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Supplementary Material

This document provides more implementation details and addi-
tional experimental results for comparative studies.

A Implementation Details
This section provides additional information about hyperparameter
settings and detailed network architecture.

Figure 1: An example of the multi-view depth image render-
ing. The top row is a sparse point cloud and its multi-view
depth images. The bottom row is the ground truth and its
multi-view depth images. The depth images are colored only
for visualization.

A.1 Multi-View Depth Image Rendering
We apply the basic renderer proposed in SimpleView [3] to get the
depth images with the resolution of 128×128 from three orthogonal
viewpoints, as shown in Figure 1. Each point cloud is normalized in a
unit sphere. Therefore, the viewpoints for different point clouds are
fixed, regardless of the scale of the point cloud. The renderer applies
perspective projection to get the 2D coordinate (𝑥 = 𝑥/𝑧,𝑦 = 𝑦/𝑧)
of a point 𝑝 at depth 𝑧, and then uses (⌈𝑥⌉, ⌈𝑦⌉) to be the final
coordinate of 𝑝 on the image plane since coordinates on image
plane have to be discrete. Multiple points may be projected to the
same discrete location on the image plane. We follow the approach
described in SimpleView [3] to perform a weighted average of depth
values, assigning higher weight ( 1𝑧 ) giver to closer points, which
could reduce in noise due to the averaging of nearby pixels on the
surface.

A.2 Cross-Modal Feature Extraction
Our cross-modal feature extraction module contains dual branches
to extract point features and depth image features, respectively. As
described in the main text, we utilize the ResNet [4] to extract multi-
hierarchical feature map {𝐹 𝑖

𝐷
}𝐿
𝑖=1 by hierarchically downsampling.

Figure 2 shows the architecture of the ResNet we utilized. We em-
ploy dynamic graph construction and Edge Convolution introduced

Figure 2: The structure of the ResNet utilized in our cross-
modal feature extraction module. Conv k𝐾s𝑆 denotes 2D
convolution with a kernel size of 𝐾 × 𝐾 and a stride of 𝑆 .

in DGCNN [17], and the intra-level and inter-level dense connec-
tions [6, 18] to organize point features at different hierarchies for
extracting point features.

Our cross-modal feature extraction module contains 4 layers, i.e.,
𝐿 = 4. For the depth image branch, we first utilize a 2D Convolution
with a kernel size of 1 × 1 to embed depth images into 16 channels
and set the number of channels in the depth image branches to
16, 32, 64, and 128 for each layer, respectively. For the point cloud
branch, we first utilize a 1D Convolution with a kernel size of 1 to
embed point clouds into 24 channels and set the number of output
channels of DenseNet at different layers in cross-modal feature
extraction to 120, 168, 168 and 168, respectively. This is because
the output channel of each edge convolution is set to 24, and each
DenseNet contains 3 edge convolution layers. The input channels of
each DenseNet are set to 48, except for the first DenseNet, which is
set to 24. The input of each DenseNet is the concatenation of all the
outputs from previous hierarchies, followed by a 1D convolution
with a kernel size of 1 to reduce the number of channels. Finally, a
1D convolution with a kernel size of 1 is employed to fuse all the
point features from these hierarchies.

Figure 3: The architecture of the modified attentional fea-
ture fusion. GAP denotes global average pooling. BN denotes
BatchNorm Layer [7].



MM ’24, October 28–November 1, 2024, Melbourne, VIC, Australia. Supplementary Material

Table 1: Quantitative comparisons of state-of-the-art methods on PUGeo-Net dataset. We highlight the best and the second-best
results in bold and underlined, respectively.

Ratio 2× Upsampling 8× Upsampling
Method DCD CD HD P2FM P2FS DCD CD HD P2FM P2FS

PU-Net [20] 0.324 0.241 3.328 1.660 2.055 0.461 0.303 6.577 2.949 2.863
MPU [18] 0.359 0.275 2.442 1.165 1.652 0.360 0.199 5.194 1.492 2.126

PU-GAN [8] 0.397 0.403 13.20 2.032 3.200 0.422 0.299 7.600 1.923 1.884
Dis-PU [9] 0.325 0.257 2.653 1.305 1.785 0.327 0.175 3.896 1.288 2.020

PU-GCN [12] 0.384 0.325 3.489 1.580 2.011 0.378 0.180 5.192 1.711 2.167
PUGeo-Net [13] 0.373 0.295 3.914 1.305 2.122 0.354 0.177 3.955 1.334 1.892
MAFU [14] 0.406 0.362 3.651 1.086 1.637 0.332 0.151 4.026 1.258 1.844

PUFA-GAN [10] 0.311 0.272 9.108 1.736 2.920 0.325 0.177 11.281 1.556 3.094
PU-Flow [11] 0.258 0.174 1.400 0.860 1.271 0.307 0.104 1.635 1.163 1.387
Grad-PU [5] 0.240 0.165 1.168 0.698 1.207 0.263 0.073 1.036 0.803 1.108
SSPU-Net [16] 0.248 0.168 1.473 0.620 0.957 0.250 0.075 1.969 0.754 1.238

Ours (Teacher) 0.191 0.127 1.219 0.690 0.958 0.214 0.055 1.559 0.525 0.692
Ours (Student) 0.193 0.133 1.332 0.687 0.983 0.232 0.067 1.898 0.667 1.179

A.3 Corss-Modal Feature Fusion
Inspired by [1], we introduce the modified attentional feature fusion
(AFF), i.e., sub-network A(·), as mentioned in the main text. As
shown in Figure 3, the AFF block begins with a BatchNorm Layer [7]
to mitigate differences in the data distribution between cross-modal
features. Then, the two branches in the AFF block are utilized to
capture the local context (via the top branch) and the global context
(via the bottom branch), respectively. Finally, the Sigmoid activation
function is employed to calculate the parameter 𝛽 .

A.4 Upsampling Tail
Our upsampling tail contains two modules: dense point generator
and spatial refinement. We directly employ the 𝐼2-Feature Aggre-
gation [16], the Folding strategy [19] and the Structure-Sensitive
Transformer (SSTr) [16] as our dense point generator. Additionally,
we utilize the Multi-Scale Spatial Refinement introduced in SSPU-
Net [16]. For more details about the upsampling tail, please refer to
SSPU-Net [16].

A.5 Detail Estimation and Distillation
In this section, we discuss how to accurately align the depth image
of the sparse point cloud with the depth image of ground truth,
during the training process of the teacher network. We hypothesize
two conditions that are extremely easy to achieve: (i) The sparse
point cloud is precisely aligned with the spatial pose of the ground
truth; (ii) The viewpoints of the basic renderer are fixed when
generating the depth images of a sparse point cloud and the depth
images of its ground truth. We randomly downsample the dense
point clouds (ground truth) for the first condition to generate their
corresponding sparse point clouds. Therefore, the spatial pose of
the ground truth and its sparse counterpart are well-aligned. We

use three fixed viewpoints on the 3D coordinate axis for the second
condition.

B Experimental Details
B.1 Inference Phase of Teacher Network
In this section, we describe our approach to conducting inference
with the teacher network on the test dataset. Since we train the
network on patch point clouds, we first utilize the farthest point
sampling algorithm to select a series of seed points in each test
point cloud, then employ the KNN algorithm to crop the test point
cloud into sparse patches. Then, we employ the KNN algorithm on
the ground truth of each test point cloud to crop dense patches as
the approximated ground truth of sparse patches with the same
seed points. Please note that we perform quantitative comparisons
for the teacher network only to assess the performance gap between
it and its student network, and all the visual comparisons of our
method are the results of the student network that does not take
ground truths as inputs.

C Additional Experimental Results
C.1 Quantitative Results on PUGeo-Net Dataset
In this section, we provide more quantitative results on the PUGeo-
Net 2× and 8× dataset [13], as shown in Table 1. Our method
achieves the best performance according to the DCD and CD met-
rics. For the HD and P2F metrics, our method demonstrates compet-
itive performance alongside recent state-of-the-art methods, Grad-
PU [5] and SSPU-Net [16]. It is evident that our method achieves
the best overall upsampling results in terms of the average point-
to-point error (CD) and the density similarity (DCD) with ground
truth, resulting in a more uniform distribution. The performance
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Figure 4: Visual comparison for 4× upsampling on PUGeo-Net dataset.

on the P2F metric demonstrates that the upsampling results gener-
ated by our method are faithfully distributed on the surface of the
underlying object.

Table 2: Ablation studies of the setting of viewpoints con-
ducted on the PU-GAN 4× dataset without the guidance of
the teacher network.

Model Variants CD (10−3) HD (10−3)

C1 1 viewpoints 0.182 2.101
C2 2 viewpoints 0.179 2.084
C3 3 viewpoints 0.177 2.095
C4 6 viewpoints 0.176 2.086

C.2 Ablation Studies
In this section, we provide more ablation studies of the viewpoints
of the multi-view depth image, as shown in Table 2. As mentioned
in the main text, we utilize three orthogonal viewpoints to generate
multi-view depth images for each point cloud. The results of the
three orthogonal viewpoints are described in model C3 of Table 2.
The results of only one viewpoint and two viewpoints in shown in
models C1 and C2, respectively. As we can see, reducing the number
of viewpoints leads to performance degradation. Then, we attempt
to increase the number of viewpoints to six adopting the same
setting of SimpleView [3]. Its results in depicted in model C4 of
Table 2. It is evident that the number of views is doubled compared

to model C3, but performance is only slightly improved. Therefore,
to balance the trade-off between effectiveness and computational
consumption, we chose the three orthogonal viewpoints as the
default setting to generate multi-view depth images.

C.3 Qualitative Results
In this section, we show some more qualitative results on the PU-
GAN [8], PUGeo-Net [13] and ScanObjectNN [15] dataset. Specifi-
cally, in Figure 5, a visual comparison of noisy input with Gaussian
noise at 1.0% level is presented. Figure 6 and Figure 4 provide further
visual comparisons on the PU-GAN and PUGeo-Net datasets, under
4× settings. Figure 7 shows additional visual comparisons on the
PU-GAN dataset, under 8× settings. Figure 8 presents further visual
comparisons on the PUGeo-Net dataset, under 8× settings. Finally,
Figure 9 demonstrates a visual comparison of the ScanObjectNN
dataset with non-uniform inputs, under 16× settings.
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Figure 5: 4× qualitative results on the PU-GAN dataset with Gaussian noise level 1.0%.
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Figure 6: Visual comparison for 4× upsampling on PU-GAN dataset.
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Figure 7: Visual comparison for 8× upsampling on PU-GAN dataset.
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Figure 8: Visual comparison for 8× upsampling on PUGeo-Net dataset.
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Figure 9: Visual comparison for 16× upsampling on ObjectScanNN dataset.
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