
SLAPS: Self-Supervision Improves Structure
Learning for Graph Neural Networks –

Supplementary Material

Bahare Fatemi∗
University of British Columbia

bfatemi@cs.ubc.ca

Layla El Asri
Borealis AI

layla.elasri@borealisai.com

Seyed Mehran Kazemi∗
Google Research

mehrankazemi@google.com

A More Experiments and Analyses

100 101 102

k

57.5

60.0

62.5

65.0

67.5

70.0

72.5

Ac
cu

ra
cy

FP
MLP
MLP-D

Figure 1: The performance of SLAPS
on Cora as a function of k in kNN.

Importance of k in kNN: Figure 1 shows the perfor-
mance of SLAPS on Cora for three graph generators as a
function of k in kNN. For all three cases, the value of k
plays a major role in model performance. The FP gener-
ator is the least sensitive because, in FP, k only affects the
initialization of the adjacency matrix but then the model
can change the number of neighbors of each node. For
MLP and MLP-D, however, the number of neighbors of
each node remains close to k (but not necessarily equal as
the adjacency processor can add or remove some edges)
and the two generators become more sensitive to k. For
larger values of k, the extra flexibility of the MLP genera-
tor enables removing some of the unwanted edges through
the function P or reducing the weights of the unwanted
edges resulting in MLP being less sensitive to large values
of k compared to MLP-D.

Increasing the number of layers: In the main text, we described how some edges may receive
no supervision during latent graph learning. We pointed out that while increasing the number of
layers of the GCN may alleviate the problem to some extent, deeper GCNs typically provide inferior
results due to issues such as oversmoothing [see, e.g., 9, 10]. We empirically tested deeper GCNs
for latent graph learning to see if simply using more layers can obviate the need for the proposed
self-supervision. Specifically, we tested SLAPS without self-supervision (i.e. λ = 0) with 2, 4, and 6
layers on Cora. We also added residual connections that have been shown to help train deeper GCNs
[8]. The accuracies for 2, 4, and 6-layer models are 66.2%, 67.1%, and 55.8% respectively. It can
be viewed that increasing the number of layers from 2 to 4 provides an improvement. This might
be because the benefit provided by a 4-layer model in terms of alleviating the starved edge problem
outweighs the increase in oversmoothing. However, when the number of layers increases to 6, the
oversmoothing problem outweighs and the performance drops significantly. Further increasing the
number of layers resulted in even lower accuracies.

∗Work was done when authors were at Borealis AI.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Symmetrization: In the adjacency processor, we used the following equation:

A = D−
1
2

(P(Ã) + P(Ã)T

2

)
D−

1
2

Cora Citeseer64

66

68

70

72

74

Ac
cu

ra
cy

72.8

70.5

72.5

69.0

70.2

67.6

Mean
Max
None

Figure 2: The performance of SLAPS
on Cora and Citeseer with different adja-
cency symmetrizations.

which symmetrized the adjacency matrix by taking the
average of P(Ã) and P(Ã)T . Here we also consider two
other choices: 1) max(P(Ã), P(Ã)T), and 2) not sym-
metrizing the adjacency (i.e. using P(Ã)). Figure 2 com-
pares these three choices on Cora and Citeseer with an
MLP generator (other generators produced similar results).
On both datasets, symmetrizing the adjacency provides a
performance boost. Compared to mean symmetrization,
max symmetrization performs slightly worse. This may
be because max symmetrization does not distinguish be-
tween the case where both vi and vj are among the k most
similar nodes of each other and the case where only one
of them is among the k most similar nodes of the other.

Fixing a prior graph manually instead of using self-
supervision: In the main text, we validated Hypoth-
esis 1 by adding a self-supervised task to encourage
learning a graph structure that is appropriate for pre-
dicting the node features, and showing in our experiments how this additional task helps
improve the results. Here, we provide more evidence for the validity of Hypothesis 1 by
showing that we can obtain good results even when regularizing the learned graph struc-
ture toward a manually fixed structure that is appropriate for predicting the node features.

Cora Citeseer64

66

68

70

72

74

Ac
cu

ra
cy

72.8

70.570.7 70.4

SLAPS
Manually Defined Prior

Figure 3: The performance of SLAPS
and regularization toward a manually de-
fined prior structure on Cora and Cite-
seer when using the MLP generator.

Toward this goal, we experimented with Cora and Citeseer
and created a cosine similarity graph as our prior graph
Aprior where the edge weights correspond to the cosine
similarity of the nodes. We sparsified Aprior by connect-
ing each node only to the k most similar nodes. Then, we
added a term λ||A−Aprior||F to the loss function where
λ is a hyperparameter, A is the learned graph structure
(i.e. the output of the graph generator), and ||.||F shows
the Frobenius norm. Note that Aprior exhibits homophily
with respect to the node features because the node features
in Cora and Citeseer are binary, so two nodes that share
the same values for more features have a higher similarity
and are more likely to be connected.

The results can be viewed in Figure 3. According to the
results, we can see that regularizing toward a manually
designed Aprior also provides good results but falls short
of SLAPS with self-supervision. The superiority of the
self-supervised approach compared to the manual design
could be due to two reasons.

• Some of the node features may be redundant (e.g., they may be derived from other features)
or highly correlated. These features can negatively affect the similarity computations for
the prior graph in Aprior. As an example, consider three nodes with seven binary features
[0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0] and [1, 1, 1, 1, 1, 1, 1] respectively and assume the last
two features for each node are always equivalent and are computed based on a logical and
of the 4th and 5th features2. Without these two features, the first node is more similar to the
second than the third node, but when considering these derived features, it becomes more
similar to the third node. This change in node similarities affects the construction of Aprior

which can deteriorate the overall performance of the model. The version of SLAPS with the
self-supervised task, on the other hand, is not affected by this problem as much because the

2For the first node in the example, the 4th and 5th features are both 1 so their logical and is also 1 and so the
last two features for this node are both 1. The computation for the other two nodes is similar.

2

model can learn to predict the derived node features based on other features and without
heavily relying on the graph structure.

• While many graph structures may be appropriate for predicting the node features, in the
manual approach we only regularize toward one particular such structure. Using the self-
supervised task, however, SLAPS can learn any of those structures; ideally, it learns the one
that is more suited for the downstream task due to the extra supervision coming from the
downstream task.

B Implementation Details

We implemented our model in PyTorch [11], used deep graph library (DGL) [14] for the sparse
operations, and used Adam [6] as the optimizer. We performed early stopping and hyperparameter
tuning based on the accuracy on the validation set for all datasets except Wine and Cancer. For these
two datasets, the validation accuracy reached 100 percent with many hyperparameter settings, making
it difficult to select the best set of hyperparameters. Instead, we used the validation cross-entropy loss
for these two datasets.

We fixed the maximum number of epochs to 2000. We use two-layer GCNs for both GNNC and
GNNDAE as well as for baselines and two-layer MLPs throughout the paper (for experiments on
ogbn-arxiv, although the original paper uses models with three layers and with batch normalization
after each layer, to be consistent with our other experiments we used two layers and removed the
normalization). We used two learning rates, one for GCNC as lrC and one for the other parameters of
the models as lrDAE . We tuned the two learning rates from the set {0.01, 0.001}. We added dropout
layers with dropout probabilities of 0.5 after the first layer of the GNNs. We also added dropout to the
adjacency matrix for both GNNC and GNNDAE as dropoutC dropoutDAE respectively and tuned the
values from the set {0.25, 0.5}. We set the hidden dimension of GNNC to 32 for all datasets except
for ogbn-arxiv for which we set it to 256. We used cosine similarity for building the kNN graphs and
tuned the value of k from the set {10, 15, 20, 30}. We tuned λ (λ controls the relative importance
of the two losses) from the set {0.1, 1, 10, 100, 500}. We tuned r and η from the sets {1, 5, 10} and
{1, 5} respectively. The best set of hyperparameters for each dataset chosen on the validation set is in
table 1. The code of our experiments will be available upon acceptance of the paper.

For GRCN [16], DGCNN [15], and IDGL [2], we used the code released by the authors and tuned
the hyperparameters as suggested in the original papers. The results of LDS [4] are directly taken
from the original paper. For LP [18], we used scikit-learn python package [12].

All the results for our model and the baselines are averaged over 10 runs. We report the mean and
standard deviation. We ran all the experiments on a single GPU (NVIDIA GeForce GTX 1080 Ti).

Self-training and AdaEdge: We combined SLAPS (and kNN-GCN) with two techniques from the
literature namely self-training and AdaEdge. For completeness sake, we provide a brief description
of these approaches and refer the reader to the original papers for detailed descriptions.

For self-training, we first trained a model using the existing labels in the training set. Then we used
this model to make predictions for the unlabeled nodes that were not in the train, validation, or test sets.
We considered the label predictions for the top ζ most confident unlabeled nodes as ground truth labels
and added them to the training labels. Finally, we trained a model from scratch on the expanded set
of labels. Here, ζ is a hyperparameter. We tuned its value from the set {50, 100, 200, 300, 400, 500}.
For AdaEdge, in the case of kNN-GCN, we first trained a kNN-GCN model. Then we changed the
structure of the graph from the kNN graph to a new graph by following these steps: 1) add edges
between nodes with the same class predictions if both prediction confidences surpass a threshold, 2)
remove edge between nodes with different class predictions if both prediction confidences surpass
a threshold. Then, we trained a GCN model on the new structure and repeated the aforementioned
steps to generate a new structure. We did this iteratively until generating a new structure did not
provide a boost in performance on the validation set. For SLAPS, we followed a similar approach
except that the initial model was a SLAPS model instead of a kNN-GCN model.

kNN Implementation: For our MLP generator, we used a kNN operation to sparsify the generated
graph. Here, we explain how we implemented the kNN operation to avoid blocking the gradient
flow. Let M ∈ Rn×n with Mij = 1 if vj is among the top k similar nodes to vi and 0 otherwise,
and let S ∈ Rn×n with Sij = Sim(X ′i,X

′
j) for some differentiable similarity function Sim (we

3

Table 1: Best set of hyperparameters for different datasets chosen on validation set.

Dataset Generator lrC lrDAE dropoutc dropoutDAE k λ r η
Cora FP 0.001 0.01 0.5 0.25 30 10 10 5
Cora MLP 0.01 0.001 0.25 0.5 20 10 10 5
Cora MLP-D 0.01 0.001 0.25 0.5 15 10 10 5

Citeseer FP 0.01 0.01 0.5 0.5 30 1 10 1
Citeseer MLP 0.01 0.001 0.25 0.5 30 10 10 5
Citeseer MLP-D 0.001 0.01 0.5 0.5 20 10 10 5
Cora390 FP 0.01 0.01 0.25 0.5 20 100 10 5
Cora390 MLP 0.01 0.001 0.25 0.5 20 10 10 5
Cora390 MLP-D 0.001 0.001 0.25 0.5 20 10 10 5

Citeseer370 FP 0.01 0.01 0.5 0.5 30 1 10 1
Citeseer370 MLP 0.01 0.001 0.25 0.5 30 10 10 5
Citeseer370 MLP-D 0.01 0.01 0.25 0.5 20 10 10 5

Pubmed MLP 0.01 0.01 0.5 0.5 15 10 10 5
Pubmed MLP-D 0.01 0.01 0.25 0.25 15 100 5 5

ogbn-arxiv MLP 0.01 0.001 0.25 0.5 15 10 1 5
ogbn-arxiv MLP-D 0.01 0.001 0.5 0.25 15 10 1 5

Wine FP 0.01 0.001 0.5 0.5 20 0.1 5 5
Wine MLP 0.01 0.001 0.5 0.25 20 0.1 5 5
Wine MLP-D 0.01 0.01 0.25 0.5 10 1 5 5

Cancer FP 0.01 0.001 0.5 0.25 20 0.1 5 5
Cancer MLP 0.01 0.001 0.5 0.5 20 1.0 5 5
Cancer MLP-D 0.01 0.01 0.5 0.5 20 0.1 5 5
Digits FP 0.01 0.001 0.25 0.5 20 0.1 5 5
Digits MLP 0.01 0.001 0.25 0.5 20 10 5 5
Digits MLP-D 0.01 0.001 0.5 0.25 15 0.1 5 5

20news FP 0.01 0.01 0.5 0.5 20 500 5 5
20news MLP 0.001 0.001 0.25 0.5 20 500 5 5
20news MLP-D 0.01 0.01 0.25 0.25 20 100 5 5

MNIST (1000) MLP 0.01 0.01 0.5 0.5 15 10 10 5
MNIST (2000) MLP-D 0.01 0.001 0.5 0.5 15 100 10 5
MNIST (3000) MLP 0.01 0.01 0.5 0.5 15 10 5 5

used cosine). Then Ã = kNN(X ′) = M � S where � represents the Hadamard (element-wise)
product. With this formulation, in the forward phase of the network, one can first compute the matrix
M using an off-the-shelf k-nearest neighbors algorithm and then compute the similarities in S only
for pairs of nodes where Mij = 1. In our experiments, we compute exact k-nearest neighbors; one
can approximate it using locality-sensitive hashing approaches for larger graphs (see, e.g., [5, 7]). In
the backward phase of our model, we compute the gradients only with respect to those elements in
S whose corresponding value in M is 1 (i.e. those elements Sij such that Mij = 1); the gradient
with respect to the other elements is 0. Since S is computed based on X ′, the gradients flow to the
elements in X ′ (and consequently to the weights of the MLP) through S.

Adjacency processor: We used a function P in our adjacency processor to make the values of the Ã
positive. In our experiments, when using an MLP generator, we let P be the ReLU function applied
element-wise on the elements of Ã. When using the fully-parameterized (FP) generator, applying
ReLU results in a gradient flow problem as any edge whose corresponding value in Ã becomes less
than or equal to zero stops receiving gradient updates. For this reason, for FP we apply the ELU [3]
function to the elements of Ã and then add a value of 1.

C Dataset statistics

The statistics of the datasets used in the experiments can be found in Table 2.

4

D Supervision starvation in Erdős-Rényi and scale-free networks

We start by defining some new notation that helps simplify the proofs and analysis in this section. We
let lv be a random variable indicating that v is a labeled node, with lv indicating that its negation,
cv,u be a random variable indicating that v is connected to u with an edge, with cv,u indicating its
negation, and clv be random variable indicating that v is connected to at least one labeled node with
clv indicating its negation (i.e. it indicates that v is connected to no labeled nodes).

Theorem 1 Let G(n,m) be an Erdős-Rényi graph with n nodes and m edges. Assume we have
labels for q nodes selected uniformly at random. The probability of an edge being a starved edge
with a two-layer GCN is equal to (1− q

n)(1−
q

n−1)
∏2q

i=1(1−
m−1
(n2)−i

).

Proof 1 To compute the probability of an edge being a starved edge, we first compute the probability
of the two nodes of the edge being unlabeled themselves and then the probability of the two nodes not
being connected to any labeled nodes. Let v and u represent two nodes connected by an edge.

With n nodes and q labels, the probability of a node being labeled is q
n . Therefore, Pr(lv) = (1− q

n)

and Pr(lu | lv) = (1− q
n−1). Therefore, Pr(lv ∧ lu) = (1− q

n)(1−
q

n−1).

Since there is an edge between v and v, there are m− 1 edges remaining. Also, there are
(
n
2

)
− 1

pairs of nodes that can potentially have an edge between them. Therefore, the probability of v being
disconnected from the first labeled node is 1− m−1

(n2)−1
. If v is disconnected from the first labeled node,

there are still m− 1 edges remaining and there are now
(
n
2

)
− 2 pairs of nodes that can potentially

have an edge between them. So the probability of v being disconnected from the second node given
that it is disconnected from the first labeled node is 1− m−1

(n2)−2
. With similar reasoning, we can see

that the probability of v being disconnected from the i-th labeled node given that it is disconnected
from the first i− 1 labeled nodes is 1− m−1

(n2)−i
.

We can follow similar reasoning for u. The probability of u being disconnected from the first labeled
node given that v is disconnected from all q labeled nodes is 1− m−1

(n2)−q−1
. That is because there are

still m− 1 edges remaining and
(
n
2

)
− q− 1 pairs of nodes that can potentially be connected with an

edge. We can also see that the probability of u being disconnected from the i-th labeled node given
that it is disconnected from the first i− 1 labeled nodes and that v is disconnected from all q labeled
nodes is 1− m−1

(n2)−q−i
.

As the probability of the two nodes being unlabeled and not being connected to any labeled nodes in
the graph are independent, their joint probability is the multiplication of their probabilities computed
above and it is equal to (1− q

n)(1−
q

n−1)
∏2q

i=1(1−
m−1
(n2)−i

).

Barabási–Albert and scale-free networks: We also extend the above result for Erdős-Rényi graphs
to the Barabási–Albert [1] model. Since Barabási–Albert graph generation results in scale-free
networks with a scale parameter γ = −3, we present results for the general case of scale-free
networks as it makes the analysis simpler and more general. In what follows, we compute the
probability of an edge being a starved edge in a scale-free network.

Let G be a scale-free network with n nodes, q labels (selected uniformly at random), and scale
parameter γ. Then, if we select a random edge between two nodes v and u, the probability of the
edge between them being a starved edge is:

Pr(lv) ∗ Pr(lu|lv) ∗ Pr(clv|cv,u, lv, lu) ∗ Pr(clu|cv,u, lv, lu, clv).

Each of these terms can be computed as follows (
(
a
b

)
represents the number of combinations of

selecting b items from a set with a items):

• Pr(lv) = (1− q
n)

• Pr(lu|lv) = (1− q
n−1)

5

Table 2: Dataset statistics.

Dataset Nodes Edges Classes Features Label rate
Cora 2,708 5,429 7 1,433 0.052

Citeseer 3,327 4,732 6 3,703 0.036
Pubmed 19,717 44,338 3 500 0.003

ogbn-arxiv 169,343 1,166,243 40 128 0.537
Wine 178 0 3 13 0.112

Cancer 569 0 2 30 0.035
Digits 1,797 0 10 64 0.056

20news 9,607 0 10 236 0.021
MNIST 10,000 0 10 784 0.1, 0.2 and 0.3

• Pr(clv|cv,u, lu, lv) =

∑n−1
k=1 kγ

(n−q−2
k−1)
(n−2
k−1)∑n−1

k=1 kγ

For a large enough network, Pr(clu|cv,u, lv, lu, clv) can be approximated as Pr(clu|cv,u, lv, lu) and
it can be computed similarly as the previous case.

With the derivation above, for a scale-free network with n = 2708 and q = 140 (corresponding to the
stats from Cora), the probability of an edge being a starved edge for γ = −3 is 0.87 and for γ = −2
is 0.76 .

E Why not compare the learned graph structures with the original ones?

A comparison between the learned graph structures using SLAPS (or other baselines) and the original
graph structure of the datasets we used may not be sensible. We explain this using an example. Before
getting into the example, we remind the reader that the goal of structure learning for semi-supervised
classification with graph neural networks is to learn a structure with a high degree of homophily.
Following [17], we define the edge homophily ratio as the fraction of edges in the graph that connect
nodes that have the same class label.

Figure 4 demonstrates an example where two graph structures for the same set of nodes have the
same edge homophily ratio (0.8 for both) but have no edges in common. For our task, it is possible
that the original graph structure (e.g., the citation graph in Cora) corresponds to the structure on the
left but SLAPS (or any other model) learns the graph on the right, or vice versa. While both these
structures may be equally good3, they do not share any edges. Therefore, measuring the quality of the
learned graph using SLAPS by comparing it to the original graph of the datasets may not be sensible.
However, if a noisy version of the initial structure is provided as input for SLAPS, then one may
expect that SLAPS recovers a structure similar to the cleaned original graph and this is indeed what
we demonstrate in the main text.

F Limitations

In this section, we discuss some of the limitations of the proposed model. Firstly, in cases where nodes
do not have input features but an initial noisy structure of the nodes is available, our self-supervised
task cannot be readily applied. One possible solution is to first run an unsupervised node embedding
model such as DeepWalk [13] to obtain node embeddings, then treat these embeddings as node
features and run SLAPS. Secondly, the FP graph generator is not applicable in the inductive setting;
this is because FP directly optimizes the adjacency matrix. However, our other two graph generators
(MLP and MLP-D) can be applied in the inductive setting.

3We are disregarding the features for simplicity sake.

6

1 2 3 4

6 7 8 9

1 2 3 4

6 7 7 9

5

10 10

5

Figure 4: Two example graph structures. Node colors indicates the class labels. Solid lines indicate
homophilous edges and dashed lines indicate non-homophilous edges. The two graphs exhibit the
same degree of homophily yet there is not overlap between their edges.

References
[1] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science,

286(5439):509–512, 1999.

[2] Yu Chen, Lingfei Wu, and Mohammed J. Zaki. Deep iterative and adaptive learning for graph
neural networks. In Neural Information Processing Systems (NeurIPS), 2020.

[3] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

[4] Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete
structures for graph neural networks. In ICML, 2019.

[5] Jonathan Halcrow, Alexandru Mosoi, Sam Ruth, and Bryan Perozzi. Grale: Designing networks
for graph learning. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 2523–2532, 2020.

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[7] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer.
arXiv preprint arXiv:2001.04451, 2020.

[8] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep
as cnns? In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
9267–9276, 2019.

[9] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In AAAI, 2018.

[10] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification. In ICLR, 2020.

[11] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

[12] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. JMLR, 12:2825–2830, 2011.

[13] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710, 2014.

7

[14] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou,
Qi Huang, Chao Ma, et al. Deep graph library: Towards efficient and scalable deep learning on
graphs. arXiv preprint arXiv:1909.01315, 2019.

[15] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M
Solomon. Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics
(tog), 38(5):1–12, 2019.

[16] Donghan Yu, Ruohong Zhang, Zhengbao Jiang, Yuexin Wu, and Yiming Yang. Graph-revised
convolutional network. In ECML PKDD, 2020.

[17] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Be-
yond homophily in graph neural networks: Current limitations and effective designs. Advances
in Neural Information Processing Systems, 33, 2020.

[18] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian
fields and harmonic functions. In Proceedings of the 20th International conference on Machine
learning (ICML-03), pages 912–919, 2003.

8

	More Experiments and Analyses
	Implementation Details
	Dataset statistics
	Supervision starvation in Erdos-Rényi and scale-free networks
	Why not compare the learned graph structures with the original ones?
	Limitations

