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ABSTRACT

We propose practical deep Gaussian process models on Riemannian manifolds,
similar in spirit to residual neural networks. With manifold-to-manifold hidden
layers and an arbitrary last layer, they can model manifold- and scalar-valued func-
tions, as well as vector fields. We target data inherently supported on manifolds,
which is too complex for shallow Gaussian processes thereon. For example, while
the latter perform well on high-altitude wind data, they struggle with the more in-
tricate, nonstationary patterns at low altitudes. Our models significantly improve
performance in these settings, enhancing prediction quality and uncertainty cali-
bration, and remain robust to overfitting, reverting to shallow models when addi-
tional complexity is unneeded. We further showcase our models on Bayesian op-
timisation problems on manifolds, using stylised examples motivated by robotics,
and obtain substantial improvements in later stages of the optimisation process.
Finally, we show our models to have potential for speeding up inference for non-
manifold data, when, and if, it can be mapped to a proxy manifold well enough.

1 INTRODUCTION

Gaussian processes (GPs) are a widely adopted model class for learning functions within the
Bayesian framework (Rasmussen and Williams, 2006). They offer accurate uncertainty estimates
and perform well even when data is scarce. Consequently, GPs have found success in decision-
making tasks, where well-calibrated uncertainty is key, including Bayesian optimisation (Snoek et
al., 2012), active (Krause et al., 2008) and reinforcement (Kamthe and Deisenroth, 2018) learning.

In recent years, substantial work went into developing the analogues of practical GP models on var-
ious non-Euclidean domains (Borovitskiy et al., 2021; 2023; 2020; Fichera et al., 2023). By virtue
of being geometry-aware, these analogues have demonstrated improved performance in a variety of
tasks on non-Euclidean spaces. Their notable applications include Bayesian optimisation on mani-
folds for robotics (Jaquier et al., 2022), traffic flow interpolation on road networks (Borovitskiy et
al., 2021), and wind velocity prediction on the globe (Hutchinson et al., 2021; Robert-Nicoud et al.,
2024). These models were also used to speed up inference for Euclidean GPs by transferring data to
a hypersphere and leveraging the attractive structure GPs thereon possess (Dutordoir et al., 2020).

Despite their advantages, GPs can sometimes fall short in modelling complex, irregular functions.
To address this, deep Gaussian processes have been introduced as a sequential composition of GPs
(Damianou and Lawrence, 2013), providing improved flexibility through their layered structure (Dai
et al., 2016; Mattos et al., 2016). Many techniques developed for shallow GPs, such as variational
inference (Salimbeni and Deisenroth, 2017) and efficient sampling techniques (Wilson et al., 2020),
can be adapted for deep GPs, enabling them to be efficiently trained and deployed on large datasets.
This scalability is vital when dealing with data with complex, irregular patterns.

Deep Gaussian processes have demonstrated success in handling complex data of Euclidean na-
ture, often competing with Bayesian neural networks and deep ensembles. However, there has
been limited work on expressive uncertainty-quantifying models on manifolds beyond shallow GPs.
This gap leads to the natural question: how can we construct deep Gaussian processes on manifolds?

By analogy with the Euclidean case, a deep GP on a manifold should be a composition of GP layers
which take inputs and produce outputs on the manifold of interest. While significant advancements
have been made in handling manifold-input GPs, outputs on manifolds conflict with the fundamental
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Hidden Layer × L
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Figure 1: Schematic illustration of a scalar-valued residual deep GP with L hidden layers. The last
layer is a scalar-valued GP on the manifold. If it is not present, the model is manifold-valued. If it
is replaced with a Gaussian vector field (GVF), the model is a vector field on the manifold.

concept of a GP, which dictates that outputs must be Gaussian and thus Euclidean.1 Designing GPs
with inputs or outputs on a manifold is challenging; with both, it is even more so.

Our solution to this problem is in part inspired by residual neural networks, thus we term our models
residual deep Gaussian processes. Instead of constructing a manifold-to-manifold GP layer directly,
we represent it as a Gaussian vector field (GVF) combined with an exponential map. The former
represents a displacement vector, a deviation from the identity map, or a residual, while the latter
translates the input by the given displacement vector. The mean of a layer is always the output of
the previous layer. We visualise this architecture in Figure 1, with sphere as the manifold of interest.
Notably, by changing the last layer only, one can get manifold-valued or vector-valued deep GPs.
As Section 3 will show, our residual deep Gaussian processes generalise the deep GP architecture of
Salimbeni and Deisenroth (2017), perhaps the most successful architecture in the Euclidean case.

We examine residual deep GPs through synthetic and real-world experiments, demonstrating our
models’ superior performance over shallow geometry-aware GPs on tasks where complex data in-
herently lies on a manifold. Additionally, we show that our models offer prospective avenues for
accelerating inference for inherently Euclidean data in the context of deep GPs. Our main focus is
on hypersphere manifolds Sd, due to their importance in key applications such as climate modelling
and robotics, as well as their particularly simple structure that allows for more powerful and spe-
cialised GVFs (Robert-Nicoud et al., 2024). However, the applicability of our model extends to all
Riemannian manifolds, including ones represented by meshes, indicating an even broader potential.

2 BACKGROUND

Mathematically, a Gaussian process (GP) is a real-valued random function f whose marginals are
jointly Gaussian. The same term is also used for the respective distribution over functions. For such
f there always exist a mean µ : X → R on the input domain X of f and a kernel k : X ×X → R
such that f(x) ∼ N (µ(x), k(x,x)) for all x ⊆ X . In this case, we write f ∼ GP(µ, k).

GPs define useful priors for learning functions from noisy observations y ∈ Rn at given input
locations x ⊆ X within the Bayesian framework. In fact, if the observation likelihood is assumed
Gaussian y | f(x) ∼ N (f(x),Σ), then the posterior is a GP (Rasmussen and Williams, 2006) with

µf |y(·) = µ(·) + k(·,x)(k(x,x) +Σ)−1(y − µ(x)), (1)

kf |y(·, ·′) = k(·, ·′)− k(·,x)(k(x,x) +Σ)−1k(x, ·′). (2)

The input domain X can, in principle, be any set. However, a good kernel k : X ×X → R is nec-
essary to define practical GP models on X . If X = Rd, the most widely used kernels are from the
Matérn family (Rasmussen and Williams, 2006), including, as a limiting case, the especially popular
squared exponential kernel.2 These kernels are attractive because they implement two natural induc-
tive biases: (1) model behaviour should not change under any symmetries of the data—translations,
in the case of Rd—and (2) the unknown function possesses a certain degree of smoothness. It turns
out that the Matérn family can be generalised to various non-Euclidean domains X in such a way
that it still implements (1) and (2). We now discuss such a generalisation to Riemannian manifolds3.

1Nevertheless, some practical heuristics for this exist in the literature (Mallasto and Feragen, 2018).
2This kernel has many names; it is also known as the RBF, Gaussian, heat, or diffusion kernel.
3For more details, see Azangulov et al. (2024), Borovitskiy et al. (2020), and Hutchinson et al. (2021).
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2.1 GAUSSIAN PROCESSES ON RIEMANNIAN MANIFOLDS

A principled way of generalising the family of Matérn kernels to Riemannian manifolds was pro-
posed by Lindgren et al. (2011) based on the ideas dating back to Whittle (1963). Borovitskiy et al.
(2020) showed that the resulting kernels can be represented as the following infinite series

kν,κ,σ2(x, x′) =
σ2

Cν,κ

∞∑
j=0

Φν,κ(λj)ϕj(x)ϕj(x
′), Φν,κ(λ) =

{(
2ν
κ2 + λ

)−ν− d
2 ν < ∞

e−
κ2

2 λ ν = ∞
(3)

where −λj , ϕj are the eigenpairs of the Laplace–Beltrami operator on X , d is the dimension of X ,
and Cν,κ is a normalisation constant ensuring 1

volX

∫
X
kν,κ,σ2(x, x) dx = σ2. The infinite sum must

be truncated for computational tractability; nevertheless, the rapid decay of the coefficients Φν,κ(λj)
makes this a sensible approximation with convergence guarantees (Rosa et al., 2023).

Such models were used, e.g., in robotics (Jaquier et al., 2022; 2024) and medical (Coveney et al.,
2020) applications. Their vector field counterparts, to which we return later in the paper, were used
for modelling wind velocities on the globe (Hutchinson et al., 2021; Robert-Nicoud et al., 2024).

These models tend to perform well, especially when data is scarce and uncertainty quantification is
crucial, but they can struggle to capture complex irregular patterns. One potential way to improve
on this is to consider deep Gaussian processes, which—in the Euclidean case—we now review.

2.2 DEEP GAUSSIAN PROCESSES AND APPROXIMATE INFERENCE

A deep Gaussian process F is a composition F = fL◦· · ·◦f1 of multiple shallow GPs f l (Damianou
and Lawrence, 2013). To allow for richer structure, the hidden layers f l, for 1 ≤ l ≤ L − 1, are
typically vector-valued GPs f l : Rd → Rd, i.e. vectors of scalar-valued GPs stacked together and
potentially correlated with each other (Álvarez et al., 2012). The resulting random function F is
itself not a GP. Thus, even for Gaussian likelihoods p(y | F (x)), inference for F | y is intractable.

To overcome this, various approximate inference techniques for deep GPs were proposed, perhaps
the most popular being doubly stochastic variational inference (Salimbeni and Deisenroth, 2017).
In it, the intractable posterior F | y is approximated in terms of the KL divergence metric DKL by
the elements of a certain variational family of tractable distributions. This family itself consists of
deep GPs whose layers are sparse GPs (Hensman et al., 2013; Titsias, 2009) which we now discuss.

Sparse GPs were originally proposed as a variational family for approximating shallow GPs. For
them, approximate inference helps scale to big datasets or accommodate non-Gaussian likelihoods.
Take some f ∼ GP(µ, k). A sparse GP fz,m,S is a family of GPs parameterised by a set of m
inducing locations z ⊆ X , as well as a mean vector m ∈ Rm and a covariance matrix S ∈ Rm×m

which determine the corresponding inducing variable distribution q(u) = N (m,S). Specifically,
p(fz,m,S(·)) = Eu∼q(u) p(f(·) | u, z), q(u) = N (m,S), (4)

where p(f(·) | u, z) is the prior f conditioned on f(z) = u. Intuitively, z are the pseudo-inputs, u
are random pseudo-observations, and p(fz,m,S(·)) is a kind of pseudo-posterior. It is a GP with

µz,m,S(·) = µ(·) + k(·, z)k(z, z)−1(m− µ(z)), (5)

kz,m,S(·, ·′) = k(·, ·′)− k(·, z)k(z, z)−1(k(z, z)− S)k(z, z)−1k(z, ·′). (6)

These can be readily generalised to the vector-valued setting, with m ∈ Rmd and S ∈ Rmd×md.

For a deep GP, the respective variational family is the distribution of a composition of sparse GPs:

Fθ = fzL,mL,SL ◦ . . . ◦ fz1,m1,S1 , θ =
{
zl,ml,Sl

}L
l=1

. (7)
The variational parameters θ are found by minimising DKL(p(F | y) ∥ p(Fθ)), which is equivalent
(Salimbeni and Deisenroth, 2017) to maximising the following evidence lower bound (ELBO)

ELBO =
∑n

i=1
EF (xi)∼p(Fθ(xi)) log p(yi|F (xi))−

∑L

l=1
DKL(q(u

l) ∥ p(ul)), (8)

where q(ul) ∼ N (ml,Sl) and p(ul) ∼ N (µl(zl), kl(zl, zl)). The second term can be computed
exactly using the formula for DKL between two Gaussian vectors. The first term is intractable, but
can be efficiently approximated by drawing a sample from p(Fθ)—this can be done in a layerwise
fashion, as Salimbeni and Deisenroth (2017) suggest—and subsampling the sum over a mini-batch
of inputs x. This way, optimisation proceeds by stochastic gradient descent.
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3 RESIDUAL DEEP GAUSSIAN PROCESSES ON MANIFOLDS

In this section, we introduce the new model class of residual deep Gaussian processes on manifolds.
It generalises the notion of deep GPs to Riemannian manifolds, allowing for the modelling of scalar-
and vector-valued functions, vector fields, and functions taking values in the input manifold itself.

3.1 THE ARCHITECTURE

Let X be a Riemannian manifold. The key challenge in building a deep Gaussian process F on X
is finding a practical notion of manifold-to-manifold GPs f l to serve as its hidden layers:

F = fL ◦ fL−1 ◦ · · · ◦ f2 ◦ f1, f l : X → X for 1 ≤ l ≤ L− 1, (9)

where, to simplify exposition, we assume that the last layer fL is real-valued, although it can just as
well be X-valued, vector-valued, or it can be a vector field, depending on the problem at hand.

While building a GP with inputs in X amounts to finding an appropriate kernel k : X ×X → R,
handling outputs in X requires redefining the inherently Euclidean notion of a Gaussian. We aim to
circumvent this difficulty. To explain how, we start by considering the popular Euclidean deep GP
architecture of Salimbeni and Deisenroth (2017). There, each layer f l : Rd → Rd is of the form

f l(x) = x+ gl(x), (10)

where gl is a zero-mean GP. That is, each layer f l displaces its input x by a residual vector gl(x) =
f l(x)−x, the difference to the identity transform, much like a residual connection in neural networks
(He et al., 2016), which is modelled by a GP. On a manifold X ̸= Rd, when x ∈ X and gl(x) ∈ Rd,
the addition operation in f l(x) = x+ gl(x) is undefined. However, there is a natural generalisation:

f l(x) = expx
(
gl(x)

)
. (11)

Here, expx : TxX → X is the exponential map, the canonical mapping of the tangent space TxX at
x ∈ X—i.e., the linear space of vectors tangent to X at point x—back to X itself. That is, a point
x is still displaced by the vector gl(x), but in a geometrically sound manner.

The beauty of Equation (11) is that it reduces modelling f l to modelling gl. The latter is vector-
valued, and thus compatible with the traditional notion of a Gaussian, making the problem conceptu-
ally much simpler. Still, a major technical difficulty remains: for different inputs x, the value gl(x)
must lie in the different spaces TxX . The mappings behaving like this are called vector fields, and
their random Gaussian counterparts are called Gaussian vector fields, which we proceed to discuss.

3.2 KEY BUILDING BLOCKS: GAUSSIAN VECTOR FIELDS

A vector field on a manifold X is a function that takes each x ∈ X to an element of the tangent
space TxX of X at the point x. If X is4 a submanifold of RD—like the 2-sphere is a submanifold
of R3—the difference between a vector field and a general vector-valued function on X is very
intuitive: in the latter, a vector attached to a point x ∈ X can point in any direction, while in the
former it must always be tangential to the manifold X at x. This difference can be seen in Figure 2a,
which features a vector-valued function on the left and an actual vector field on the right.

A Gaussian vector field (GVF) can be thus thought of as a vector-valued GP whose outputs always
happen to be tangential vectors. This notion is rigorously formalised in the appendices of Hutchinson
et al. (2021). However, for simplicity, we do not dwell on the formalism here. Instead, we proceed
to discuss three practicable GVF constructions that have been put forward in recent research.

Projected GVFs Hutchinson et al. (2021) propose a simple idea, to build a GVF g from any given
vector-valued GP h : X ⊂ RD → RD by projecting its outputs onto the appropriate tangent spaces.
Such a projection P(·) : RD → T(·)X exists because, if X is a submanifold of RD, then any tangent
space T(·)X can be identified with a linear subspace of RD. Thus, g(x) = Pxh(x) defines a random
vector field (see Figure 2a), which turns out to be Gaussian because of the linearity of P(·).

4Nash embedding theorem proves this is always the case for a large enough ambient space dimension D∈ N.
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P(·)

(a) Projected GVF (b) Coordinate frame GVF (c) Hodge GVF

Figure 2: Gaussian vector field constructions on the sphere. In (b), orange vectors depict the frame.

Coordinate-frame-based GVFs Given any coordinate frame {ei}di=1—that is, a set of functions
such that {ei(·)}di=1 is a linear basis of T(·)X—and a vector-valued GP h : X → Rd with compo-
nents hi : X → R, the equation g(x)=

∑d
i=1 hi(x)ei(x) defines a GVF. This is shown in Figure 2b.

Hodge GVFs Most recently, Robert-Nicoud et al. (2024) extended the generalisation of Matérn
GPs from Section 2.1 to the setting of vector fields on compact manifolds. They derive an analogue
of Equation (3), representing the respective Hodge Matérn kernels, as an infinite series5

kν,κ,σ2(x, x′) =
σ2

Cν,κ

∞∑
j=0

Φν,κ(λj)sj(x)⊗ sj(x
′). (12)

Here, sj are the eigenfields of the Hodge Laplacian on X that correspond to the eigenvalues −λj ,
⊗ is the tensor product, and Φν,κ is exactly as in Equation (3). This family of kernels can be
made more expressive by using different hyperparameters σ2, κ, and ν for different types of eigen-
fields sj : the pure-divergence sj , the pure-curl sj , and the harmonic sj . The result is called Hodge-
compositional Matérn kernels (Robert-Nicoud et al., 2024; Yang et al., 2023). For example, it can
represent the inductive bias of divergence-free vector fields, i.e. vector fields having no “sinks” and
“sources”, like the wind velocity field at certain altitudes. This can be seen in Figure 2c.

The first two constructions are universal. This means that by choosing an appropriate h, one can
obtain any possible GVF. Although this might seem advantageous, this is also a major curse, as it is
often unclear which particular h to take to get good inductive biases. What is more, simple solutions,
such as h with IID components, may lead to undesirable artefacts (Robert-Nicoud et al., 2024). On
the other hand, the third construction is canonical, in the same way as the Matérn family is canonical
in the scalar Euclidean case, and it is based on the same simple and natural inductive biases.

Hodge GVFs seem to be the most attractive building blocks for deep GPs. However, although they
are generally applicable in theory, Robert-Nicoud et al. (2024) only provide practical expressions
for the eigenfields sn when X is the circle S1, the 2-sphere S2, or any finite product of those. Thus,
for the manifolds that go beyond this simple form, other GVF constructions have to be used. With
this, we finish introducing our models, and proceed to discuss Bayesian inference for them.

3.3 INFERENCE

Like their Euclidean counterparts, residual deep GPs constitute complex non-Gaussian priors, mak-
ing exact Bayesian inference with them impossible. However, the doubly stochastic variational
inference approach described in Section 2.2 is applicable to them after a few adjustments we detail
below. What is more, for compact manifolds, the approach can be further modified to use certain
interdomain inducing variables, which, as Section 4 shows, tends to offer superior performance.

Doubly stochastic variational inference Consider the analogue of the variational family p(Fθ)
in Equation (7) with the sparse GP layers fzl,ml,Sl replaced by

fzl,ml,Sl(·) = exp(·)
(
gzl,ml,Sl(·)

)
, (13)

where gzl,ml,Sl are sparse Gaussian vector fields. Again, intuitively and in practice, treating the
manifold X as a submanifold of RD, GVFs can be thought of, and worked with, as a special kind of

5Robert-Nicoud et al. (2024) notice that sometimes, by analytically summing the terms corresponding to the
same eigenvalue λn, the series convergence can be sped up by many orders of magnitude, improving efficiency.
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vector-valued GPs. For gzl,ml,Sl , however, zl = (zl1, . . . , z
l
m) with inducing locations zlj ∈ X , and

ml = (ml
1, . . . ,m

l
m), ml

j ∈ Tzl
j
X, im(Sl) ⊆ Tzl

1
X × . . .× Tzl

m
X, (14)

where im denotes the image of a linear operator, and the last two constraints ensure that the random
pseudo-observations u ∼ N (m,S) are tangent vectors which lie in the appropriate tangent spaces.

To satisfy the aforementioned constraints during optimisation, one can represent

ml = Pzlm̃
l
, Sl = Pzl S̃lP⊤

zl , Pzl = Pzl
1
⊕ . . .⊕ Pzl

m
, (15)

with arbitrary m̃
l ∈ RmD, arbitrary positive semi-definite S̃l ∈ RmD×mD, and Pz : RD → TzX

denoting the projection of vectors in RD onto the tangent space TzX , as discussed in Section 3.2.

Instead of using such representations, one can fix a (locally) smooth frame and optimise the coeffi-
cients of ml and Sl represented in this frame. In any case, one needs to make sure zlj always remain
on the manifold X during optimisation, which can be done by using specialised libraries, such as
PYMANOPT (Townsend et al., 2016) or GEOOPT (Kochurov et al., 2020). For low-dimensional man-
ifolds, a fixed grid on X or a set of cluster centroids can be an effective alternative to optimising zlj .

Finally, to approximate ELBO, we need to sample F (xi) ∼ p(Fθ(xi)). As in Salimbeni and Deisen-
roth (2017), this can be done sequentially. Specifically, if F̂ (xi) denotes the desired sample, then

F̂ (xi) = f̂L
i , f̂ l

i = expf̂ l−1
i

(gzl,ml,Sl(f̂ l−1
i )) for 1 ≤ l ≤ L, f̂0

i = xi, (16)

and, given f̂ l−1
i , each individual gzl,ml,Sl(f̂ l−1

i ) can be sampled in the usual manner.

Interdomain inducing variables on manifolds On compact manifolds, an alternative variational
family can be used that speeds up the inference and can often lead to better predictive performance. It
is constructed by replacing the inducing locations z by inducing linear functionals ζ=(ζ1, . . . , ζm).
Each ζj takes in a vector field g and outputs a real number. These ζ define a sparse GVF through

p(gζ,m,S(·)) = Eu∼q(u) p(g(·) | u, ζ), q(u) = N (m,S), (17)

where p(g(·) | u, ζ) is the prior g conditioned on ζ(g) = u, where ζ(g) = (ζ1(g), . . . , ζm(g)).
For example, linear functionals of the form ζ(g)=⟨g(z), ei(z)⟩TzX

—here, {ei}di=1 is a coordinate
frame—can be used to recover the usual doubly stochastic variational inference considered above.

The mean and covariance of gζ,m,S are given by Equation (5), with z replaced by ζ and

k(ζ, ·) = Cov(ζ(g), g(·)), k(ζ, ζ′) = Cov(ζ(g), ζ(g)), (18)
see, for example, Lázaro-Gredilla and Figueiras-Vidal (2009) and van der Wilk et al. (2020).

Now, if the kernel of g can be expressed as
∑

ajϕj(x) ⊗ ϕj(x
′) where {ϕj} is an orthonormal

basis—this is obviously so for Hodge GVFs, but is also often the case for other GVFs on compact
manifolds—the inducing functionals ζj(·) = ⟨·, ϕj⟩L2/aj yield very simple covariance matrices

k(ζj , ·) = ϕj(·), k(ζi, ζj) = δi,j/ai. (19)
In particular, k(ζ, ζ) is diagonal, making it trivial to invert. Dutordoir et al. (2020) report that this
can yield significant acceleration in practice. For residual deep GPs, this phenomenon affects every
individual layer, thus making the cumulative effect even more pronounced. We refer the reader to
Appendix B for further practical and theoretical considerations regarding this variational family.

Posterior mean, variance, and samples Expectations EFθ(x) and variances VarFθ(x) of the
approximate posterior Fθ cannot be computed exactly. Instead, they can be estimated by appropri-
ate Monte Carlo averages, with Equation (16) providing a way to sample Fθ(x). However, since
these estimates ignore the correlation between Fθ(x) and Fθ(x

′), they are not continuous as func-
tions of x. When continuity or differentiability of EFθ(x) and VarFθ(x) are desirable, another
method can be used. The key idea in this case is to draw (approximate) samples from Fθ(·) which
happen to be actual functions, for example linear combinations of some analytic basis functions
or compositions of such. This can be done by applying the pathwise conditioning of Wilson et al.
(2020) and Wilson et al. (2021) in a sequential manner, akin to Equation (16). This approach is
useful for visualisation, performance metric estimation, and for working with downstream quanti-
ties, such as acquisition functions in Bayesian optimisation, for which differentiability is key for
efficiently finding their maxima.
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Figure 3: NLPD of different residual deep GP variants and the baseline model, on the regression
problem for the synthetic benchmark function visualised in Figure 4a. Different subplots correspond
to different training set sizes N . The solid lines represent the mean, while the shaded areas represent
the ±1 standard deviation region around it. All statistics are computed over 5 randomised runs.

4 EXPERIMENTS

We begin this section by examining how various GVF and variational family choices impact the re-
gression performance of residual deep GPs in synthetic experiments, as discussed in Section 4.1.
Throughout, we compare our models to a baseline with Euclidean hidden layers. Next, in the
robotics-inspired experiments of Section 4.2, we demonstrate that residual deep GPs can signifi-
cantly enhance Bayesian optimisation on a manifold when the optimised function is irregular. Fol-
lowing this, in Section 4.3, we show state-of-the-art predictive and uncertainty calibration perfor-
mance of residual deep GPs in wind velocity modelling on the globe, achieving interpretable patterns
even at low altitudes where data is more complex and irregular. Finally, in Section 4.4, we explore
potential avenues for using residual deep GPs to accelerate inference on inherently Euclidean data.

4.1 SYNTHETIC EXAMPLES

Setup Deep GPs bear the promise of outperforming their shallow counterparts in modelling com-
plex, irregular functions. To test this, we construct a benchmark function f∗ on the 2-sphere S2 with
multiple singularities, which is visualised in Figure 4a. We take N ∈ {100, 200, 400, 800, 1600}
training inputs x on a Fibonacci lattice on S2 and put y = f∗(x) + ε, ε ∼ N (0, 10−4I). Then, we
regress f∗ from x and y. On this problem, we compare different modifications of the residual deep
GPs amongst themselves and to a baseline, in terms of the negative log predictive density (NLPD)
and the mean squared error (MSE) metrics on the test set of 5000 points, also on a Fibonacci lattice.
All runs are conducted 5 times with different random seeds for the observation noise ε.

Models The baseline is a deep GP with Euclidean (rather than manifold-to-manifold) layers. It
is constructed by composing a vector-valued Matérn GP whose signature is X → R3 with the
Euclidean deep GP of Salimbeni and Deisenroth (2017) on R3. For the residual deep GPs, we
consider two different types of GVFs, projected and Hodge, and two types of variational families,
the one based on inducing locations (IL) and the one based on interdomain variables (IV). To ensure
comparability, we match the number of optimised parameters between models as closely as possible.

Results The NLPD values are presented in Figure 3. The MSE values exhibit the same trends and
can be found in Figure 8 in Appendix A. We observe three key patterns. First, residual deep GPs
are never worse than their shallow counterparts, recovering the single-layer solution when data is
sparse. Second, as data becomes more abundant and thus captures more complexity of f∗, residual
deep GPs outperform the shallow GPs. Third, the IV variational family almost always improves
over the IL one, and the best model—with considerable margin—is obtained by combining Hodge
GVFs with the IV variational family. The residual deep GP based on projected GVFs and using the
IV variational family is the second best model, which still outperforms the baseline in most cases.

4.2 GEOMETRY-AWARE BAYESIAN OPTIMISATION

Motivation GPs are a widely used model class for Bayesian optimisation, a technique for op-
timising expensive-to-evaluate black-box functions that leverages uncertainty estimates to balance
exploration and exploitation (Shahriari et al., 2016). In robotics, such problems arise, for exam-
ple, when a control policy needs to be fine-tuned to a specific real-world environment. This task
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(a) Irregular benchmark function.
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(b) Bayesian optimisation performance.

Figure 4: The irregular benchmark function, and Bayesian optimisation performance comparison.
The target functions for Bayesian optimisation are: the aforementioned benchmark function, modi-
fied to have a single global minimum (S2 Irregular), and the smooth Ackley function on the 3-sphere
(S3 Ackley). In (b), the solid lines represent the median regret, while the shaded areas around them
span ±1 standard deviation. The statistics are computed over 15 randomised runs.

was shown to benefit from treating the optimisation space as a manifold and using geometry-aware
Gaussian processes to drive Bayesian optimisation (Jaquier et al., 2022). The functions upon which
the technique was tested are rather regular, which is not always the case in reality, especially when
dealing with increasingly complex systems. Motivated by this challenge, we explore if residual deep
GPs can offer improved performance in optimising complex irregular functions on manifolds.

Setup We consider two target functions to optimise. The first is the irregular function from Sec-
tion 4.1, visualised in Figure 4a, modified to have only one global minimum. The second is the much
more regular Ackley function, projected onto S3, one of the benchmarks in Jaquier et al. (2022). In
each Bayesian optimisation run, we perform the first 180 iterations using a shallow geometry-aware
GP, followed by 20 iterations using a residual deep GP—both employing the expected improvement
acquisition function (see, e.g., Frazier (2018)). In this experiment, we showcase the coordinate-
frame-based GVFs, as described in Appendix A. We do not use deep GPs in the initial iterations
because, as intuition suggests and Section 4.1 affirms, deep GPs start outperforming their shallow
counterparts only when data becomes more abundant. Although deep GPs show comparable per-
formance even for small datasets, training them is more computationally demanding, making their
use less efficient in the early stages of optimisation. We repeat each run 15 times to account for the
stochasticity of initialisation, optimisation of the acquisition function, and training of GP models.

Results The optimisation performance, measured in terms of the logarithm of regret, is reported
in Figure 4b. We find that residual deep GPs significantly improve performance in the Bayesian
optimisation of the irregular function. Specifically, switching to a residual deep GP in the latter
stages of optimisation greatly, and often immediately, reduces the gap between the true optimum
and the found optimum. This trend is consistent across most runs, with only one outlier showing no
improvement due to insufficient data collection near the singularity during the shallow GP phase.
In contrast, for the Ackley function, we observe no substantial difference in performance between
the two methods: both approaches replicate results from Jaquier et al. (2022), with nearly identical
median regret trajectories. This outcome aligns with our expectations, since the region around the
minimum, explored during the initial 180 iterations, is smooth and thus modelled equally well by
both deep and shallow models.

4.3 WIND INTERPOLATION ON THE GLOBE

Motivation Non-Euclidean geometry has a particularly pronounced effect on vector fields, such
as wind velocity fields on the globe, more so than on scalar functions. For instance, the famous
hairy ball theorem states that a smooth vector field must always have a zero somewhere on the 2-
sphere, i.e. there must always be a location where wind does not blow. Wind interpolation is thus
an attractive use case for geometry-aware Gaussian vector fields, where they have been shown to
perform well (Hutchinson et al., 2021; Robert-Nicoud et al., 2024). Here, we show that residual
deep GPs can improve the performance of probabilistic wind velocity models when the data contains
complex irregular patterns, which naturally occur in wind fields at lower altitudes.

Setup We consider the task of interpolating the monthly average wind velocity from the ERA5
dataset (Hersbach et al., 2023), from a set of locations on the Aeolus satellite track (Reitebuch,
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(a) The ground truth wind ve-
locities as black arrows and the
training locations along the Aeo-
lus satellite track as red points.

(b) Difference between the prediction and the ground truth wind veloci-
ties, shown as black arrows, and the predictive uncertainty, shown using
a colour scale from purple (lowest) to yellow (highest), for a 3-layer
residual deep GP and wind velocities for July 2010, at 0.1 km altitude.

Figure 5: Using residual deep GPs for probabilistic wind velocity modelling on the surface of Earth.

2012), simulating a practical setting of a weather-analysing satellite. We use ERA5 data from Jan-
uary to December 2010, as in Robert-Nicoud et al. (2024), and sample the Aeolus track locations
every minute for a 24-hour period from 9:00 am, January 1st, 2019. We choose a 24-hour period
instead of a 1-hour period, as in Hutchinson et al. (2021), because in that time frame, the satellite
produces a denser set of observations, crucial for capturing the complexity of wind behaviour at low
altitudes. The ground truth vector field and the input locations are visualised in Figure 5a. To assess
how decreasing regularity of data associated with decreasing altitude affects our model, we consider
data at three altitudes: approximately 5.5 km, 2 km, and 0.1 km. In our models, we use Hodge GVFs
in hidden layers and as the last layer, and interdomain inducing variables for inference.

Results We report regression performance, in terms of NLPD, in Figure 6; MSE follows similar
trends and can be found in Figure 11 in Appendix A. We find that residual deep GPs improve upon
the state-of-the-art shallow Hodge GVFs (1-layer models in the plots, Robert-Nicoud et al. (2024))

1 2 3 4 5

# Layers

−1

0

1

N
L

P
D

5.5 km 2.0 km 0.1 km

Figure 6: NLPD of residual deep GPs on the
wind modelling task across three altitude lev-
els. Solid lines give the mean NLPD, while
the shaded regions around it span ±1 stan-
dard deviation. Statistics are computed from
12 runs—one for each month of 2010.

both in prediction quality and uncertainty calibra-
tion, as evidenced by the significantly lower NLPD
and MSE. Furthermore, Figure 5b shows that the un-
certainty estimates of our deep model at the lowest
altitude are interpretable. Indeed, regions of high un-
certainty follow regions of irregular wind currents,
such as boundaries where multiple currents meet or
continental boundaries, as well as areas of season-
ally high winds, such as India during the peak mon-
soon season. At the same time, low uncertainty is as-
signed to regions with constant-like currents. This is
unachievable for shallow GVFs since their posterior
covariance depends only on the locations of the ob-
servations, which are rather uniformly dense in our
setup, and not on the observations themselves. Ad-
ditionally, Figure 5b shows predictive uncertainty to
be well-calibrated, with areas of highest error corre-
sponding to regions of high uncertainty.

4.4 ACCELERATING INFERENCE FOR EUCLIDEAN DATA

Motivation Inspired by their connection to infinitely wide neural networks, Dutordoir et al. (2020)
showed that geometry-aware GPs on hyperspheres can be applied to inherently Euclidean data to
accelerate variational inference. Specifically, they reported that approximate variational inference
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Figure 7: Wall clock time taken by one training step of Euclidean deep GPs with inducing locations,
and residual deep GPs with interdomain variables. We consider 5 UCI datasets, with dimension d
and batch size B. Solid lines show the mean, computed by averaging over 100 training steps, while
the shaded areas span ±1 standard deviation. However, they are often too narrow to be visible.

using the shallow analogue of the interdomain inducing variables applied to data mapped6 from Rd

to the proxy manifold of Sd can be significantly faster than inducing-location-based variational in-
ference for a Euclidean GP on the original data, while achieving competitive predictive performance.
We investigate whether this result can be extended to the case of deep Gaussian processes.

Setup As Euclidean data, we use the same UCI datasets as Dutordoir et al. (2020), and we use
the same mapping from Rd to the proxy manifold Sd. We use projected GVFs to accommo-
date arbitrarily-dimensional hyperspheres. Overall, our experimental setup follows Dutordoir et
al. (2020), except that working with deep models required us to optimise ELBO directly instead of
marginalising out the variational mean m and covariance S as in Titsias (2009). Additionally, be-
cause of high memory requirements of L-BFGS (Nocedal, 1980) arising from the lack of marginali-
sation and depth, we switch to Adam (Kingma and Ba, 2015). We use a single Intel i7-13700H CPU.

Results We compare the variational inference speed, measured by wall-clock time for a single
optimisation step, in Figure 7. The advantage for shallow 1-layer GPs increases significantly with
more layers, offering a considerable edge in deep models. However, predictive performance com-
parisons in Figure 17 in Appendix A do not show such an optimistic picture: Euclidean deep GPs
always outperform residual deep GPs with the same number of layers in terms of NLPD and MSE.
Possibly, this might be due to the aforementioned differences in optimisation. Also, our choice of
the mapping from Rd to a proxy manifold and the choice of the proxy manifold itself might be overly
simplistic and thus hinder performance. We hypothesise that better mappings or optimisation could
potentially make the tested approach a more efficient alternative to Euclidean deep GPs. Achieving
this, however, will require further work, which is beyond the scope of this paper.

5 CONCLUSION

In this paper, we proposed a novel model class of residual deep Gaussian processes on manifolds.
We reviewed practical Gaussian vector field constructions for building their hidden layers and dis-
cussed two variational inference techniques, including one tailored to the structure of Gaussian
vector fields on compact manifolds and based on interdomain inducing variables. We evaluated our
models in synthetic experiments, examining the impact of Gaussian vector field and variational fam-
ily choices. These experiments supported favouring Hodge Gaussian vector fields and interdomain
inducing variables. They also demonstrated that increasing the number of layers virtually never de-
grades our models’ performance, though it can quickly saturate and plateau. We hypothesize that
larger datasets will slow saturation, necessitating more layers’ complexity. However, we leave this
for future work to explore. In a robotics-motivated stylised experiment, our models significantly en-
hanced Bayesian optimisation for an irregular function on the sphere. For probabilistic interpolation
of wind velocities, we achieved state-of-the-art performance, surpassing the recently proposed shal-
low Hodge Gaussian vector fields. Finally, we showed interdomain inducing variables to be superior
in terms of inference time, compared to doubly stochastic variational inference for Euclidean deep
Gaussian processes. This indicates potential future benefits for Euclidean data if suitable mappings
from manifold data to proxy manifolds are found. We believe residual deep Gaussian processes will
provide a powerful toolset for applications in climate modelling, robotics, and beyond.

6Mapping Rd ∋ x 7→ (x1, .., xd, b)/∥(x1, .., xd, b)∥ ∈ Sd, where b ∈ R is a bias term, x = (x1, .., xd).
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A ADDITIONAL EXPERIMENTAL DETAILS

A.1 IMPLEMENTATION

Efficient kernel evaluation with the addition theorem In our implementation of manifold
Matérn kernels, we utilise the addition theorem for spherical harmonics (De Vito et al., 2021;
Dutordoir et al., 2020) to accelerate kernel computation.7 On Sd, the eigenfunctions of the Laplace–
Beltrami operator are known to be certain special functions called spherical harmonics. The addi-
tion theorem gives a relation between all spherical harmonics corresponding to the (k+1)-th largest
eigenvalue of the negative Laplace–Beltrami operator −∆, denoted {ϕk,j}Jj=1, and Gegenbauer

polynomials C(α)
k , other special functions:

J∑
j=1

ϕk,j(x)ϕk,j(x
′) = ck,dC

(α)
k (x · x′) (20)

with the dot product computed after embedding Sd in Rd+1 as the unit sphere centred at the origin,
α = d−1

2 , and ck,d some known absolute constants. Thus, when computing the scalar Matérn kernel
on Sd, we truncate the infinite sum in Equation (3) to include all spherical harmonics up to the
(K + 1)-th eigenvalue, and apply Equation (20). This gives the following formula

kν,κ,σ2(x, x′) =
σ2

Cν,κ

K∑
k=0

Φν,κ(λk)ck,dC
(α)
k (x · x′). (21)

In case of the Hodge Matérn kernel on S2, we also apply addition theorem, only noting that here ϕk,j

are replaced with the normalised vector spherical harmonics: ∇ϕk,j√
λk

for the divergence-only kernel,

and ⋆∇ϕk,j√
λk

for the curl-only kernel, where ⋆ is the Hodge star operator (Robert-Nicoud et al., 2024).

In this case, ck,d = k+α
α . Thus,

kdiv
ν,κ,σ2(x, x′) =

σ2

Cdiv
ν,κ

K∑
k=0

Φν,κ(λk)

λk

k + α

α
(∇x ⊗∇x′)C

(α)
k (x · x′) (22)

kcurl
ν,κ,σ2(x, x′) =

σ2

Ccurl
ν,κ

K∑
k=0

Φν,κ(λk)

λk

k + α

α
(⋆∇x ⊗ ⋆∇x′)C

(α)
k (x · x′). (23)

The Hodge-compositional kernel, which we typically use, is the sum kdiv
ν,κ1,σ2

1
+ kcurl

ν,κ2,σ2
2
.

Accelerated training with whitened inducing variables In all the models we test, approximate
inference requires a variational mean vector m and a variational covariance matrix S that parame-
terise q(u) = N (m,S).8 However, to accelerate convergence during training, instead of working
with the inducing variables u directly, we work with whitened inducing variables u′ = L−1u,
where L is the lower Cholesky factor of k(z, z) or k(ζ, ζ) (Matthews, 2016). Thus, in practice,
denoting the whitened variational mean and covariance of q(u′) as m′ and S′, we use a modified
version of Equation (5):

µz,m′,S′(·) = µ(·) + k(·, z)k(z, z)−1(Lm′ − µ(z)) (24)

= µ(·) + k(·, z)L−⊤(m′ − L−1µ(z)), (25)

kz,m′,S′(·, ·′) = k(·, ·′)− k(·, z)k(z, z)−1(k(z, z)− LS′L⊤)k(z, z)−1k(z, ·′) (26)

= k(·, ·′)− k(·, z)L−⊤(I− S′)L−1k(z, ·′). (27)

A.2 MODELS

Mean and kernel In all models, we equip constituent GPs with a zero mean and an appropriate
variant of the Matérn kernel, initialised with length scale κ = 1. For kernels of output layers we

7The analogues of this theorem hold for many other manifolds, see, e.g., Azangulov et al. (2024).
8S is parametrised by its lower Cholesky factor to ensure positive definiteness during optimisation.
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Figure 8: MSE of different residual deep GP variants and the baseline model, on the regression
problem for the synthetic benchmark function in Figure 4a. Different subplots correspond to dif-
ferent training set sizes N . The solid lines represent the mean, while the shaded areas represent
the ±σ region around it, where σ is the standard deviation, and all statistics were computed over 5
randomised runs.

initialise the variance to σ2 = 1.0, while for kernels in hidden layers of an L-layer deep GPs we
set σ2 = 10−4

L−1 at the start of training. In Section 4.1, Section 4.4, and Section 4.3 we initialise
the smoothness parameter to ν = 3

2 , while in Section 4.2 we set it to ν = 5
2 to replicate the

setup in Jaquier et al. (2022). We optimise the smoothness of the manifold Matérn kernels during
training, owing to their differentiability with respect to ν, except in Section 4.2, where we fix ν
to match the setup in Jaquier et al. (2022). Wherever we employ Hodge GVFs we use the Hodge
compositional kernel, with separate ν, κ, σ2 for the curl-free and divergence-free parts. In models
utilising interdomain variables, we use the same number of spherical harmonics for the kernel and
inducing variables, as per our discussion in Appendix B.

Vector-valued GPs We model vector-valued GPs as a set of independent scalar-valued GPs
stacked into a vector. We utilise this construction in Euclidean deep GPs and in residual deep GPs
with projected GVFs.

Inducing locations Following Salimbeni and Deisenroth (2017), for all models utilising the vari-
ational family based on inducing locations zl, we initialise zl for every layer to be the centers of the
clusters found via k-means clustering of training data. In residual deep GPs, we further project these
locations onto the sphere, and we do not optimise them during training. In Euclidean deep GPs, we
do not normalise the inducing locations and optimise them jointly with all other parameters.

Approximation in training and evaluation of deep models In all experiments, to approximate
the ELBO in deep models during training, we use 3 samples from the posterior. In evaluation, we
use 10 samples from the posterior to approximate the MSE and NLPD. In visualisation, we also use
ten samples from the posterior to approximate the predictive mean and standard deviation.

A.3 SYNTHETIC EXPERIMENTS

Data To examine the influence of data density on model performance in a controlled manner, we
generate the training sets as approximately uniform grid of points on the 2-sphere S2. This is done
using the Fibonacci lattice method, which, for a grid of n points, gives the colatitude and longitude
of the i-th point as

colatitude = arccos

(
1− 2i+ 1

n

)
, longitude =

2πi

ϕ
, ϕ =

1 +
√
5

2
. (28)

Because this method gives consistent coverage of S2 we also use it to generate the test set of 5000
points. We define the benchmark function f∗ : S2 → R by

f∗(x) = (Y2,3 ◦ φ)(x) + (Y1,2 ◦ φ ◦R)(x), (29)
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where

Y2,3(θ, ϕ) =

√
105

32π
sin3 θ sin(3ϕ), (30)

Y1,2(θ, ϕ) =

√
15

8π
sin θ sin(2ϕ) (31)

R(x) = (x1,−x3, x2) (32)
φ(x) = (atan2(x2, x1), arccos(x3)), (33)

with x being an element of S2 embedded into R3 as the unit sphere centred at the origin. Y2,3, Y1,2

are spherical harmonics, smooth functions of their parameters. Singularities in f∗ are caused by
the composition with φ, which converts x from Cartesian to spherical coordinates, but swaps the
positions of the colatitude θ and longitude ϕ. The function Y2,3 ◦ φ has singularities at the poles,
while the function Y1,2 ◦ φ ◦R has singularities around the equator.

Variational parameters To make the comparison between models as fair as possible, we set the
number of inducing variables for each model in such a way that all models have almost the same
total number of optimisable parameters. Specifically, we use the following formulae for the number
of variational parameters α in a hidden layer, given that each GVF has m inducing variables

αhodge = (m2 +m)/2︸ ︷︷ ︸
covariance

+ m︸︷︷︸
mean

(34)

αeuclidean = αprojected = 3 · ((m2 +m)/2 +m) (35)

In projected GVFs of the residual deep GPs and in vector-valued GPs of the baseline models, we
equip each scalar GP with 49 inducing variables, which corresponds to spherical harmonics up to
the 7-th negative eigenvalue. For Hodge GVFs, we use 70 interdomain inducing variables, corre-
sponding to vector spherical harmonics up to the 6-th negative eigenvalue of the Hodge Laplacian.
Despite this, residual deep GPs with Hodge GVFs are still at a disadvantage: a single Hodge GVF
has 2555 variational parameters and 2 · 3 kernel parameters, a single projected GVF and manifold
vector-valued GP has 3822 variational parameters and 3 · 3 kernel parameters, while one Euclidean
vector-valued GP has 3822 variational parameters and 3 · 4 kernel parameters (we use automatic rel-
evance determination (ARD), we get 4 as the sum of 3 length scale parameters and 1 prior variance
parameter). Furthermore, we optimise the inducing locations in the Euclidean vector-valued GPs of
the baseline model, so that each of them have an additional 3 · 49 optimisable parameters.

Training and evaluation We optimise all models using the Adam optimiser (Kingma and Ba,
2015) for 1000 iterations with learning rate set to 0.01.

Additional results The MSE comparison is presented in Figure 8. Figure 9 and Figure 10 show an
extended comparison between the baseline model and Hodge residual deep GP with up to 10 layers
and 10 randomised runs.

A.4 GEOMETRY-AWARE BAYESIAN OPTIMISATION

Data To obtain an irregular function f∗ on S2, we modify the target function from Section 4.1 to
have only one global minimum near a singularity point. Specifically, f∗ was defined by

f∗(x) = (Y2,3 ◦ φ)(x) · (x3 + 1) · (1− arccos(x3)), (36)

where Y2,3 and φ are as in Appendix A.3. The absence of Y1,2 removes the singularities around the
equator, while the added scaling factors create a minimum at the north pole and ensure it is global.

Models After a preliminary examination, we found that differences between GVFs variants on
this task were not significant. Nevertheless, in Figure 4b we present the models that performed best
in this examination: in the left subplot, a 2-layer residual deep GP using coordinate-frame GVFs
and inducing locations; in the right subplot, a 3-layer residual deep GP using projected GVFs and
inducing locations. We set the hyper-priors for the shallow model according to Jaquier et al. (2022).
We do not use hyper-priors for the deep models in this experiment.
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Figure 9: NLPD of the baseline model and Hodge residual deep GP on the regression problem for
the synthetic benchmark function in Figure 4a. Different subplots correspond to different training
set sizes N . The solid lines represent the mean, while the shaded areas represent the ±σ region
around it, where σ is the standard deviation; all statistics are computed over 10 randomised runs.
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Figure 10: MSE of the baseline model and Hodge residual deep GP on the regression problem for
the synthetic benchmark function in Figure 4a. Different subplots correspond to different training
set sizes N . The solid lines represent the mean, while the shaded areas represent the ±σ region
around it, where σ is the standard deviation; all statistics are computed over 10 randomised runs.

Optimisation process Replicating the setup of Jaquier et al. (2022), we begin each Bayesian
optimisation by sampling 5 initial observations uniformly at random on the hypersphere. At each
step, we minimise the expected improvement acquisition function using the first-order geometry-
aware gradient optimisation implemented in PYMANOPT (Townsend et al., 2016). We approximate
the expected improvement acquisition function for deep models using Monte Carlo averages driven
by pathwise sampling, as described at the very end of Section 3.3. After each optimisation step, we
reinitialise the model and fit it to the data for 500 iterations, using the Adam optimiser (Kingma and
Ba, 2015) with a learning rate of 0.01 for the deep model, and the BFGS optimiser for the shallow
model.

Additional results and analysis In Figure 4b, we see that the variance of the logarithm of regret
increases after switching from the shallow GP to the residual deep GP. This increase can be explained
by variation in the initial 180 points acquired by the shallow GP between independent runs. The
locations of these points determine the quality of fit of the deep GP. Indeed, if the points cluster
near the true minimum, the deep model often achieves improvement in 1 or 2 iterations. With fewer
points around the optimum the fit is poorer and more iterations are required to make an improvement.
This variance in the number of steps before a better observation is acquired increases the variance
of the regret.

We also examined the performance of residual deep GPs on Bayesian optimisation of the irregular
target function without the initial shallow GP stage. We equip the last layer of the deep GP with
the same hyper-priors as the shallow GP; however, instead of using the BFGS optimiser, we use L-
BFGS due to memory constraints. Note that in the original experiment we did not use hyper-priors
or a quasi-newton optimiser for the deep model. We use them here because we found that they
are important for effective exploration with shallow GPs and they serve the same purpose for our
deep GP.
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Figure 11: MSE of residual deep GPs on the wind modelling task across three altitude levels. Solid
lines give the mean MSE, while the shaded regions around it span ±1 standard deviation. Statistics
are computed from 12 runs—one for each month of 2010.
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Figure 12: Comparison of Bayesian optimisation performed with a shallow GP followed by a resid-
ual deep GP vs only with residual deep GP on the irregular target function. Solid lines show me-
dian logarithm of regret while the shaded areas extend one standard deviation above and below.
Blue dotted lines show three optimisation runs with the deep GP only which did not escape a lo-
cal minimum—these runs contribute strongly to the large variance of its regret. Grey dotted line
indicates a transition from the shallow GP to the deep GP at iteration 180.

We report the logarithm of regret achieved by using the residual deep GP model from the very first
iteration in Figure 12. We find that in 12 out of 15 of the runs, our model improves upon the shallow
GP, often even before the 100th iteration. This was expected, since we have seen that residual deep
GPs recover shallow solutions when data is not abundant enough to capture target complexity. We
also see that the variance of the regret is considerably larger than for the shallow GP. This is largely
caused by the 3 outlier runs, indicated with a dotted blue line, where the model gets stuck in a local
minimum. As this experiment is fairly sensitive to the setup setting, this could be due to the fact
that the baseline is an exact GP, while our model recovers a sparse GP, and the fact that our model
uses the L-BFGS optimiser, while the exact model uses the BFGS optimiser. Thus, using deep GPs
exclusively can be more sample-efficient than employing the initial shallow GP stage; however, with
the current setup it appears that this poses an increased risk of being stuck in a local minimum.

A.5 WIND INTERPOLATION ON THE GLOBE

Data To each location sampled along the track of the Aeolus satellite, we assign the wind velocity
from the closest location present in the ERA5 dataset. Our test set is a grid of 5000 points, same as
in Appendix A.3. To each location in the test set, we also assign the wind velocity from the closest
location in the ERA5 dataset.

Variational parameters For each GVF within the layers of the tested models we use 198 inter-
domain inducing variables. They correspond to all vector spherical harmonics up to, and including,
the 10th negative eigenvalue of the Hodge Laplacian. This choice is arbitrary and simply serves to
balance quality of fit with training time.
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Figure 13: MSE of residual deep GPs on the wind modelling task across the 12 months of 2010.
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Figure 14: NLPD of residual deep GPs on the wind modelling task across the 12 months of 2010.

Training and evaluation We fit the models to data using the Adam optimiser for 1000 iterations
with the learning rate set to 0.01. To evaluate the models, we compute the MSE and NLPD via
Monte Carlo sampling as described in Equation (16), we visualise the predictive uncertainty at a
point xi which is computed as 1

10

∑10
n=1 ∥Sn

i ∥, where Sn
i is the posterior covariance matrix of the

last layer given the n-th sample from the penultimate layer, and ∥ · ∥ is the Frobenius norm.

Additional results The MSE comparison is presented in Figure 11. The individual results for
each month are shown in Figure 14 and Figure 13. A larger version of Figure 5b as well as its
analogs for other altitudes are presented in Figure 18. Figures 19 to 21 present the ground truth
vector field, predictive mean and uncertainty, and one posterior sample for July 2010 for the three
different altitudes.

Additionally, we compare our model with the baseline model from Section 4.1. The final layer of the
baseline is a coordinate-frame GVF with independent Matérn 5/2 kernels, where the frame is given
by the gradients of the spherical coordinates (with singularities taken care of), this is motivated
in part by the approach of Mallasto and Feragen (2018). The results are shown in Figure 15 and
Figure 16.

A.6 REGRESSION ON UCI DATASETS

Data In the mapping from Rd to Sd, we set b to 1. This is done for all datasets and the bias is kept
constant during training. Indeed, in our initial examinations, we found that learning the bias often
seemed to result in overfitting and worse performance.

Training and evaluation We train each model for 5000 iterations using the Adam optimiser
(Kingma and Ba, 2015) with the learning rate set to 0.01, such that the learning curves plateau
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Figure 15: Comparison of the NLPD of residual deep GPs and the baseline model for wind field
modelling across the 0.1 km, 1.0 km, and 5.0 km altitudes.
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Figure 16: Comparison of the MSE of residual deep GPs and the baseline model for wind field
modelling across the 0.1 km, 1.0 km, and 5.0 km altitudes.

for both Euclidean deep GPs and residual deep GPs. Each iteration consists of a gradient step using
a batch of data. When the size of the training set is smaller than 1000 data points—that is, for the
Yacht, Concrete, and Energy datasets—a batch is the entire dataset. For the Kin8mn and Power
datasets, whose training sets are considerably larger, a batch of 1000 data points is sampled with
replacement from the training set.

Additional results The test NLPD and MSE of all models can be seen in Figure 17.

B MORE ON INTERDOMAIN INDUCING VARIABLES ON MANIFOLDS

Empirically, we find that when the number of eigenfunctions K used to approximate the manifold
Matérn kernels exceeds the number of interdomain inducing variables, performance of residual deep
GPs deteriorates. This can be surprising, since a higher K yields a better approximation of the true
manifold Matérn kernel.

A potential reason for this phenomenon may be identified by examining the kernel of a posterior
sparse Matérn GP f ∼ GP(µ, k)—more specifically, its whitened reparameterisation (see Ap-
pendix A.1), as that makes equations cleaner. In this, it will be helpful to define

Ψi:j(·) =
(√

σ2

Cν,κ
Φν,κ(λi)ϕi(·), . . . ,

√
σ2

Cν,κ
Φν,κ(λj)ϕj(·)

)⊤

, (37)

which allows us to express the Matérn kernel approximated with K + 1 eigenfunctions as
kν,κ,σ(·, ·′) = Ψ0:K(·)⊤Ψ0:K(·′). Now, recalling Equation (19), and denoting the number of inter-
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Figure 17: NLPD and MSE of residual deep GPs with spherical harmonic features and Euclidean
deep GPs with inducing points on five UCI datasets. Residual deep GPs had their inputs mapped
from Rd to Sd via x 7→ (x, b)/∥(x, b)∥. Solid lines give the mean MSE and shaded regions around
them span ±1 standard deviation. All statistics were computed from 5 randomised runs.

domain inducing variables by M , we see

k(·, ζ)L−⊤ = (ϕ0(·), . . . , ϕM (·))⊤ diag

(
1

σ2

Cν,κ
Φν,κ(λ0)

, . . . ,
1

σ2

Cν,κ
Φν,κ(λM )

)−1/2

(38)

= (ϕ0(·), . . . , ϕM (·))⊤ diag

(√
σ2

Cν,κ
Φν,κ(λ0), . . . ,

√
σ2

Cν,κ
Φν,κ(λM )

)
(39)

= Ψ0:M (·)⊤, (40)

which we can substitute into Equation (27)

kζ,m′,S′(·, ·′) = k(·, ·′)− k(·, ζ)L−⊤(I− S′)L−1k(ζ, ·′). (41)

= Ψ⊤
0:K(·)Ψ0:K(·′)−Ψ⊤

0:M (·)(I− S′)Ψ0:M (·′) (42)

= Ψ⊤
M+1:K(·)ΨM+1:K(·′) +Ψ⊤

0:M (·)S′Ψ0:M (·′) (43)

For K = M , posterior covariance reduces to the second term only, which is determined by the
kernel hyperparameters and the variational covariance matrix. However, for M > K, the first term
contributes additional variance that can only be reduced by changing the hyperparameters of the
prior, like length scale and prior variance, rather than the variational parameters m′ and S′.

With this particular setup, there are two forces at play during optimisation: one which lowers the
prior variance to match the posterior variance, and another which modifies S′ to approximate the
true posterior covariance by introducing dependencies between basis coefficients. In practice, we
observe that this can lead to a difficulty if the Ψ⊤

0:M (·)S′Ψ0:M (·′) is already at the desired variance
but S′ must still be adjusted to approximate the true covariance, while Ψ⊤

M+1:K(·)ΨM+1:K(·′) is
still too large. In this case, the first mechanism pushes Ψ⊤

M+1:K(·)ΨM+1:K(·′) downwards by
lowering the prior variance σ2, which necessarily also reduces Ψ⊤

0:M (·)S′Ψ0:M (·′). Consequently,
S′ must increase to compensate for this. This process results in a tug-of-war between the variational
parameters and kernel hyperparameters, which seems to make optimisation difficult, and is thus a
possible reason for the drop in performance as K > M .
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One remedy is to set K = M , which is what we actually do in our experiments. However, since
this comes at some cost to the kernel approximation, we propose that future work can consider an
extended variational family which, in our preliminary tests, helped mitigate this issue at a minimal
cost. Our extension expands the S′ matrix with a parametrised diagonal D′ corresponding to the
K −M eigenfunctions not previously used in the variational family but used in the kernel, giving

kζ,m′,S′(·, ·′) (44)

=Ψ⊤
M+1:K(·)ΨM+1:K(·′) +Ψ⊤

0:M (·)S′Ψ0:M (·′) +Ψ⊤
M+1:K(·)(D′ − I)ΨM+1:K(·′) (45)

=Ψ⊤
0:M (·)S′Ψ0:M (·′) +Ψ⊤

M+1:K(·)D′ΨM+1:K(·′). (46)

This eliminates the aforementioned conflict, allowing the variational parameters to affect both terms
in a similar way.

Ostensibly, when K − M is large, it significantly impacts performance. However, as we have
seen in Appendix A.1, this can be avoided by applying the addition theorem, which is possible if
the parameters of D′ corresponding to eigenfunctions with the same eigenvalues are kept equal.
With this method, the number of additional variational parameters is minimal, and, comparing our
extended variational family with its original variant, there is practically no increase in computation
time, as Ψ⊤

M+1:K(·)D′ΨM+1:K(·′) is simply substituted for Ψ⊤
M+1:K(·)ΨM+1:K(·′).

C RELATION TO WRAPPED GAUSSIAN PROCESSES

Wrapped GPs of Mallasto and Feragen (2018) are used to model a function of Euclidean data taking
values on a Riemannian manifold. They are constructed by choosing a base point function, which
assigns a point on the manifold to each Euclidean input point, and a coordinate-frame GVF prior
(although the latter is implicit in the original paper). Inference is done by lifting the training labels
from the manifold to the tangent space at the base points assigned to their corresponding inputs,
performing inference in the tangent space, and projecting the posterior GVF into the manifold using
the exponential map. The base point function is chosen either as a constant mapping to a point
minimising the squared distance from the training points (i.e. empirical Fréchet mean) or as an
auxiliary regression function.

We derived the manifold-to-manifold layers of our model as a generalisation of the linear mean
construction of Salimbeni and Deisenroth (2017); however, we may also build them based on the
ideas of wrapped GPs. The key difference is that our construction is manifold-input—whereas
wrapped GPs are Euclidean-input—and the input and output manifolds are identical, allowing lay-
ers to be composed. Thus, the first non-trivial modification is to replace the Euclidean domain with
the manifold domain. This requires adapting the GVF from Euclidean kernels to manifold kernels.
Furthermore, instead of using an auxiliary regression function or Fréchet mean, the natural choice
yielding a generalisation of the linear mean is the identity map for the base point function. This
yields a manifold-to-manifold GP; however, to enable doubly stochastic variational inference, the
next modification is to replace the exact GVFs with sparse GVFs using inducing points or interdo-
main inducing variables. With these modifications, we obtain our manifold-to-manifold GPs, which
can be composed sequentially to yield residual deep GPs.
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(a) 5.0 km altitude.

(b) 2.0 km altitude.

(c) 0.1 km altitude.

Figure 18: Difference between the prediction and the ground truth wind velocities, shown as black
arrows, and the predictive uncertainty, shown using a colour scale from purple (lowest) to yellow
(highest), for a 3-layer residual deep GP and wind velocities for July 2010, at three altitude levels.
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(a) Ground truth.

(b) Predictive mean and uncertainty.

(c) Posterior sample.

Figure 19: Ground truth wind velocity data at an altitude of 5.0 km from July 2010, and the corre-
sponding posterior mean, uncertainty, and sample from a 3-layer residual deep GP. The mean and
sample are shown as black arrows, while the predictive uncertainty is shown using a colour scale
from purple (lowest) to yellow (highest).
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(a) Ground truth.

(b) Predictive mean and uncertainty.

(c) Posterior sample.

Figure 20: Ground truth wind velocity data at an altitude of 2.0 km from July 2010, and the corre-
sponding posterior mean, uncertainty, and sample from a 3-layer residual deep GP. The mean and
sample are shown as black arrows, while the predictive uncertainty is shown using a colour scale
from purple (lowest) to yellow (highest).
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(a) Ground truth.

(b) Predictive mean and uncertainty.

(c) Posterior sample.

Figure 21: Ground truth wind velocity data at an altitude of 0.1 km from July 2010, and the corre-
sponding posterior mean, uncertainty, and sample from a 3-layer residual deep GP. The mean and
sample are shown as black arrows, while the predictive uncertainty is shown using a colour scale
from purple (lowest) to yellow (highest).
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