. Then, a fully
connected network g() is employed to determine the mean and standard deviation of zt0 from the
final hidden states of GRU:

{µzt0
, σzt0

} = g (GRU (X(t−T+1:t))) (9)
Following (Ji et al., 2022), we determine the zt0 based on a reparameterization trick (Kingma &
Welling, 2013), i.e. zt0 = ϵiµzt0

+ σzt0
where ϵi is sampled from a standard normal distribution.

Inspired by the neural ODEs, we then model the Diffusion-Advection DE in Eq. 8 as follows:
∂zt
∂t

= FG (ϕ, t, zt) (10)

where ϕ represents trainable parameters including the diffusion coefficient (k) and FG is a neural
network informed by the physics based DE in Eq. 8. Accordingly, the function FG is formulated in
terms of residual graph convolution network (GCN) layers in the form of :

FG (ϕ, t, zt) = −α⊙ k ⊙ Tanh (LX)− (1− α)⊙ Tanh (MX) (11)
where graph L and M are the graph laplacian operators which use adjacency matrices with distance-
based edge weights (Wd) and flow field-based edge weights (Wp) respectively. These operators
calculate how the concentration of a particular node changes due to the diffusion and advection of
pollutants from its neighbouring nodes. Tanh() is the activation function (see Appendix A.3 for
details).The results of the GCN layers corresponding to each process are aggregated using the gated
fusion mechanism employed in Eq.8. Given the initial state zt0 and FG , we apply the neural ODE
solver (Chen et al., 2018) to compute the future states z(t1:tτ ):

z(t1:tτ ) = ODESolve (zt0 , FG , ϕ, [t0, ..., tτ ]) (12)
Finally, the decoder module uses the output from the GNN-based DE Network representing the latent
space, to generate predictions.It employs reshaping and aggregation steps to produce the desired
output format with the correct dimensionality at each time step. AirPhyNet is trained through back-
propagation by minimizing the Mean Absolute Error (MAE) (see A.4) between predicted values and
ground truth values.

4 EXPERIMENTS

4.1 DATA DESCRIPTION

We assess the performance of our model on real world air quality datasets collected from two urban
centres in China, Beijing and Shenzhen. Beijing dataset1 has 35 major monitoring stations and data
spans from 2017/01/01 to 2018/05/30 while the Shenzen dataset2 has 11 monitoring stations and
data spans from 2014/05/01 to 2015/04/30. Both datasets consist of hourly air quality and weather
related observations which include concentrations of major pollutants (PM2.5, PM10, O3, NO2,
SO2, and CO), temperature, pressure, humidity, wind speed and wind direction. Following majority
of the previous work in the domain, this study focuses on PM2.5 concentration as the target variable.
Additionally, we consider wind speed and wind direction as auxiliary variables. The missing values
are imputed with the preceding 24-hour mean value of the respective station. We split each dataset
chronologically in the ratio of 7:1:2 to generate distinct training, validation, and test sets respectively.
Similar to the prior studies (Wang et al., 2020b; Liang et al., 2023) we consider 3 hours as a time
step and use past 72-hour (24 steps) data to predict the future 72 hours.

1https://dataverse.harvard.edu/dataverse/whw195009
2https://www.microsoft.com/en-us/research/project/urban-air/
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4.2 EXPERIMENTAL SETTINGS

Baselines We compare our proposed AirPhyNet model with ten baselines under three categories. 1)
Classical Methods: Historical Average (HA) and Vector Auto-Regression (VAR) 2) Spatio-temporal
Deep Learning Methods:Diffusion Convolution Recurrent Neural Network (DCRNN) (Li et al.,
2017), Spatio-temporal Graph Convolutional Network (STGCN) (Yu et al., 2017), GMAN (Zheng
et al., 2020) and GTS (Shang et al., 2021) along with two powerful air quality prediction models
PM2.5-GNN (Wang et al., 2020b) and AirFormer (Liang et al., 2023). 3) Differential equation
network based methods: Latent-ODE (Rubanova et al., 2019) and ODE-LSTM (Lechner & Hasani,
2020). See Appendix A.5 for more details on baselines.

Implementation Details Our model is implemented in PyTorch 2.0.1 using NVIDIA GeForce RTX
3070 GPU. Adam optimizer is used for training the model. We set the batch size to 32 and use an
initial learning rate of 5e-4 which decays over specific steps with a decay rate of 0.1. We use a GRU
in the RNN encoder to encode the sequence and obtain the initial state. A grid search is conducted
over {16, 32, 64, 128}, and 64 is chosen as number of hidden units of the GRU. In the ODESolver,
we use dopri5 as the numeral integration method with relative tolerance (rtol) and absolute tolerance
(atol) set to 1e-5. Experiments on all deep learning models are conducted five times and the average
results are reported. We use Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) to
evaluate the chosen baselines.

4.3 PERFORMANCE COMPARISON

Table 1 shows the performance comparison of AirPhyNet with baselines over three time horizons on
two datasets. Accordingly, AirPhyNet outperforms all competing baselines in both metrics, across
all time horizons for both Beijing and Shenzen data. Compared to the second-best method, on
average it achieves reduction in MAE and RMSE by 3.7% and 6.1% respectively which shows the
effectiveness of employing physics based knowledge in a deep learning framework in capturing
complex spatiotemporal relationships.

Table 1: Overall prediction performance comparison on metrics MAE and RMSE. The bold and
underlined font show the best and the second best result respectively.

Model
Beijing Data Shenzen Data

24h 48h 72h 24h 48h 72h
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

HA 38.37 83.91 45.8 95.56 50.58 101.51 8.35 12.52 9.72 14.34 10.54 15.39
VAR 60.10 102.92 60.44 103.02 60.64 103.07 21.50 26.09 21.84 26.50 22.17 26.92

DCRNN 35.99 52.55 49.66 67.50 57.01 74.67 7.76 11.54 9.99 14.11 10.98 15.14
STGCN 33.70 49.16 38.93 54.98 43.93 56.57 7.23 10.61 9.35 12.99 9.97 13.59
GMAN 50.62 66.05 50.73 66.07 50.69 65.87 9.76 12.70 10.08 13.22 10.07 12.99
GTS 34.99 51.45 54.18 71.87 73.50 89.59 6.58 9.55 8.70 12.15 10.54 13.94
PM25GNN 50.94 65.87 48.81 65.64 51.51 66.55 9.90 12.31 10.02 12.63 10.30 12.85
AirFormer 29.62 46.49 38.43 56.52 43.39 58.68 7.24 10.83 9.66 13.47 10.21 13.98

LatentODE 44.83 53.96 45.95 55.44 47.14 57.39 9.85 12.30 10.24 12.89 10.73 13.33
ODE-LSTM 46.19 57.56 49.18 62.39 51.45 63.66 10.55 13.24 11.36 14.18 12.03 14.81

AirPhyNet 29.11 42.16 36.69 48.66 42.23 53.07 6.38 9.48 8.18 11.38 9.51 12.51
% Improvement 1.73 9.33 4.53 11.49 2.66 6.19 3.01 0.76 5.97 6.38 4.58 2.64

From Table 1 we can also observe that: 1) Deep-learning based approaches outperform the classical
methods including HA and VAR demonstrating their capability of learning complex relationships. 2)
Spatio-temporal Deep Learning approaches initially designed for traffic forecasting such as GTS and
STGCN demonstrate strong adaptability for the air quality forecasting problem and yield competing
results as the state of the art air quality prediction methods, such as the AirFormer.3) Neural DE net-
work based approaches have demonstrated less effective performance compared to spatio-temporal
deep learning methods due to their inability to capture spatial relationships which are vital for ac-
curate air quality prediction. All in all, these results verify the ability of AirPhyNet in achieving
precise air quality predictions while leveraging the physics based domain knowledge of air particle
movement.
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We also evaluated the performance of models in predicting sudden changes in air quality. Compared
to the baselines, AirPhyNet shows reduction prediction errors upto 8% in sudden change prediction
exhibiting its’ effectiveness in understanding the system in terms of physical processes and thereby
predicting abrupt shifts in air quality.Complementary to the primary evaluations, we additionally
conducted experiments to assess how well our model generalizes to unseen data, which is identified
as a common advantage of physics-based models. Based on the results, AirPhyNet has outperformed
all baselines across all time horizons by a significant margin. Specifically, the MAE and RMSE
have been reduced by around 8% on average compared to the second best method. This emphasizes
the superiority of our model’s ability to generalize effectively and to achieve precise long term air
quality predictions particularly in scenarios with limited data (i.e. regions with limited number of
monitoring stations). See A.6 for detailed results.

4.4 ABLATION STUDY

Effect of Physical knowledge: To further illustrate the effect of incorporating physical knowledge
we compared AirPhyNet with two other variants. a) AdvOnly model which only considers the ad-
vection process b) DiffOnly model which only considers the diffusion process . Fig. 2a shows the
results comparison for Beijing dataset.

(a) Effect of Physical Knowledge in AirPhyNet (b) Effect of Encoder

Figure 2: Results of Ablation Study

According to the results, we observe that AirPhyNet outperforms both AdvOnly and DiffOnly mod-
els, demonstrating the advantage of leveraging physical knowledge to predict air quality. Moreover,
DiffOnly model performs better than AdvOnly model which shows that the advection process alone
cannot adequately capture the the air pollutant transport dynamics while the diffusion process has
shown better capability in doing so. However, DiffOnly model exhibits slightly lower performance
compared to AirPhyNet due to the absence of the advection component. Thus, it highlights the im-
portance of identifying the appropriate combination physical processes to comprehensively address
the problem.

Effect of Encoder: To study the efficacy of the RNN-based encoder in capturing temporal depen-
dencies, we compare our model with another variant TCNEnc which replaces the RNN encoder with
a Temporal Convolutional Network (TCN) based encoder. According to the results in Fig.2b, we
observe that AirPhyNet outperforms TCNEnc model by relatively by a large margin, demonstrating
the advantage of utilizing GRU in capturing temporal dependencies.

4.5 CASE STUDY

In this section, we conduct a case study to demonstrate the strong performance of our approach
qualitatively in terms of the two physical processes diffusion and advection. To illustrate the in-
terpretability with regard to advection, we visualize the predicted PM2.5 concentrations together
with the wind direction attributes for both datasets.Fig. 3 show the spatial distribution of monitoring
stations of the Beijing dataset and Shenzen dataset at two timesteps which are four hours apart. In
Beijing dataset, wind flows towards the southwest direction in the respective times. It can be ob-
served that the PM2.5 particles have moved towards the direction of the wind with time, specifically
in the circled regions. PM2.5 concentration has reduced in the circled region over the four-hour pe-
riod and the particles have moved and joined the PM2.5 cloud heading towards the southwest wind
direction. Similarly in Shenzen dataset, the wind flows in the East direction. PM2.5 concentration
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has increased over the four-time steps in the circled region and joined the PM2.5 cloud moving
towards the east wind direction.

Figure 3: Visualization of predicted PM2.5
concentrations and wind direction. Heatmap
represents the PM2.5 concentrations and the
arrows indicate the wind direction

Figure 4: Visualization of predicted PM2.5
concentrations and diffusion from Station 3
on 2017-11-13 14:00.The line segments rep-
resent diffusion from Station 3 to its neigh-
bouring stations and the magnitude of diffu-
sion is reflected by the line colour.

Next, we visualize the predicted PM2.5 concentrations and magnitude of diffusion.Fig. 4 shows
the spatial distribution of a subset of stations of the Beijing dataset where the PM2.5 concentra-
tions predicted by the AirPhyNet are represented by a heat map and diffusion from Station 3 to its
neighbouring stations is represented by line segments. The visualization shows that the diffusion of
particles from Station 3 is relatively higher to stations with low concentrations (Station 1, Station 7)
while it’s low to stations with higher concentration (Station 2). Therefore, the predicted concentra-
tions governed by physical process capture real mechanism of physical diffusion process which
states that the particles move from places with high concentration to low concentration. Thus, the
predicted concentrations can be interpreted in terms of diffusion. In summary, the findings in this
section affirm that AirPhyNet successfully captures the underlying physical principles of particle
movement and yields precise predictions with a physical meaning.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced an approach for air quality prediction based on the application of diffu-
sion and advection based differential equations which serve as the foundational principles governing
the air pollutant transport in the atmosphere. We propose a novel Physics guided Neural Network
known as AirPhyNet that leverages these fundamental physical equations and seamlessly incorpo-
rates them into a deep learning architecture. Experiments conducted on two real world datasets
show that AirPhyNet reduced prediction errors by a significant margin (4%-10%) compared to the
existing methods. A case study further affirms model’s capability to generate precise predictions
that can be interpreted within a physical context. However, the applicability of our approach to
highly chemical-reacting pollutants remains uncertain as such complex chemical behaviours are not
captured by the model. In the future, we plan to expand the applicability of our model across a wide
spectrum of air pollutants by further augmenting it with chemical kinetics. It could enhance the
predictive capabilities for pollutants governed by complex chemical processes. Moreover, we aim to
explore its capabilities for cross-city air quality prediction through transfer learning, PM2.5 source
tracking and plume modelling.
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A APPENDIX

A.1 NOTATION

A.2 COMPUTATION OF LAPLACIAN MATRICES FOR DIFFUSION AND ADVECTION

On the sensor network G = (V, E,W ) with N monitoring stations we define two weighted adja-
cency matrices. The weighted adjacency matrix based on distance (Wd) determines the edge weights
as follows:

W ij
d = 1/dij

where dij is the haversine distance between nodes i and j.On the other hand, the weighted adjacency
matrix based on flow field (Wp) determines the edge weights as follows:

pi = FlowNet(P i)

pj = FlowNet(P j)

W ij
p = pi − pj
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Table 2: Summary of Notations used in the paper

Symbol Description

G Graph
N Number of Nodes in the Sensor Network

V, vi Nodes of the Graph and i-th node
E Edges of the Graph

Wd,W
ij
d Distance based weighted adjacency matrix and its entries

Wp,W
ij
p Flow-field based weighted adjacency matrix and its entries

Xt PM2.5 Concentration at timestep t (Xt ∈ RN×1)
Pt Wind features at timestep t (Pt ∈ RN×2)
F⃗ Flux of Particles
k Diffusion Coefficient
v⃗ Vector Field
L Scaled laplacian computed based on Wd

M Scaled laplacian computed based on Wp

where P i and P j represent the wind related attributes of source node (i) and destination node (j)
and FlowNet is a MLP used to obtain the flow field representation from corresponding wind data.

Eq.5 is formulated to define the physical process of diffusion within a sensor network. In other
words, it describes the change in concentration due to the dispersion of air pollutants within the
network. Thus the distance based scaled graph laplacian L is computed as follows:

L = I −D− 1
2 Wd D

− 1
2

L = 2L/λmax − I

where L is the laplacian matrix, Wd is the distance based weighted adjacency matrix, D is the
diagonal degree matrix and λmax is the largest eigen value of L.

Similarly, Eq.7 is formulated to define the physical process of advection within a sensor network
which describes the change in concentration due to the movement of air pollutants within the net-
work due to the effect of a flow field. Accordingly, the flow field based scaled graph laplacian M is
computed as follows:

M = I −D− 1
2 Wp D

− 1
2

M = 2M/λmax − I

where M is the laplacian matrix, Wp is the distance based weighted adjacency matrix, D is the
diagonal degree matrix and λmax is the largest eigen value of M .

A.3 GCNS USED IN FORMULATION OF FG

As stated in Eq. 11, FG is a neural network guided by the Diffusion-Advection DE. FG is formulated
in terms of residual graph convolution network (GCN) layers as follows.

GCN for Diffusion Process

H
(l)
diff = σ

(
K−1∑
k=0

θk · Lk ·H(l−1)
diff

)

Hdiff =

L′∑
l=0

H
(l)
diff

where H
(l)
diff is the updated state at layer l, σ is the activation function, θk are the Chebyshev

coefficients, and Lk represents the kth power of the scaled laplacian calculated using distance based
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weighted adjacency matrix Wd . Hdiff represents the final output of the GCN designed to capture
the diffusion process.

GCN for Advection Process

H
(l)
adv = σ

(
K−1∑
k=0

θk ·Mk ·H(l−1)
adv

)

Hadv =

L′∑
l=0

H
(l)
adv

where H
(l)
adv is the updated state at layer l, σ is the activation function, θk are the Chebyshev coef-

ficients, and Mk represents the kth power of the scaled laplacian calculated using flow field based
weighted adjacency matrix Wp . Hadv represents the final output of the GCN designed to capture
the advection process.

A.4 EVALUATION METRICS

Let x = (x1, . . . , xn) represents the ground truth, and x̂ = (x̂1, . . . , x̂n) represents the predicted
PM2.5 concentration values. The evaluation metrics we used in this paper are defined as follows:

Mean Absolute Error (MAE)

MAE(x, x̂) =
1

n

n∑
i=1

|xi − x̂i|

Root Mean Square Error (RMSE)

RMSE(x, x̂) =

√√√√ 1

n

n∑
i=1

(xi − x̂i)2 (13)

A.5 DETAILED SETTINGS OF AIRPHYNET AND BASELINES

AirPhyNet: In our model we use a GRU as the RNN encoder to encode the sequence and obtain the
initial state. We conduct a grid search over {16, 32, 64, 128}, and choose 64 as the number of hidden
units of the GRU. A fully connected layer with 50 hidden units is then used to transform the hidden
states of GRU and obtain the mean and the standard deviation of the initial state. In the ODESolver,
we use dopri5 as the numeral integration method with relative tolerance (rtol) and absolute tolerance
(atol) set to 1e-5. Adam optimizer is used for training the model. We set the batch size to 32 and
use an initial learning rate of 5e-4 which decays over specific steps with a decay rate of 0.1. We also
employ an early stop strategy with a patience of 20, allowing for a maximum of 100 epochs.

HA: Historical Average is a tradtional statistical method which predicts the PM2.5 concentration by
computing the average value of historical readings in corresponding time intervals.Here, we use 1
day as the period and consider the average of the historical concentration of the same time interval
from previous 4 days as prediction.

VAR: VAR model is implemented using the statsmodels python packages and the number of lags is
set to 3.

DCRNN Diffusion Convolution Recurrent Neural Network introduced in the domain of traffic fore-
casting uses bidirectional random walks on the graph structure to capture the spatial dependencies
while an encoder-decoder architecture is used to capture the temporal dependencies. We use two
recurrent layers each with 64 hidden units, in both encoder and decoder. Initial learning rate is set
to 0.01 and it is reduced with a rate of decay rate of 0.1 starting at the 20th epoch. The maximum
steps of random walks (K) is set to 3.

STGCN Spatio-temporal Graph Convolution Network integrates graph convolutions with gated con-
volutions to capture spatio-temporal relationships as opposed to employing regular convolutional
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and recurrent units. It consists of two ST-Conv blocks and the channels the three layers of each
block are 64, 16, 64 respectively. The kernel size of graph convolution (K) and temporal convolu-
tion (Kt) is 3. The initial learning rate is set at 1e-3 and it decays with a rate of 0.7 after every 5
epochs.

GMAN Graph Multi-Attention network is introduced for the task of traffic prediction which con-
sists of an encoder-decoder architecture with multiple spatio-temporal attention blocks. An adam
optimizer with an initial learning rate of 1e-3 is used to train the model. The number of STAttention
blocks (L) is set to 3 and use 8 attention heads ((K)) each having a dimensionality of 8 ((d)).

GTS Graph for time series is designed to simultaneously learns a graph structure among multiple
time series to enhance time series forecasting. Adam is used as the optimizer and initial learning
rate is set to 1e-3. Dropout rate is considered as 0.2, the value of k in kNN is set to 30 and the weight
regularization is 1.

PM2.5-GNN PM2.5-GNN is one of the powerful domain knowledge enhanced networks introduced
to predict PM2.5 concentration. Although the original model employs multiple features to integrate
domain knowledge, we only consider wind speed and wind direction features in this study. RMSprop
is used as the optimizer with a learning rate of 5e-4.

AirFormer Airformer is a transformer based air quality prediction model designed to forecast air
quality across thousands of locations simultaneously. Initial learning rate is set to 5e-4 and it decays
with a rate of 0.5 after every 3 epochs. Adam optimizer is used to train the model. For the dart-
board spatial attention module, we partition the space by two circles with radius 50km and 200km
respectively. We use 4 Airformer blocks in the model and set the hidden dimension to 32.

Latent-ODE This model extends the capabilities of RNNs by introducing continuous-time hidden
dynamics governed by ordinary differential equations (ODEs). It uses ODE-RNN as the encoder.The
initial learning rate is set to 5e-4 and the latent dimension of the GRU is 100.dopri5 is used as the
numeral integration method with relative tolerance (rtol) and absolute tolerance (atol) set to 1e-5.

ODE-LSTM ODE-LSTM is introduced to address the limitations of recurrent neural networks
(RNNs) with continuous-time hidden states in modeling irregularly-sampled time series by intro-
ducing a novel algorithm that separates memory from continuous-time dynamics. Here we set the
latent dimension to 64, Explicit Euler is used as the ODE solver iswith relative tolerance (rtol) and
absolute tolerance (atol) set to 1e-5. The learning rate is 5e-4.

All the baseline models were trained both with and without wind-related attributes (i.e., wind speed
and wind direction) as auxiliary variables. However, with the exception of PM2.5-GNN, the rest of
the baseline models exhibited degraded performance when wind-related attributes were incorporated
in the respective models. Therefore, the reported baseline performances do not include wind-related
attributes, except for PM2.5-GNN.

A.6 ADDITIONAL EXPERIMENTAL RESULTS

Sudden Change Prediction: In alignment with the studies by Zheng et al. (2015) and Liang et al.
(2023), we also evaluated the performance of deep learning based methods in predicting sudden
changes of air quality. Accordingly, the sudden changes are defined as instances where PM2.5
concentration exceeds 50 µg/m³ and 20 µg/m³ and exhibits a change of more than ±20 µg/m³ in
the following three hours for Beijing Data and Shenzen Data respectively.As illustrated in Table 3
AirPhyNet shows the best performance in predicting sudden changes in both datasets. AirFormer
(Liang et al., 2023) has also shown competing performance compared to the other baselines due to
its’ utilization of stochastic latent spaces. Compared to the second best method (i.e. AirFormer),
AirPhyNet shows an average reduction of 6.2% and 4.6% in MAE and RMSE respectively.

Sparse Data Prediction: In order to assess the generalizability of our approach, we evaluated the
models using a smaller training dataset with train:val:test split as 3:1:6 and obtain the results shown
in Table 4. Based on the results, AirPhyNet has outperformed all baselines across all time horizons
by a significant margin. Specifically, the MAE and RMSE have been reduced by 8.3% and 8.1% on
average respectively compared to the second best method.
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Table 3: Sudden Change prediction performance comparison on metrics MAE and RMSE. The bold
and underlined font show the best and the second best result respectively.

Model Beijing Data Shenzhen Data
MAE RMSE MAE RMSE

DCRNN 18.616 53.0629 3.3468 8.0377
STGCN 21.821 56.8061 3.2087 8.1773
GMAN 48.2294 80.4201 4.6336 9.9652
GTS 22.5072 63.1401 3.7127 8.1299
PM25GNN 28.196 69.6186 4.9186 10.2459
AirFormer 14.1553 48.4329 3.1317 7.9183
LatentODE 43.5 76.8365 3.549 8.639
ODE-LSTM 38.248 76.2235 3.6311 8.6356
AirPhyNet 13.4987 47.7057 2.8904 7.3148
% Improvement 4.64 1.50 7.71 7.62

Table 4: Sparse Data prediction performance comparison on metrics MAE and RMSE. The bold
and underlined font show the best and the second best result respectively.

Model
Beijing Data Shenzen Data

24h 48h 72h 24h 48h 72h
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

DCRNN 44.24 56.03 55.80 68.13 64.90 78.24 7.99 11.48 10.11 13.99 11.06 15.01
STGCN 33.73 44.90 39.93 50.51 46.62 57.53 7.25 10.50 8.96 12.13 9.75 12.92
GMAN 46.61 55.59 47.60 56.62 48.65 57.63 9.69 12.35 9.88 12.68 9.91 12.64
GTS 38.09 48.97 60.28 71.45 80.42 92.06 6.60 9.61 8.70 11.87 10.09 13.37
PM25GNN 47.34 61.55 46.33 60.81 47.64 61.65 10.78 13.18 10.84 13.22 10.90 13.23
AirFormer 31.47 43.20 41.64 53.22 44.50 56.39 7.14 10.22 8.93 12.17 9.25 12.51
LatentODE 44.02 51.40 45.94 53.28 47.68 54.51 9.81 12.15 10.01 12.38 10.25 12.54
ODE-LSTM 49.95 61.16 51.93 63.19 53.44 64.19 10.36 13.26 11.01 13.97 11.49 14.39
AirPhyNet 27.99 38.48 35.78 45.82 40.45 50.37 6.47 9.50 7.75 10.76 8.63 11.58
% Improvement 11.08 10.93 10.39 9.29 9.09 10.68 1.88 1.09 10.92 9.34 6.73 7.43

A.7 DISCUSSION

According to the results presented in this study, AirPhyNet reveals its consistent performance in air
quality prediction over competing baselines across various metrics and time horizons. Notably, the
model excels in capturing complex spatiotemporal relationships, showcasing a significant reduction
in MAE and RMSE compared to alternative methods. The incorporation of physics-based knowl-
edge into a deep learning framework proves advantageous, particularly in predicting sudden changes
in air quality. Additionally, the model exhibits robust generalization to unseen data, highlighting its
potential for application in regions with limited monitoring station data.Furthermore, the compari-
son with variants focusing solely on advection or diffusion processes underscores the model’s ability
to comprehensively address the air pollutant transport dynamics while the case study further vali-
dates this fact. All in all, the AirPhyNet model has shown significant capability in yielding precise
air quality forecasts with a physical meaning.

These findings hold significant implications for air quality prediction. AirPhyNet’s performance
with lower prediction errors, suggests its potential real-world applicability in scenarios where precise
forecasts are crucial. The ability to generalize well to unseen data implies its’ adaptability across
diverse environments, making it a useful tool for regions with limited monitoring infrastructure.
Moreover, the integration of physics-based knowledge not only enhances prediction accuracy but
also provides insights which could be beneficial in decision making related to urban planning.

While the results are promising, it is vital to acknowledge certain limitations in this study. Our focus
solely on PM2.5 concentration, while significant, may not account for the complete spectrum of pol-
lutants that contribute to overall air pollution. There exist pollutants with diverse chemical properties
and reactivity patterns which might exhibit behaviors that are not captured by our model. Therefore,
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the applicability of our method to highly chemical-reacting pollutants remains uncertain. Addition-
ally, our deep learning architecture emphasizes the incorporation of physical processes, limiting its
suitability for pollutants heavily influenced by chemical reactions.This could potentially hinder the
model’s accuracy in scenarios dominated by chemical reactions rather than physical transport.

To address these limitations, future studies could broaden the scope to predict multiple air pollutants
and determine the overall air quality. Integration of chemical reaction information into the modeling
framework, possibly by incorporating chemical kinetics with deep learning, could enhance the pre-
dictive capabilities for pollutants governed by complex chemical processes. These models can be
further enhanced to capture the interplay between different domains through insightful collaboration
with experts in chemistry and environmental science. Another potential future direction is to lever-
age this architecture for cross-city air quality prediction. This involves training our model on data
from one city and adapting it to predict air quality in a different city through appropriate fine-tuning
and transfer learning techniques.
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