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A: Overview2

The Supplementary material is organized as follows:3

• Section B: Evaluation Datasets4

• Section C: Current Challenges on Zero-shot Video Understanding5

• Section D: Action Segmentation using VLMs6

• Section E: Few-shot Learning for Action Segmentation7

B: Evaluation Datasets8

Tab. 1 summarizes the current challenging datasets targeting human behavior analysis. In this paper,9

we focus on two current challenging tasks, zero-shot classification and frame-wise segmentation10

tasks. Specifically, we perform the study on real-world scenarios [9, 17, 32, 7, 27] and laboratory11

scenarios [26, 20] for action understanding including both zero-shot classification and frame-wise12

segmentation tasks.13

Toyota Smarthome (Smarthome) [9] is a real-world human-centric daily living action classification14

dataset. The dataset is challenging as the inter-class variance is small and the activities are fine-15

grained. It contains 16,115 videos across 31 action classes, offering RGB and skeleton data. We16

utilize only RGB data, following cross-subject (CS) and cross-view2 (CV2) protocols and we report17

Top-1 accuracy in this work.18

UAV-Human [17] features 22,476 UAV-captured human-centric videos, we use the RGB data and19

follow Cross-subject evaluations (CS1).20

Penn Action [32] comprises 2,326 sequences of 15 simple sport actions, we use this dataset for21

action classification using standard train-test splits.22

NTU-RGB+D 60 [26] includes 60 indoor daily living activities and consists of 56,880 RGB-D video23

sequences with 3D skeletons, captured by the Microsoft Kinect v2 sensor. We only use RGB videos24

in this work and we follow the cross-subject (CS) evaluation protocol.25

EgoExo4d [10] is large-scale multimodal multiview video dataset containers totaling 1,286 hours26

of videos with range between 1 to 42 minutes. It provides ego-centric videos paired with multiple27

time-synchronized exo-centric video streams, capturing a wide range of skilled human activities.28

It enriched with extensive annotations including language descriptions, 3D body and hand poses,29

key steps, procedural dependencies, and proficiency ratings. These densely annotation support30

various benchmark tasks in video understanding ego-exo relation modeling, action recognition,31

proficiency estimation, and 3D pose recovery. We only use RGB videos modality of key-step and32

their correspondence label to evaluate zero-shot action classification.33

LEMMA [14] consists of a large collection of videos designed to capture multi-agent and multi-task34

activities from multiple viewpoints. It contains over 324 long video clips that cover diverse activities35

involving 641 actions and 11,781 action segment . Each video is annotated with detailed information,36

such as activity labels, agent roles, object interactions, and temporal segmentation. These videos are37

recorded from various camera angles to provide a comprehensive multi-view perspective, enabling38

the study of tasks like action recognition and action segmentation.39

Toyota Smarthome Untrimmed (TSU) [7] extends the action classes and video counts of Smarthome,40

focusing on frame-wise segmentation tasks. The dataset is very challenging, as each action can be41

performed multiple times in a video and multiple actions can be performed at the same time. We42

use TSU for evaluating the generalizability of SoTA models and we report per-frame mAP following43

Cross-Subject (CS) and Cross-View (CV) evaluation protocols.44

Charades [27] focuses on fine-grained activities segmentation. It contains many object-oriented45

activities and variant light conditions. The current methods are still limited to dealing with this46

dataset, hence, we use this dataset for our study and we report per-frame mAP.47
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Dataset Real-world 2D 3D #Videos #Actions Fine-grained Type Task
NTU-RGB+D 60 [26] × ✓ ✓ 56,880 60 No Daily living AC
NTU-RGB+D 120 [20] × ✓ ✓ 114,480 120 No Daily living AC
Penn Action [32] ✓ ✓ × 2,326 15 No Sport AC
UAV-Human [17] ✓ ✓ × 21,224 155 No UAV AC
Toyota Smarthome [9] ✓ ✓ ✓ 16,115 31 Yes Daily living AC
EgoExo4D [10] ✓ ✓ ✓ 5035 664 Yes General video AC
Kinetics [1] ✓ × × 400,000 400 No General video AC
LEMMA [] ✓ ✓ ✓ 324 641 Yes Daily living AF
PKU-MMD [4] × ✓ ✓ 1,076 51 No Daily living AS
Charades [27] ✓ × × 2,300 151 Yes Daily living VD-AS-AF
TSU [7] ✓ ✓ ✓ 536 51 Yes Daily living VD-AS-AF
Activity-Net [11] ✓ - - 20k - Yes General video VR
DiDeMo [12] ✓ - - 10.5K - Yes General video VR
MSR-VTT [30] ✓ - - 7.2K - Yes General video VR

Table 1: A survey of recent datasets for in-the-wild human action classification (top), action segmen-
tation (bottom).

Methods Training Data Type Task
CLIP [23] CLIP-400-M/LAION-2B ILM AC-VR
X-CLIP [21] CLIP-400M/Kinetics-400 VLML AC-VR
ViCLIP [28] InternVid-10M-FLT VLM AC-VR
ViFi-CLIP [24] CLIP-400M/Kinetics-400 VLM AC-VR
LanguageBind [33] VIDAL-10M ILM/VLM AC-VR
Video-LLaMA2 [3] Webvid-2M /LLaVA-CC3M VLLM AC-VD-AF
LongVA [31] V-NIAH VLLM AC-VD-AF
Video-LLaVA [18] LAION-CC-SBU/Valley/LLaVA-mixed/Video-ChatGPT VLLM AC-VD-AF
LLaVA-OneVision [16] LLaVA-Hound-255K VLLM AC-VD-AF
LAVIDAL [2] ADL-X VLLM AC-VD-AF
Video-Chatgpt [22] VideoChatGPT VLLM AC-VD-AF
UniVTG [19] Ego4D/VideoCC/CLIP teacher VLLM AS
TimeChat [25] TimeIT VLLM AS
VTimeLLM [13] LCS-558K/InternVid-10M-FLT/VideoInstruct100K VLLM AS

Table 2: A survey of SoTA architectures, AC:Action Classification, VR: Video Retrieval, VD: Video
Description, AF: Action Forecasting, AS: Action Segmentation

The mentioned datasets are different from the datasets of web videos used for training video founda-48

tion models. Our selected evaluated datasets can further reflect the generalization ability of video49

foundation models on daily living scenarios.50

C: Current Challenges on Zero-shot Video Understanding51

In this work, we provide an analysis of the performance of current vision-language foundation52

models with five challenging video-based tasks to study to study the transfer ability performance53

of video representation and their alignments with language. The five tasks are: zero-shot action54

classification, video-text retrieval, video description, action forecasting, and frame-wise temporal55

action segmentation. The evaluation and comparisons are performed on real-world datasets.56

Action Classification Zero-shot action classification is to pre-train an action classification model and57

then transfer this model onto an unseen dataset. Unlike traditional methods that rely on extensive58

action labels, zero-shot approaches aim to generalize knowledge from known actions to unknown59

ones. Specifically, the semantic information, such as textual descriptions of the action labels, and the60

videos in the dataset are embedded using CLIP-based methods [29, 21, 28, 24]. Subsequently, given61

a video embedding, we search for its closest semantic information as the action prediction. We select62

such tasks as it highly relays on video-text alignment but has not been fully evaluated by current63

research.64

In real-world video understanding applications, the ability to recognize actions without the need for65

specific training data is invaluable. However, visual features are often low-level, such as shapes,66

colors, and motions, while action descriptions are more abstract, this makes the model difficult to67

accurately match the two types of features. Additionally, current zero-shot learning models are still68

limited to dealing with variations in camera angles, lighting conditions, etc. Hence, this study aims69

to evaluate and compare the CLIP-based vision language foundation models including VLMs and70

VLLMs on such tasks focusing on real-world scenarios.71
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Methods TSU Charades
CS(%) CV(%) mAP(%)

PDAN [6] w/ CLIP [23] 16.3 10.0 15.9
PDAN [6] w/ ViCLIP [28] 21.5 13.4 16.2
PDAN [6] w/ ViFi-CLIP [24] 28.6 15.9 16.4
MS-TCT [5] w/ CLIP [23] 5.3 5.7 12.7
MS-TCT [5] w/ ViCLIP [28] 15.8 8.2 16.3
MS-TCT [5] w/ ViFi-CLIP [24] 21.3 17.3 16.9
MS-TCT [5] w/ I3D [1] (SoTA) 33.7 - 25.4

Table 3: Frame-level mAP on TSU and Charades for comparison of SoTA vision foundation models
with SoTA temporal modeling methods for action segmentation.

Methods Label TSU Charades
CS(%) CV(%) mAP(%)

PDAN [6] w/CLIP [23] 5% 6.2 4.3 8.7
PDAN [6] w/ViCLIP [28] 5% 3.5 3.3 10.1
PDAN [6] w/ViFi-CLIP [24] 5% 5.6 5.7 11.1
PDAN [6] w/CLIP [23] 10% 4.4 4.7 11.1
PDAN [6] w/ [28] 10% 4.0 3.5 11.6
PDAN [6] w/ViFi-CLIP [24] 10% 6.1 5.8 11.3

Table 4: Frame-level mAP on TSU and Charades with randomly selected 5% (top) and 10% (bottom)
for action segmentation.

Video-Text Retrieval Video-text retrieval is considered as another type of zero-shot task on a different72

dataset format where each video in this dataset has a unique description. Its goal is to search and73

retrieve relevant video content based on a given text query and vice versa.These tasks are commonly74

used to evaluate how well vision-language models can generalize their learned representations to75

connect video content with descriptive text.76

Video Description Following [22], we conduct a comprehensive evaluation of Video-Large Language77

Models (VLLMs) based on their text generation capabilities, specifically focusing on their ability to78

produce dense, informative descriptions for input videos. The generated descriptions are assessed79

in comparison to ground truth annotations using five key metrics: Correctness of Information,80

Detail Orientation, Contextual Understanding, Temporal Understanding, and Consistency. This81

evaluation is crucial for benchmarking the model’s ability to comprehend visual content and generate82

meaningful, contextually appropriate text, a key requirement for tasks like automated video captioning,83

summarization, and human-computer interaction. Following [2], TSU videos are trimmed into 1-84

minute clips and are input to the VLLMs. Thereafter, the clip-level descriptions are concatenated and85

summarized into a single video-level description using GPT-3.5 turbo. For Charades, descriptions are86

obtained directly from each video.87

Action Forecasting Action forecasting evaluates an agent’s ability to predict an action before it88

happens. Given a human action video and the corresponding actions that occur in the video, the agent’s89

goal is to choose the action that immediately follows the observed sequence of actions. This task was90

popularized by challenges such as EPIC-KITCHENS [8] and Breakfast [15] to measure the action91

concept reasoning abilities of vision models. In this work, we follow the protocol proposed in [2], in92

which action forecasting is evaluated in a MCQ manner on the Toyota Smarthome Untrimmed [7]93

and LEMMA [14] datasets.94

Frame-wise Action Segmentation in Untrimmed Videos Temporal Action Segmentation focuses on95

per-frame activity classification in untrimmed videos. The main challenge is how to model long-term96

relationships among various activities at different time steps. Specifically, action segmentation entails97

the automatic partitioning of untrimmed video sequences into distinct segments, each corresponding98

to a coherent action. Current methods [6, 5] have two steps, they firstly extract visual features on99

top of the temporal segments of a long-term video using a strong video encoder. Secondly, they100

design temporal modeling to process the features. Hence, the performance of the temporal modeling101

highly relies on the video encoder from current video foundation models. In this study, we compare102

SoTA vision foundation models [23, 21, 28, 24] by evaluating their features on temporal action103

segmentation tasks.104
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Figure 1: Per-action zero-shot classification analysis on Smarthome-CS for VLMs and VLLMs

D: Action Segmentation using VLMs105

In this section, we compare the performance of the visual-language models in action segmentation106

tasks. As current methods for action segmentation tasks adopt a temporal model to process the107

continuous pre-extracted visual features on top of the untrimmed video, this experiment is to compare108

the representation ability of a single visual encoder of SoTA models [23, 28, 24] using their visual109

features with two recent temporal models [6, 5] respectively. The results in Tab. 3 show that similar110

to zero-shot action classification, the visual representation of ViFi-CLIP is more effective than other111

models for segmentation tasks. We also observe that the performances of Vision Language Foundation112

models are still not at the level of State-of-the-art action detection methods [5]. This can be explained113

by the fact that these Foundation models have been trained on web videos, which are quite different114

from Activity of Daily Living (ADL) Videos, such as TSU or Charades.115

E: Few-shot Learning for Action Segmentation116

learning is commendable and enables obtaining good accuracy with limited labeled data. This117

highlights the model practicality in real-world applications where data scarcity is prevalent. The118

few-shot transfer ability of our evaluated CLIP-based models on top of temporal modeling [5] is119

shown in Tab. 4. The results are consistent with previous evaluation, ViFi-CLIP [24] has mostly the120

best visual representation ability.121
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Figure 2: Per-action zero-shot classification analysis on Smarthome-CV for VLMs and VLLMs

Figure 3: Different label formats for PennAction, NTU60 and Smarthome generated by GPT-3.5 .
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Figure 4: EGOEXO4D Coarse-grained labels generated by GPT3.5.

Figure 5: EGOEXO4D samples. For each video there are five view (ego, exo1, exo2, exo3, exo4),
Fine-grained action label and Coarse-grained labelss.
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Figure 6: TSNE visualization of VLMs features for PennAction dataset .
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Figure 7: TSNE visualization of VLMs features for Smarthome-CS dataset .
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Figure 8: TSNE visualization of VLMs features for Smarthome-CV dataset .
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