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ABSTRACT

Adversarial training has been shown to be the most popular and effective technique
to protect models from imperceptible adversarial samples. Despite its success,
it also accompanies the significant performance degeneration to clean data. To
achieve a good performance on both clean and adversarial samples, the main effort
is searching for an adaptive perturbation radius for each training sample, which
essentially suffers from a conflict between exact searching and computational
overhead. To address this conflict, in this paper, firstly we show the superiority
of adaptive perturbation radii intuitively and theoretically regarding the accuracy
and robustness respectively. Then we propose our novel self-adaptive adjustment
framework for perturbation radii without tedious searching. We also discuss
this framework on both deep neural networks (DNNs) and kernel support vector
machines (SVMs). Finally, extensive experimental results show that our framework
can improve not only natural generalization performance but also adversarial
robustness. It is also competitive with existing searching strategies in terms of
running time.

1 INTRODUCTION

The security of machine learning models has long been questioned since most models are vulnerable
to perturbations (Papernot et al., 2016). Extremely tiny perturbations may be imperceptible to human
beings but yet cause poor performance of models such as deep neural networks (DNNs) (Goodfellow
et al., 2014; Madry et al., 2017; Papernot et al., 2017), support vector machines (SVMs) (Xiao et al.,
2012; Biggio et al., 2012; 2014) and logistic regression (LR) (Papernot et al., 2016). Examples
attacked by such perturbations are generally called as adversarial examples.

To learn robust models, adversarial training has now become one of the most effective and widely-
used methods, especially on DNNs and SVMs (Zhou et al., 2012; Kurakin et al., 2017; Miyato et al.,
2018; Wang et al., 2019; Shafahi et al., 2019; Wu et al., 2021). However, the success of adversarial
training comes at a cost (Tsipras et al., 2018; Zhang et al., 2019). Specifically, as stated in (Tsipras
et al., 2018), robustness may be at odds with accuracy, which means models after adversarial training
may fail to generalize well on unperturbed examples. It is generally believed that this phenomenon is
due to the fixed strength of attack throughout the training process, which ignores the fact that every
example may have different intrinsic robustness (Cheng et al., 2020; Zhang et al., 2020).

Naturally, the main effort to mitigate this issue is to find the suitable perturbation radius εi for each
training sample with explicit or implicit searching strategies. For explicit searching strategies, IAAT
(Balaji et al., 2019) uses the brute-force search to find the suitable perturbation radii. MMA (Ding
et al., 2018) aims to find the optimal ε∗i via the bisection search. For implicit searching strategy,
Zhang et al. propose an early-stopped PGD strategy called FAT, which adjusts ε implicitly in essence.
Although FAT skillfully skips the step of searching ε∗i , it is sensitive to hyperparameters such as
steps of PGD attack τ and the uniform perturbation radius ε. Thus, in this paper, we mainly focus on
explicit searching strategies. We also give a brief review of the above algorithms in Table 1. From
this table, we can see that these searching strategies essentially have an inherent conflict between
exact searching and time complexity.

To solve this conflict, in this paper, we propose a novel self-adaptive adjustment framework (SAAT)
for perturbation radii. It achieves a better trade-off between natural generalization performance and
adversarial robustness without much computational overhead. Firstly, for the adaptive perturbation
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Table 1: Comparisons of different adversarial training algorithms which aim at achieving better
generalization performance on DNNs and SVMs. (Complexity here refers to the time complexity. n
is the training size, T is the number of epochs, K and τ are the numbers of steps for PGD attack,
where τ ≤ K, c1 and c2 denote searching steps for εi.)

Algorithm Problem
Finding suitable εi

ComplexitySolving inner problem Searching strategy

DNNs

Standard (Madry et al., 2017) Minimax K-PGD attack − O(nKT )
IAAT (Balaji et al., 2019) Minimax K-PGD attack Brute-force search O(c1nKT )
MMA (Ding et al., 2018) Minimax K-PGD attack Bisection search O(c2nKT )
FAT (Zhang et al., 2020) Minimax K-τ -PGD attack Early-stopped PGD attack O(nτT )

SAAT-kernel (Ours) Minimization Closed-form solution Closed-form solution O(nT )
SAAT-minimax (Ours) Minimax K-PGD attack Closed-form + fine search O(nKT )

SVMs adv-SVM (Wu et al., 2021) Minimization Closed-form solution − O(nT )
SAAT-SVM (Ours) Minimization Closed-form solution Closed-form solution O(nT )

Figure 1: Conceptual illustration of standard adversarial training and our self-adaptive adversarial
training (i.e., SAAT).

radius, we intuitively show its superiority in generalization and theoretically illustrate its strength in
robustness. Then we design a new learning objective that can construct a self-adaptive perturbation
radius for each sample inspired by self-paced learning (SPL) (Jiang et al., 2015). We discuss SAAT
on not only DNNs but also kernel SVMs. Correspondingly, we propose two types of optimization
algorithms. One is built on the original minimax formulation of adversarial training. It determines
the optimal perturbation radii based on the observation that the inner maximization is piecewise
approximately linear to perturbation radii. Then we use a fine search to calibrate the values. The
other is built on kernel perspective for SVMs and DNNs which transforms the original minimax
objective function into an equivalent minimization one. Extensive experimental results show that
our framework enjoys better natural generalization performance and higher adversarial robustness
compared with other adversarial training algorithms. It is also competitive with existing searching
strategies in terms of training time. We summarize the main contributions as follows:
• Theoretically, we prove that adaptive perturbation radii contribute to a lower expected adversarial

risk than fixed and uniform perturbation radii, which implies higher robustness against adversarial
examples.

• Our self-adaptive adversarial training algorithms can skillfully assign the optimal perturbation
radius for each data, which avoids the step of exact searching and achieves a better trade-off
between adversarial robustness and natural accuracy.

• The self-adaptive adversarial training strategy that we propose from the kernel perspective is
applicable to both SVMs and DNNs. It efficiently optimizes a minimization problem instead of
the conventional minimax one since we transform the inner maximization into a simplified and
equivalent form.

2 PRELIMINARIES

2.1 NOTATIONS

We focus on C-class classification problems, then the dataset can be defined as D = {xi, yi}ni=1,
where xi ∈ Rd is the input data, and yi ∈ {1, · · · , C} is the label. We will use I{a}, the 0-1 loss, to
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represent an indicator function, which returns 1 if a is true and 0 otherwise.We will use l(·) to indicate
the surrogate loss function of 0-1 loss. The set B(δ, ε) = {δ : ||δ||p ≤ ε} means that the sample is
constrained by an lp-normed 1 perturbation δ with the perturbation radius ε. We denote the maximum
adversarial loss as l̂(x, y, f, ε) = maxδ∈B(δ,ε) l(f(x+ δ), y), where f ∈ F and F : X → R is one
neural network class with depth-D and width-H:

F = {x→WDρ(WD−1ρ(· · ·W1x · · · )), ||Wi||F ≤Mi, i ∈ [D]}. (1)

Here ρ(·) is an activation function with Lρ-Lipschitz and Wi is a Hi ×Hi−1 matrix. Then, we have
H = max{H0, · · · , HD}, HD = 1 and H0 = d. Thus the class of the maximum adversarial loss
can be formulated as l̂F = {l̂f : f ∈ F}.

2.2 STANDARD ADVERSARIAL TRAINING

The standard adversarial training considers a minimax problem as follows:

min
w

1

n

n∑
i=1

max
δi∈B(δi,ε)

l(yi, fw(xi + δi)), (2)

where w is the model parameter, xi + δi is the adversarial example of xi. The inner maximization
problem actually follows the principle of adversarial attack and aims to construct the most aggressive
adversarial examples (Madry et al., 2017), while the outer minimization is to find model parameters
to minimize the loss caused by the adversarial examples. It is notable that a fixed and uniform
perturbation radius ε is exerted for all training samples here.

3 SELF-ADAPTIVE ADVERSARIAL TRAINING

In this section, we first show the superiority of adaptive perturbation radii intuitively and theoretically.
Inspired by that, we formulate a novel framework for self-adaptive adversarial training. Then we
propose SAAT-minimax to solve the objective.

3.1 SUPERIORITY OF ADAPTIVE PERTURBATION RADII

Although adversarial training with adaptive perturbation radii has been widely studied empirically, its
theoretical advantages are seldom explored. To fill this vacancy, in the following section, we first
intuitively show its superiority on natural generalization and then theoretically illustrate its strength
on adversarial robustness.

Adaptive Perturbation Radii Contribute to Better Generalization Performance.
Intuitively, as shown in Fig. 1b, for standard adversarial training, the perturbation radii are kept the
same for all training samples. However, for samples near the decision boundary, enforcing large
perturbation radii will lead to the cross-over mixture of samples in different classes. In this case,
it leads to a distorted and undesirable decision boundary and unavoidably destroy the accuracy on
unperturbed examples. Thus, we come to the idea of adversarial training with adaptive perturbation
radii. As shown in Fig. 1c, the perturbation radii are set according to the specific location of the
samples. It effectively avoids the severe distortion of the decision boundary and will not hurt the
natural generalization much.

Adaptive Perturbation Radii Contribute to Lower Adversarial Risk.
In this part, we theoretically prove that adaptive perturbation radii can lead to a tighter upper bound
of adversarial risk than fixed ones in the case of binary classification, which implies higher robustness
against adversarial examples.

Firstly, we provide the definition of the expected adversarial riskRrob as follows:
Definition 1. (Expected Adversarial Risk) Following Zhang et al. (2019); Schmidt et al. (2018);
Bubeck et al. (2019), to characterize the robustness of a binary classifier f : R→ {0, 1}, the expected
adversarial risk can be defined as

Rrob(f) = E(x,y)∼DI{∃δ ∈ B(δ, ε) : yf(x+ δ) ≤ 0} (3)
1In this paper, we consider the lp-norm ball of p ≥ 1 such that the region is convex.
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Based on Figure 1 above, we do not want to further increase εi if the adversarial example already can
be misclassified by the classifier. This leads to the definition of the theoretically optimal adaptive
perturbation radius ε∗i as follows:

Definition 2. (Optimal Adaptive Perturbation Radius) Theoretically, the optimal adaptive perturba-
tion radius ε∗i for each sample can be defined as

ε∗i =

{
εmax, if ∀δi ∈ B(δi, εmax), yif(xi + δi) > 0,

arg min
εi≤εmax

εi, s.t. ∃δi ∈ B(δi, εi), yif(xi + δi) ≤ 0, otherwise. (4)

where εmax is the maximum perturbation radius, εi is the perturbation radius assigned to xi.

Remark 3. A few examples of the optimal adaptive perturbation radius can be seen in Figure 1c. For
the samples that are misclassified after adversarial attack, ε∗i is the minimum radii that achieve this
goal. For the samples that can be robustly classified even with εmax, ε∗i equals to εmax.

Before giving our main theorem (i.e., Theorem 5), we provide Assumption 4 as follows.

Assumption 4. For the binary classification surrogate loss function l(·), we assume it can be written
as l(f(x), y) = φ(yf(x)), where φ is a non-increasing function and is Lφ-Lipschitz.

Examples of satisfied loss functions include hinge loss, logistic loss(Xiang, 2011), exponential loss
(Wyner, 2003) and many others. Based on Assumption 4, the upper bound to the expected adversarial
risk can be gotten as follows, the detailed proof is in Appendix A.

Theorem 5. When Assumption 4 holds, for any ω ∈ (0, 1) and any l̂f ∈ l̂F , with probability at least
1− ω, the following holds:

Rrob(f) ≤ 1

n

n∑
i=1

l̂ (xi, yi, f, ε
∗
i ) + 3B

√
log 2/ω

2n
+

24B√
n
LφL

D−1
ρ max{1, d

1
2−

1
p }(Xp + εmax)Q.

where Xp = max{||xi||p}ni=1, Q = 24B√
n
LφL

D−1
ρ max{1, d

1
2−

1
p }(Xp +

εmax)

√
log
∏D
i=1

πHiHi−1/2

Γ(
HiHi−1

2 +1)
M

HiHi−1

i

∏D
i=1Mi and Γ means the gamma function.

Then we give Theorem 6 to show that the maximum loss function l̂(xi, yi, f, ε) increases with regard
to ε. The detailed proof is provided in Appendix B.

Theorem 6. The maximum loss function l̂(xi, yi, f, ε) is an increasing function with regard to the
perturbation radius ε.

Remark 7. Combing Theorem 5 with Theorem 6, it is evident that replacing εmax with ε∗i will
contribute to a tighter upper bound for the expected adversarial riskRrob. It indicates that adaptive
perturbation radius in training stage is a better choice than fixed and uniform radius that can lead to
higher adversarial robustness.

3.2 FRAMEWORK OF SELF-ADAPTIVE ADVERSARIAL TRAINING

Although several methods have been proposed to search for a suitable perturbation radius for each
training sample, there exists a conflict between exact searching and computational load, as mentioned
in Section 1 and Table 1. To achieve fast self-adaptive adversarial training, we creatively introduce a
self-adaptive regularizer of perturbation radii (i.e., −λ 1

n

∑n
i=1 εi) into formulation (2), and give our

new formulation of self-adaptive adversarial training (SAAT) as follows:

min
w,ε

1

n

n∑
i=1

{
max
‖δi‖p≤εi

l(yi, fw(xi + δi))− λεi
}
, (5)

s.t. εi ∈ [0, εmax], i = 1, . . . , n.

where εi is the customized perturbation radius of xi achieved by the self-adaptive item and λ is the
regularization parameter. Thus εi can update dynamically as the maximum adversarial loss of xi
changes.
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Remark 8. Note that a similar term is used in self-paced learning (SPL) (Jiang et al., 2015). The
core idea of SPL is to learn a model by gradually including samples from easy to complex according
to their losses since SPL decides whether the samples can be selected into training via a self-paced
regularization. Inspired by SPL, we aim to assign a specific perturbation radius εi to each sample
according to its loss. Formally, we design a self-adaptive regularizer imposed on εi and add it to the
original formulation of adversarial training.

3.3 SAAT-MINIMAX

In this part, we aim to optimize the SAAT framework (5). Specifically, we propose a two-stage search
strategy to find the approximate optimal perturbation radii. The first stage is built on the closed-form
solution via the piecewise approximate linearity of l̂(xi, yi, fw, εi) wrt. the perturbation radii εi. The
second stage is a fine search to calibrate the results of the first stage. In the following, we will discuss
the two-stage search strategy in detail.

0 -b/k
0

Figure 2: The sketch map of l̂f (zi, εi) wrt. εi.

Firstly, we observe that l̂(xi, yi, fw, εi) is piece-
wise approximately linear with regard to εi for
each sample as shown in Fig. 2 and propose
Assumption 9. This assumption is verified in
Appendix F.3.

Assumption 9. l̂(xi, y, fw, εi) is piecewise lin-
ear with regard to εi as follows:

l̂(xi, yi, fw, εi) = max(0, kεi + b) (6)

where k > 0 is the slope of l̂ with regard to εi and b denotes y-intercept.

Then, with the aid of Assumption 9, we come to Theorem 10, which provides the approximate
optimal perturbation radii ε∗i for optimizing objective function (5). Its proof is presented in Appendix
C. The detailed setting of ki and bi can be seen in section 5.1.3.

Theorem 10. For the minimization problem minεi∈[0,εmax] l̂(xi, yi, fw, εi)− λεi, if fw is given, and
Assumption 9 holds, we have the optimal ε∗i as follows:

ε∗i =


0, if bi ≥ 0 and ki ≥ λ;
− bi
ki
, if bi < 0 and ki ≥ λ;

εmax, otherwise.
(7)

The second stage is a fine search to calibrate the results of Theorem 10. Since Assumption 9 may not
hold exactly, we use a simple search strategy with a fixed step size to find more accurate values of ε∗i .
Specifically, if the PGD attack fails to find an adversarial image xi + δi that can be misclassified,
it implies ε∗i is too small. Thus, we set ε∗i = ε∗i + η. Otherwise, we set ε∗i = ε∗i − η, where η is a
pre-specified fixed step size.

Finally, we combine the above two-stage search strategy with the standard adversarial training
procedure and give the pseudo-code of our SAAT-minimax in Algorithm 1.

4 SELF-ADAPTIVE ADVERSARIAL TRAINING FROM KERNEL PERSPECTIVE

As we all know, traditional adversarial training aims to optimize a minimax problem. It typically
uses a gradient-based iterative solver such as multi-step PGD to approximately solve the inner
problem, which often leads to high computational overhead. To solve this problem, we propose a
new self-adaptive adversarial training strategy from kernel perspective2. Specifically, it efficiently
transforms the minimax problem (5) into an equivalent minimization one. Then we discuss the
detailed self-adaptive adversarial training algorithms via the kernel perspective for both DNNs and
SVMs.

2The kernel perspective means that our function f is in the reproducing kernel Hilbert space (RKHS) (Iii,
2004).
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Algorithm 1 SAAT-minimax with l∞-norm constrained perturbations

Input: D : training set; T : number of epochs; εmax : maximum perturbation radius; γ : learning
rate; K : PGD steps; α : PGD step size; B : batch size.

Output: w.
1: for epoch= 1, · · · , T do
2: Choose a batch of training samples {(xi, yi)}Bi=1 ∼ D.
3: Obtain ε∗i via Theorem 10.
4: ε∗i = max(min(ε∗i , εmax), 0).
5: for k = 1, · · · ,K do
6: δi = δi + α · sign(∇δi l(yi, fw(xi + δi))).
7: δi = max(min(δi, ε

∗
i ),−ε∗i ).

8: Calibrate ε∗i via the fine search strategy.
9: end for

10: w = w − γ∇wl(yi, fw(xi + δi)).
11: end for

4.1 PRIMARY RESULTS FROM KERNEL PERSPECTIVE

The transformation of the minimax problem (5) contains two steps: firstly we map the perturbations
from linear to kernel spaces, then we can solve the unconstrained equivalent form of the inner
minimization.

We first discuss the kernelization of the perturbations δ. For an adversarial example x + δ in the
linear space, it is known that if we map it into the kernel space, the kernelized example φ(x + δ)
will be unpredictable, here φ(·) is the feature mapping function. Fortunately, Theorem 14 in (Xu
et al., 2009) provides a tight connection between perturbations in the linear and kernel space, i.e., the
perturbation range of φ(x) + δφ tightly covers that of φ(x+ δ), where δφ is the perturbation in the
kernel space and ‖δφ‖2 ≤

√
2f(0)− 2f(ε). Since we can use a l2-norm ball to wrap a lp-norm ball,

e.g., {‖δ‖∞ ≤ ε} ⊆
{
‖δ‖2 ≤

√
2ε
}

, this theorem is applicable to other norms as well.

Based on it, our formulation of self-adaptive adversarial training (5) can be rewritten as the following
form in the RKHSH:

min
f∈H,ε′

1

n

n∑
i=1

{
max
‖δiφ‖2≤ε

′
i

l
(
yi, 〈f, φ(xi) + δiφ〉H

)
− λε′i

}
,

s.t. ε′i ∈ [0, ε′max], i = 1, . . . , n. (8)

where ε′i =
√

2f(0)− 2f(εi), ε′max =
√

2f(0)− 2f(εmax).

Then we can obtain the simplified and equivalent form of the inner maximization of Eq. (8) via
Theorem 11. The detailed proof can be found in Appendix D.

Theorem 11. If f is a function in an RKHS H, the inner maximization problem
max‖δiφ‖2≤ε′ l(yi, 〈f, φ(xi) + δiφ〉H) in (8) is equivalent to the regularized loss function
l (yi, f(xi) + ε′ ‖f‖H), where ‖ · ‖H stands for the norm in the RKHS.

According to this theorem, our goal turns to optimize the following minimization problem:

min
f∈H,ε′

1

n

n∑
i=1

{l (yi, f(xi) + ε′i ‖f‖H)− λε′i} . (9)

s.t. ε′i ∈ [0, ε′max], i = 1, . . . , n.

For the new problem (9), it is obvious that Theorem 10 can be easily applied here to get the optimal
perturbation radius ε′∗i as well, since we denote l (yi, f(xi) + ε′i ‖f‖H) as l̂(xi, yi, f, ε′i).

In this case, we give the optimization framework of SAAT from the kernel perspective in Algorithm 2,
which clearly shows the alternative updating for {ε′∗i }ni=1 and function f . In the following subsection,
we will discuss its applications on DNNs and kernel SVMs in detail.
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Algorithm 2 SAAT on Kernel Perspective

Input: ε′max, λ0, µ.
Output: {ε′∗i }ni=1.

1: Initialize λ = λ0.
2: while not converged do
3: Update {ε′∗i }ni=1 via Theorem 10 with fixed f .
4: Update f with fixed {ε′∗i }ni=1 on DNNs or kernel SVMs.
5: λ← µλ.
6: end while

4.2 SPECIFIC ALGORITHMS ON DNNS AND SVMS

4.2.1 SAAT-KERNEL ON DNNS

Since the RKHS norm ‖f‖H cannot be computed on DNNs, we use the lower bound of ‖f‖H
proposed in (Bietti et al., 2019) to approximate its value:

‖f‖H ≥ ‖f‖2δ := sup
‖δ‖2≤1

f(x+ δ)− f(x). (10)

In this way, since the optimal solution for the perturbation radii ε′i has already been attained, we
can easily optimize learning objective (9) via optimization algorithms such as SGD (Bottou, 2010)
and ADAM (Kingma & Ba, 2014). The procedures to alternatively optimize {ε′∗i }ni=1 and the model
function f is shown in Algorithm 2.

4.2.2 SAAT-SVM ON KERNEL SVMS

Similar with SAAT on DNNs, SAAT on kernel SVMs can be formulated as the following problem:

min
f∈H,ε′

‖f‖2H
2

+
C

n

n∑
i=1

{
l(yi, f(xi) + ε′i‖f‖H)− λε′i

}
. (11)

s.t. ε′i ∈ [0, ε′max], i = 1, . . . , n.

where 1
2‖f‖

2
H is the added norm similar to the SVM formulation in (Dai et al., 2014). As the doubly

stochastic gradient descent (DSG) algorithm (Dai et al., 2014) has been proved to be a powerful
technique for scalable kernel learning, here we use it optimize Eq. (11). The detailed optimization
procedure is provided in Appendix E.

5 EXPERIMENTS

In this section, we compare SAAT with different adversarial training algorithms on MNIST (Lecun &
Bottou, 1998), CIFAR10 (Krizhevsky & Hinton, 2009) and CIFAR100 (Krizhevsky & Hinton, 2009)
under l2/l∞-norm constrained perturbations. Due to the page limit, we only show partial results of
l∞ norm in the following, other results are presented in Appendix F.1 and F.2. Experiments on kernel
SVMs and the verification of Assumption 9 are also presented in Appendix F.4 and F.3.

5.1 EXPERIMENTAL SETUP

5.1.1 COMPARED ALGORITHMS:

• Natural: Natural model training on DNNs which minimizes the cross entropy loss.
• Standard (Madry et al., 2017): The standard adversarial training method which uses the K-step

PGD as an attacker.
• IAAT (Balaji et al., 2019): Instance adaptive adversarial training which uses brute-force search to

assign instance-specific perturbation radius εi to each sample.
• MMA (Ding et al., 2018): Max-margin adversarial training which directly maximizes the dis-

tances from inputs to the decision boundary via binary search for the optimal perturbation radii.
• FAT (Zhang et al., 2020): A friendly adversarial training strategy which generates friendly

adversarial data by stopping the adversarial data searching algorithms early.
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• TRADES (Zhang et al., 2019): This method aims to achieve a trade-off between robustness and
accuracy via decomposing the robust error as the sum of natural error and boundary error.

• SAAT-kernel: Our self-adaptive adversarial training algorithm on DNNs from the kernel perspec-
tive. We apply both the hinge loss and the cross entropy loss in the experiments, i.e., SAAT-kernelh
and SAAT-kernelc.

• SAAT-minimax: Our self-adaptive adversarial training algorithm on the minimax problem for
DNNs. We apply both the hinge loss and the cross entropy loss in the experiments, i.e., SAAT-
minimaxh and SAAT-minimaxc.

Table 2: Test accuracy (%) of various defense methods trained on MNIST with l∞-norm constrained
perturbations on DNNs. (The results of Natural on clean data are just baselines for reference.)

Method Clean FGSM 10-PGD CW AutoAttack
Natural 98.83±0.29 14.84±0.66 0.00±0.00 0.00±0.00 0.00±0.00

Standard 97.82±0.35 95.00±0.78 89.55±0.89 87.27±0.44 86.14±0.81
IAAT 98.57±0.39 92.54±0.67 85.17±1.04 83.64±0.79 79.13±0.64
MMA 98.85±0.63 92.87±1.07 81.87±0.88 75.33±1.19 70.32±0.94
FAT 97.08±0.59 94.11±0.94 80.47±0.86 78.92±0.77 66.53±0.65

TRADES 98.78±0.47 97.07±0.52 90.44±0.66 86.74±0.67 88.09±0.46
SAAT-kernelh 98.47±0.33 78.92±0.72 67.76±0.85 62.45±0.46 52.79±0.46
SAAT-kernelc 98.61±0.29 80.55±0.68 62.86±0.55 63.39±0.74 53.64±0.67

SAAT-minimaxh 98.44±0.67 97.42±0.82 94.80±0.76 94.42±0.59 93.35±0.46
SAAT-minimaxc 98.88±0.27 96.29±0.54 91.97±0.69 92.27±0.74 90.03±0.57

Table 3: Test accuracy (%) of various defense methods trained on CIFAR10 with l∞-norm constrained
perturbations on DNNs. (The results of Natural on clean data are just baselines for reference.)

Method Clean FGSM 10-PGD CW AutoAttack
Natural 92.26±0.45 5.79±0.36 0.00±0.00 0.00±0.00 0.00±0.00

Standard 75.65±0.37 62.73±1.09 48.51±0.64 40.37±0.84 42.44±0.63
IAAT 74.56±0.52 49.88±0.82 38.02±0.69 36.79±0.74 30.66±0.79
MMA 79.15±0.67 62.83±0.74 45.73±0.82 44.34±0.96 34.28±0.68
FAT 86.80±0.45 61.49±0.62 46.17±0.77 45.14±0.83 33.34±0.87

TRADES 86.74±1.27 63.42±0.64 49.76±0.65 45.39±0.76 49.55±0.72
SAAT-kernelh 83.89±0.37 24.97±0.79 18.54±0.82 16.33±0.87 11.95±0.58
SAAT-kernelc 83.06±0.73 27.84±0.59 20.77±0.47 18.75±0.64 14.33±0.71

SAAT-minimaxh 85.29±0.68 61.52±0.85 53.86±1.37 47.00±0.96 49.84±0.33
SAAT-minimaxc 86.98±0.52 63.73±0.72 51.70±0.66 49.37±0.84 50.68±0.54

Table 4: Test accuracy (%) of various defense methods trained on CIFAR100 with l∞-norm con-
strained perturbations on DNNs. (The results of Natural on clean data are just baselines for reference.)

Method Clean FGSM 10-PGD CW AutoAttack
Natural 77.79±0.47 1.16±0.21 0.00±0.00 0.00±0.00 0.00±0.00

Standard 58.13±0.36 35.99±0.44 27.20±0.72 23.64±0.77 22.63±0.94
IAAT 59.47±0.37 27.23±0.65 18.58±0.59 17.79±0.34 13.73±0.88
MMA 49.03±0.77 27.79±0.74 20.50±0.67 18.96±0.51 15.39±0.74
FAT 61.28±0.88 25.03±0.72 19.73±0.56 19.92±0.81 13.09±0.69

TRADES 50.71±0.67 28.99±0.84 21.59±0.65 17.41±0.57 16.47±0.77
SAAT-kernelh 66.88±0.73 13.64±0.81 8.77±0.61 7.65±0.84 7.98±0.72
SAAT-kernelc 68.56±0.53 12.71±0.66 6.79±0.75 6.87±0.52 5.34±0.69

SAAT-minimaxh 70.72±0.47 47.18±0.33 39.68±0.51 34.70±0.36 32.77±0.57
SAAT-minimaxc 68.11±0.57 43.80±0.44 35.33±0.39 31.69±0.67 30.83±0.62

5.1.2 ATTACK SETTINGS:

Four popular attack methods are used in the experiments: FGSM (Goodfellow et al., 2014), 10-PGD
(PGD with 10 steps) (Madry et al., 2017), CW (Carlini & Wagner, 2017) and AutoAttack (?). All the
attacks can be performed with both l2 and l∞ versions. In the l∞ version, for FGSM and 10-PGD, the

8
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perturbation radius is set as εtest = 0.3 for MNIST and εtest = 8/255 for CIFAR10 and CIFAR100,
the step size for 10-PGD is εtest/4, which is a standard setting for adversarial attack (Madry et al.,
2017; Ding et al., 2018).

5.1.3 IMPLEMENTATION DETAILS:

Under l∞-norm constrained perturbations, we set εmax = 0.3 for MNIST, εmax = 8/255 for
CIFAR10 and Tiny Imagenet, and the step size is set as εmax/4. For all algorithms, we set the
batch size as 100 with 10 epochs. We use 5-fold cross validation to choose the optimal learning rate
γ ∈ 2[−3,3].

We use the PreAct ResNet18 architecture for CIFAR10 and CIFAR100 and use two convolutional
networks with 16 and 32 convolutional filters followed by a fully connected layer of 100 units for
MNIST, which are the same model structures provided by Wong et al. (2020). For all the compared
algorithms, we use the cross entropy loss function. For SAAT-minimax and SAAT-kernel, bi is gotten
by l̂(xi, yi, fw, εmax)− kiεmax, we set ki = 2, η = 0.05, linearly increase regularization parameter
λ from 1 to 3 on MNIST, set ki = 0.15, η = 0.3/255, linearly increase λ from 0 to 0.5 on CIFAR10,
and set ki = 0.3, η = 0.3/255, linearly increase λ from 0 to 0.6 on CIFAR100.

5.2 EXPERIMENTAL RESULTS AND ANALYSES

Robustness against various attacks. We first explore robustness of adversarial training algorithms
against different attacks in Tables 2, 3, 4. It can be seen clearly that our SAAT-minimax not only
improves natural generalization performance, but also enjoys stronger defensive ability against
various adversarial examples. Moreover, it indicates that hinge loss contributes to higher adversarial
robustness than cross entropy. Although SAAT-kernel is not as robustness as adversarial training
algorithms on the minimax problem, it largely improves accuracy on clean data. As for the compared
algorithms, although they improve the generalization performance on clean data to some extent, they
sacrifice much robustness on strong attacks, especially CW and AutoAttack.

Running time with different sizes of training samples. Fig. 3 shows the running time of various
adversarial training algorithms when training samples of different sizes. We can find that SAAT-kernel
is much more efficient due to its one-layer objective function. For other algorithms on the minimax
problem, the time-consuming factor lies on the K-step PGD attack. Among adversarial training
algorithms with adaptive εi, SAAT-minimax is superior to others since it avoids brute-force search
for the optimal ε∗i . We also note that the time of SAAT-minimax costs a little longer than that of FAT
since FAT applies the early-stopped PGD strategy. But the extra time can be ignored compared with
the superiority we have in robustness and generalization.
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Figure 3: Running time of adversarial training algorithms against different sizes of training samples.

6 CONCLUSION
To achieve a better trade-off between robustness and accuracy without much computation overhead,
in this paper, we propose an adversarial training framework with self-adaptive perturbation radii
named SAAT. This framework can also get the closed-form solution of the optimal perturbation
radii and avoids tedious searching compared with existing works, which is applicable to both DNNs
and kernel SVMs. Comprehensive experimental results verify that our algorithms not only improve
adversarial robustness and natural generalization, but also can be competitive with other adversarial
training algorithms in terms of running time.
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A PROOF OF THEOREM 5

For our upper bound of the adversarial risk, i.e., Theorem 5, we firstly give a brief proof process.

Step 1: For each sample (x, y), we define the optimal adaptive perturbation radius ε∗i for each sample
as:

ε∗i =

{
εmax, if ∀δi ∈ B(δi, εmax), yif(xi + δi) > 0,

arg min
εi≤εmax

εi, s.t. ∃δi ∈ B(δi, εi), yif(xi + δi) ≤ 0, otherwise. (12)

which is the minimum perturbation radius that guarantees at least one adversarial sample misleads
the model. Based on the optimal adaptive perturbation radius ε∗i , we further use the Rademacher
complexity, i.e., Definition 10, to bound the adversarial risk Rrob, i.e., Lemma 14:

Rrob ≤
1

n

n∑
i=1

l̂(xi, yi, f, ε
∗
i ) + 2BRT (l̂∗F ) + 3B

√
log 2/ω

2n
, (13)

where RT (l̂∗F ) is the empirical Rademacher complexity of the adversarial loss class l̂∗F =

{l̂(x, y, f, ε∗i ) : f ∈ F} with respect to the sample set x, y ∈ D. Based on the above bound,
the following two steps separately discuss the two terms: RT (l̂∗F ) and l̂(xi, yi, f, ε∗i ).

Step 2: For the empirical Rademacher complexity RT (l̂∗F ), we use the covering number, i.e.,
Definition 15, to get its bound, i.e., Lemma 20:

RT (l̂∗F ) ≤ 12√
n
LφL

D−1
ρ max{1, d

1
2−

1
p }(Xp + εmax)

√√√√log

D∏
i=1

πHiHi−1/2

Γ(HiHi−1

2 + 1)
M

HiHi−1

i

D∏
i=1

Mi,

(14)

where Xp = max{||xi||p}ni=1 and Γ means the gamma function.

Combing Step 2 with Step 1, we can then get Theorem 5.

The following is the completed proof process.

Step 1: Rademacher complexity (Mohri et al., 2018) is one of the classic measures of generalization
error. Here, we present its formal definition.
Definition 12. (Rademacher Complexity) (Mohri et al., 2018) For any function classH : Z → R,
given a sample set T = {z1, · · · , zn}, z ∈ Z , the empirical Rademacher complexity of H with
respect to T is defined as:

RT (H) =
1

n
Eσ[sup

h∈H

n∑
i=1

σih(zi)], (15)

where σ1, · · · , σn are i.i.d. Rademacher random variables with P(σi = 1) = P(σi = −1) = 1
2 .

We then have the following Theorem 13 which connects the empirical and expected risks via
Rademacher complexity.
Theorem 13. (Mohri et al., 2018) Let H be a function class mapping from Z to [0, B] and T =
{z1, · · · , zn}, z ∈ Z be an i.i.d. sample set drawn from the distribution P . Then, for any ω ∈ (0, 1),
with probability at least 1− ω, the following holds for all h ∈ H:

Ez∼P [h(z)] ≤ 1

n

∑
zi∈T

h(zi) + 2BRT (H) + 3B

√
log 2/ω

2n
. (16)

Based on the above Theorem 13, we bound the adversarial risk Rrob in the following Lemma 14.
Lemma 14. When Assumption 4 holds, given the sample set D = {(xi, yi)}ni=1, for any ω ∈ (0, 1)
and any f ∈ F , with probability at least 1− ω, the following holds:

Rrob ≤
1

n

n∑
i=1

l̂(xi, yi, f, ε
∗
i ) + 2BRT (l̂∗F ) + 3B

√
log 2/ω

2n
, (17)

where l̂∗F = {l̂(x, y, f, z, ε∗i ) : f ∈ F}.
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Proof. For each sample (xi, yi), we introduce the optimal perturbation radius ε∗i :

ε∗i =

{
εmax, if ∀δi ∈ B(δi, εmax), yif(xi + δi) > 0,

arg min
εi≤εmax

εi, s.t. ∃δi ∈ B(δi, εi), yif(xi + δi) ≤ 0, otherwise. (18)

Then, we have:

I{∃δ ∈ B(δi, εmax) : yif(xi + δi) ≤ 0}
=I{∃δ ∈ B(δi, ε

∗
i ) : yif(xi + δi) ≤ 0} (19)

≤ max
δi∈B(δi,ε∗i )

lf (xi + δi, yi)

where the last inequality is because of Assumption 4. Finally, take expectation for the above inequality,
we obtain:

Rrob ≤ E(x,y)∼D max
δ∈B(δ,ε∗)

lf (x+ δ, y) (20)

= E(x,y)∼D l̂f (x, y, ε∗)

Considering lf ∈ [0, B] and Theorem 13, we conclude that for any ω ∈ (0, 1) and any f ∈ F , with
probability at least 1− ω, the following holds:

Rrob ≤ E(x,y)∼D l̂f (x, y, ε∗) (21)

≤ 1

n

n∑
i=1

l̂(xi, yi, f, ε
∗
i ) + 2BRT (l̂∗F ) + 3B

√
log 2/ω

2n
.

Based on the above bound, the following step discusses the termRT (l̂∗F ).

Step 2: For the empirical Rademacher complexity RT (l̂∗F ), we introduce the covering number
(Wainwright, 2019) to get its bound.
Definition 15. (µ-Covering Number) (Wainwright, 2019) Let µ > 0 and (H, l(·, ·)) be a metric
space, where l(h, h′), h, h′ ∈ H is a (pseudo)-metric. H̃ ⊂ H is the µ-cover ofH, if for any h ∈ H,
there exists h̃ ∈ H̃ s.t. l(h̃, h) ≤ µ. Define the smallest cardinality |H̃| as the µ-covering number of
H, and denote the µ-covering number as N (H, l(·, ·), µ).

Then, we introduce Theorem 16, which provides the upper bound of the empirical Rademacher
complexity with covering number.
Theorem 16. (Wainwright, 2019) Given the sample dataset T = {z1, · · · , zn}, z ∈ Z , the pseudo-

norm of the function classH : Z → R is defined as: ∀h ∈ H, ||h||T =
(

1
n

∑n
i=1 |h(zi)|2

) 1
2 , and the

pseudo-metric of H is ∀h, h̃ ∈ H, ||h − h̃||T =
(

1
n

∑n
i=1 |h(zi) − h̃(zi)|2

) 1
2 . Then, the empirical

Rademacher complexity RT (H) satisfies

RT (H) ≤ 12√
n

∫ maxh∈H ||h||T

0

√
logN (H, || · ||T , µ)dµ, (22)

where N (H, || · ||T , µ) means the µ-covering number ofH.

In the following, we introduce some necessary theorems first (i.e., Theorem 17-19), then provide the
bound of the empirical Rademacher complexityRT (l̂∗F ), i.e., Lemma 20.
Theorem 17. (Ledoux & Talagrand, 1991) Let φ : R→ R be a Lφ-Lipschitz function, then

RT (φ ◦ H) ≤ LφRT (H) (23)

whereRT (H) is the empirical Rademacher complexity of the function classH : Z → R with respect
to the sample set D = {(xi, yi), · · · , (xn, yn)} and φ ◦ H = {φ(h(xi, yi)) : h ∈ H}.
Theorem 18. (Xiao et al., 2021) When δ ∈ B(δ, ε) and x ∈ Rd, we have:

||x+ δ||2 ≤ max{1, d
1
2−

1
p }(||x||p + ε). (24)
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Theorem 19. (Xiao et al., 2021) Let W be a m× n matrix and x be a n-dimension vector, we have

||W · x||2 ≤ ||W ||F ||x||2. (25)

Here, we provide the bound of the empirical Rademacher complexityRT (l̂∗F ).
Lemma 20. When Assumption 4 holds, given the sample dataset T = {z1, · · · , zn}, z ∈ Z , we
have:

RT (l̂∗F ) ≤ 12√
n
LφL

D−1
ρ max{1, d

1
2−

1
p }(Xp + εmax)

√√√√log

D∏
i=1

πHiHi−1/2

Γ(HiHi−1

2 + 1)
M

HiHi−1

i

D∏
i=1

Mi,

(26)

where Xp = max{||xi||p}ni=1 and Γ means the gamma function.

Proof. First of all, according to Assumption 4, we rewrite l̂∗f as:

l̂∗f (x, y, ε) = max
δ∈B(δ,ε∗)

lf (x+ δ, y)

= φ( inf
δ∈B(δ,ε∗)

yf(x+ δ)) := φ(l̃∗f (x, y)), (27)

where φ(·) is a non-increasing function and is Lφ-Lipschitz. Then, according to Theorem 17, we
have:

RT (l̂∗F ) = RT (φ(l̃∗F (x, y))) ≤ LφRT (l̃∗F ) (28)

where l̃∗F = {l̃∗f : f ∈ F}. In this case, we first find the upper bound of RT (l̃∗F ). Immediately,
according to Theorem 16, we have:

RT (l̃∗F ) ≤ 12√
n

∫ maxl̃∗
f
∈l̃∗F
||l̃∗f ||T

0

√
logN (l̃∗F , || · ||T , µ)dµ. (29)

Based on this, we will separately discuss the two terms: maxl̃∗f∈l̃∗F
||l̃∗f ||T and N (l̃∗F , || · ||T , µ).

For the term maxl̃∗f∈l̃∗F
||l̃∗f ||T , we first let x∗ = x+ δ∗, δ∗ = arginfδ∈B(δ,ε∗)yf(x+ δ) and xi be

the output of x∗ pass through the first to the (i− 1)-th layer of the neural network, then we have:

|l̃∗f (x, y)| = | inf
δ∈B(δ,ε∗)

yf(x+ δ)|

= |WDρ(WD−1x
D−1)|

≤ ||WD||F · ||ρ(WD−1x
D−1)||2

≤MD||ρ(WD−1x
D−1)− ρ(0)||2 (30)

≤ LρMD||WD−1x
D−1||2

≤ · · ·

≤ LD−1
ρ

D∏
i=1

Mi · ||x∗||2

≤ LD−1
ρ

D∏
i=1

Mi ·max{1, d
1
2−

1
p }(||x||p + ε∗)

where the first inequality is due to Theorem 19, the second inequality is because of ||Wi||F ≤Mi, i ∈
[D], the third inequality is because ρ(·) is Lρ-Lipschitz and the last inequality is due to Theorem 18.
Therefore, we have

max
l̃∗f∈l̃

∗
F

||l̃∗f ||T = max
l̃∗f∈l̃

∗
F

( 1

n

n∑
i=1

|l̃∗f (xi, yi)|2
) 1

2 ≤ LD−1
ρ max{1, d

1
2−

1
p }(Xp + εmax)

D∏
i=1

Mi, (31)
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where Xp = max{||xi||p}ni=1.

For the term N (l̃∗F , || · ||T , µ), according to Definition 15, we have:

N (l̃∗F , || · ||T , µ) ≤ |l̃∗F | = |F| =
D∏
i=1

|Wi|, (32)

where the last equality is because of the definition of F , i.e., Eq. (1). Further more, for a matrix W
with the shape of h1 × h2, we have:

||W ||F =

√√√√ h1∑
a=1

h2∑
b=1

W 2
ab ≤M

(a)
=⇒ |W | = πh1h2/2

Γ(h1h2

2 + 1)
Mh1h2 , (33)

where the arrow (a) follows from the volume formula of h1h2-dimensional sphere and Γ means the
gamma function. Then, we can obtain:

N (l̃∗F , || · ||T , µ) ≤
D∏
i=1

|Wi| =
D∏
i=1

πHiHi−1/2

Γ(HiHi−1

2 + 1)
M

HiHi−1

i . (34)

Finally, combined with Eqs. (31) and (34), we have

RT (l̃∗F ) ≤ 12√
n

∫ maxl̃∗
f
∈l̃∗F
||l̃∗f ||T

0

√
logN (l̃∗F , || · ||T , µ)dµ (35)

≤ 12√
n
LD−1
ρ max{1, d

1
2−

1
p }(Xp + εmax)

√√√√log

D∏
i=1

πHiHi−1/2

Γ(HiHi−1

2 + 1)
M

HiHi−1

i

D∏
i=1

Mi.

Then, according to the relationship between RT (l̃∗F ) and RT (l̂∗F ), i.e., Eq. (28), we conclude:

RT (l̂∗F ) ≤ LφRT (l̃∗F ) (36)

≤ 12√
n
LφL

D−1
ρ max{1, d

1
2−

1
p }(Xp + εmax)

√√√√log

D∏
i=1

πHiHi−1/2

Γ(HiHi−1

2 + 1)
M

HiHi−1

i

D∏
i=1

Mi.

Then combing Eq.(36) with Eq. (21), we can get

Rrob ≤
1

n

n∑
i=1

l̂ (xi, yi, f, ε
∗
i ) + 3B

√
log 2/ω

2n
(37)

+
24B√
n
LφL

D−1
ρ max{1, d

1
2−

1
p }(Xp + εmax)

√√√√log

D∏
i=1

πHiHi−1/2

Γ(HiHi−1

2 + 1)
M

HiHi−1

i

D∏
i=1

Mi.

Thus we obtain Theorem 5.

B PROOF OF THEOREM 6

Recall that we denote l̂(xi, yi, f, ε) as max‖δi‖2≤ε l(yi, f(xi + δi)).

We set ε1 < ε2, L1, L2 are the sets of all possible values of l(yi, f(xi + δi)), where L1 =
{l(yi, f(xi + δi)) | ‖δi‖p ≤ ε1}, L2 = {l(yi, f(xi + δi)) | ‖δi‖p ≤ ε2}.
It is obvious that the constraint range of L1 is smaller L2, thus we can naturally get that L1 ⊆ L2.
In this case, we can come to the conclusion that max‖δi‖p≤ε1 l(yi, f(xi + δi)) is no larger than
max‖δi‖p≤ε2 l(yi, f(xi + δi)).

Thus we complete the proof.
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C PROOF OF THEOREM 10

If Assumption 9 holds, for the minimization problem

min
εi∈[0,εmax]

l̂(xi, yi, fw, εi)− λεi, (38)

1. If bi ≥ 0, we have l̂(xi, yi, fw, εi) = kiεi + bi,
then problem (38) becomes minεi∈[0,εmax](ki − λ)εi + bi, thus the optimal ε∗i is

ε∗i =

{
0, if ki ≥ λ;

εmax, otherwise.
(39)

2. If bi < 0, we have l̂(xi, yi, fw, εi) = max(0, kiεi + bi),

• When εi ∈
[
0,− bi

ki

]
, problem (38) becomes minεi∈[0,εmax]−λεi, thus the optimal ε∗i

is

ε∗i = − bi
ki
. (40)

• When εi ∈
[
− bi
ki
, εmax

]
, problem (38) becomes min

εi∈[− biki ,εmax]
(ki−λ)εi + bi, thus

the optimal ε∗i is

ε∗i =

−
bi
ki
, if ki ≥ λ;

εmax, otherwise.
(41)

Combining the conclusions together, we can get the theorem.

D PROOF OF THEOREM 11

Let T = {δiφ | ‖δiφ‖2 ≤ ε′}. We define v = l(yi, f(xi) + ε′‖f‖H). To prove the theorem, we
first prove v ≤ max l(yi, 〈f, φ(xi) + δiφ〉H), then prove max l(yi, 〈f, φ(xi) + δiφ〉H) ≤ v. In the
following, we give the details to prove these two sub-conclusions.

Step 1: We first prove v ≤ max l(yi, 〈f, φ(xi) + δiφ〉H).

Since T = {δiφ | ‖δiφ‖2 ≤ ε′}, we define a subset of T as T ′ = {yiε′ f
‖f‖H }. Hence,

max
δiφ∈T ′

l(yi, 〈f, φ(xi) + δiφ〉H)

= max
δiφ∈T ′

l(yi, 〈f, φ(xi)〉H + 〈f, δiφ〉H)

=l(yi, f(xi) + ε′ ‖f‖H)

Since T ′ ⊆ T , the first sub-conclusion can be proved.

Step 2: Next we prove max l(yi, 〈f, φ(xi) + δiφ〉H) ≤ v.

max
δiφ∈T

l(yi, 〈f, φ(xi) + δiφ〉H)

= max
δiφ∈T

l(yi, 〈f, φ(xi)〉H + 〈f, δiφ〉H)

≤max
δiφ∈T

l(yi, f(xi) + ‖f‖H · ‖δiφ‖H)

≤l(yi, f(xi) + ε′‖f‖H)

The first inequality is due to the Cauchy-Schwarz inequality. The second inequality holds since
‖δiφ‖2 ≤ ε′. Hence the second sub-conclusion holds.

Step 3: Combining these two steps, we have (42):
max
‖δiφ‖2≤ε′

l(yi, 〈f, φ(xi) + δiφ〉H) = l(yi, f(xi) + ε′‖f‖H). (42)
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E OPTIMIZATION PROCEDURE OF SAAT-SVM
Self-adaptive adversarial training on kernel SVMs can be formulated as follows:

min
f∈H,ε′

‖f‖2H
2

+
C

n

n∑
i=1

{l(yi, f(xi) + ε′i‖f‖H)− λε′i} .

s.t. ε′i ∈ [0, ε′max], i = 1, . . . , n. (43)

In the following, we use the doubly stochastic gradient (DSG) algorithm (Dai et al., 2014), which
skillfully combines the stochastic gradient algorithm with random feature approximation algorithm,
to update the solution f when {ε′∗i }

n
i=1 is fixed. The loss function here is the commonly used hinge

loss and we express it as [·]+. Thus, the objective function (43) can be rewritten as

min
f∈H

R(f) (44)

= min
f∈H

1

2
‖f‖2H +

C

n

n∑
i=1

[1− yif(xi) + ε′∗i ‖f‖H]
+
.

Here we only discuss the case when the hinge loss is greater than 0.

Stochastic Gradient Descent. The gradient of the objective (44) can be written as:

∇R(f) = f(·) + C

[
−yk(xi, ·) + ε′∗i

f(·)
‖f‖H

]
. (45)

It is noted that∇R(f) is the derivative wrt. f .

Random Feature Approximation. Since high computational complexity is still needed for kernel
functions, we use the random feature approximation method (Rahimi & Recht, 2008) to approximate
the stationary kernels such as RBF, Laplacian and Cauchy kernels by explicitly computing random
features φω = 1√

m
[φω1

(x), φω2
(x), · · · , φωm(x)], i.e., k(x, x′) ≈ φω(x)φTω (x′), where m is the

number of random features, φωi(x) denotes [cos(ωTi x), sin(ωTi x)]T and ω is drawn from the measure
p(ω). (The detailed measure p(ω) of the kernels is shown in Table 1 of Dai et al. (2014).) Thus, Eq.
(45) can be approximated as follows:

∇R̂(f) = f(·) + C

[
−yφω(x)φω(·) + ε′∗i

f(·)
‖f‖H

]
. (46)

Update Rules. Thus we can get the update rule for SAAT-SVM according to the principle of the
SGD method.

ft+1(·) = ft(·)− γt∇R̂(f) =

t∑
i=1

aitζi(·). (47)

where γt is the stepsize in the t-th iteration, the initial value f1(·) = 0 and ζi(·) =

−Cyiφωi(xi)φωi(·). The value of ait can be easily inferred as −γi
∏t
j=i+1

(
1− γj

(
1− ε′∗i C

‖fj‖2

))
.

Following the update rule (47), the training and prediction algorithms of SAAT-SVM are shown in
Algorithms 3 and 4.

A crucial step of DSG in Algorithm 3 and 4 is sampling ωi with seed i. As the seeds are aligned for
the training and prediction processes in the same iteration, we only need to save the seeds instead of
the whole random features, which is memory friendly.

F EXPERIMENTS

F.1 EXPERIMENTS UNDER l2-NORM CONSTRAINED PERTURBATIONS

In this section, We present the robustness of different adversarial training algorithms under l2-norm
constrained perturbations on DNNs in Tables 5, 6 and 7. We set εmax = 2 for MNIST, εmax = 0.5
for CIFAR10 and CIFAR100, and the step size is set as εmax/4. As for the attack methods, for FGSM
and 10-PGD, the perturbation radius is set as εtest = 2 for MNIST and εtest = 0.5 for CIFAR10 and
CIFAR100, the step size for 10-PGD is εtest/4. Obviously, our algorithms can achieve the balance
between robustness and accuracy under the l2-norm constrained perturbations.
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Algorithm 3 {αi}ti=1 = Train(P(x, y))

Input: D, p(ω), C.
1: for i = 1, · · · , t do
2: Sample (xi, yi) ∼ D.
3: Sample ωi ∼ p(ω) with seed i.
4: f(xi) = Predict(xi, {αj}i−1

j=1).

5: Define γi = θ
i (diminishing stepsize).

6: αi = γiCyiφωi(xi).

7: αj = (1− γi(1 +
ε′∗i C
‖fj‖H

))αj for j = 1, · · · , i− 1

8: end for

Algorithm 4 f(x) = Predict(x, {αi}ti=1)

Input: p(ω), φω(x).
1: Set f(x) = 0.
2: for i = 1, · · · , t do
3: Sample ωi ∼ p(ω) with seed i;
4: f(x) = f(x) + αiφωi(x).
5: end for

F.2 SENSITIVITY ANALYSIS AGAINST THE PGD ATTACK

In this part, we explore the defensive ability of minimax-based adversarial training algorithms against
l∞-norm PGD attack in terms of the perturbation radius εtest (Fig. 4) and the attack steps K (Fig. 5).

Sensitivity against different perturbation radii εtest. We compare adversarial training algorithms
against 10-PGD attacks with different εtest, i.e., εtest ∈ [0.2, 0.4] for MNIST, εtest ∈ [4/255, 8/255]
for CIFAR10 and Tiny Imagenet. Fig. 4 shows their performance on adversarial examples with
different strength. We can see clearly that, with the increase of εtest, since the generated adversarial
examples are more aggressive, the accuracy of the seven adversarial training algorithms decreases
in different degrees. But it is obvious that the compared algorithms are more sensitive to large
perturbation radii, while our algorithms especially SAAT-minimax with hinge loss can keep stable
relatively.

Sensitivity against different PGD steps. We also explore the sensitivity of adversarial training
algorithms against K-step PGD attack. Here εtest is fixed as 0.3 for MNIST, 8/255 for CIFAR10 and
100. It is obvious that almost all algorithms can keep stable under different steps of PGD. Compared
Fig. 4 with Fig. 5, we can see that adversarial examples constructed by enlarging perturbation radius
εtest of PGD attack is much more aggressive than enlarging steps K.

Table 5: Test accuracy (%) of various defense methods trained on MNIST with l2-norm constrained
perturbations on DNNs. (The results of Natural on clean data are just baselines for reference.)

Method Clean FGSM 10-PGD CW AutoAttack
Natural 98.83±0.23 14.84±0.37 0.03±0.01 0.00±0.00 0.00±0.00

Standard 97.60±0.46 89.61±0.42 73.25±0.36 72.09±0.53 70.88±0.79
IAAT 98.44±0.37 86.78±0.44 67.88±0.74 68.54±0.67 66.59±0.64
MMA 98.97±0.53 88.29±0.46 68.55±0.72 67.86±0.69 67.74±0.83
FAT 98.74±0.49 89.39±0.62 70.66±0.57 69.15±0.82 71.52±0.97

TRADES 99.00±0.47 88.48±0.54 73.87±0.67 72.44±0.47 70.87±0.68
SAAT-kernelh 96.76±0.41 82.56±0.65 62.26±0.74 62.46±0.52 59.46±0.74
SAAT-kernelc 98.54±0.33 80.63±0.59 65.76±0.72 64.95±0.67 60.77±0.88

SAAT-minimaxh 99.10±0.34 89.47±0.49 71.47±0.53 70.68±0.59 71.56±0.44
SAAT-minimaxc 98.77±0.38 89.99±0.67 74.17±0.66 73.54±0.52 72.39±0.59
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Table 6: Test accuracy (%) of various defense methods on CIFAR10 with l2-norm constrained
perturbations on DNNs. (The results of Natural on clean data are just baselines for reference.)

Method Clean FGSM 10-PGD CW AutoAttack
Natural 92.26±0.44 12.36±0.36 1.79±0.21 0.00±0.00 0.00±0.00

Standard 76.65±0.54 55.29±0.37 52.60±0.72 47.61±0.42 48.66±0.84
IAAT 81.58±0.66 55.48±0.49 51.23±0.72 44.37±0.61 43.56±0.59
MMA 83.97±0.55 63.01±0.64 49.77±0.72 46.55±0.59 47.32±0.48
FAT 89.06±0.69 75.62±0.36 73.51±0.85 64.03±0.77 67.33±0.74

TRADES 87.66±0.52 71 83±0.47 69.66±0.75 62.33±0.57 63.49±0.87
SAAT-kernelh 89.74±0.33 40.35±0.82 35.72±0.64 23.38±0.61 22.77±0.72
SAAT-kernelc 86.52±0.35 41.75±0.72 34.88±0.54 21.07±0.73 23.35±0.66

SAAT-minimaxh 91.24±0.55 80.10±0.67 79.70±0.71 65.37±0.51 70.33±0.64
SAAT-minimaxc 91.56±0.57 76.20±0.66 72.07±0.49 65.20±0.64 68.77±0.39

Table 7: Test accuracy (%) of various defense methods trained on CIFAR100 with l2-norm constrained
perturbations on DNNs. (The results of Natural on clean data are just baselines for reference.)

Method Clean FGSM 10-PGD CW AutoAttack
Natural 77.79±0.46 6.19±0.37 0.13±0.07 0.00±0.00 0.00±0.00

Standard 64.97±0.69 34.70±0.84 32.47±0.47 31.54±0.62 30.04±0.88
IAAT 59.56±0.77 30.72±0.61 25.77±0.87 23.32±0.75 20.76±0.66
MMA 61.70±0.59 29.56±0.64 18.63±0.72 19.33±0.84 16.32±0.75
FAT 65.51±0.33 46.14±0.61 35.16±0.73 35.41±0.67 33.19±0.49

TRADES 54.50±0.55 36.51±0.74 35.50±0.51 33.20±0.79 32.14±0.63
SAAT-kernelh 68.95±0.76 17.36±0.54 10.23±0.88 8.52±0.74 9.36±0.57
SAAT-kernelc 72.53±0.75 20.66±0.35 13.57±0.81 10.33±0.94 9.84±0.77

SAAT-minimaxh 67.58±0.67 38.07±0.54 37.57±0.56 35.32±0.49 34.65±0.64
SAAT-minimaxc 70.73±0.47 40.49±0.47 35.55±0.62 36.16±0.71 33.65±0.66

F.3 VERIFICATION OF ASSUMPTION 6

We verify that the maximum loss function l̂(xi, yi, fw, εi), i.e., max‖δi‖p≤εi l(yi, fw(xi + δi)), is
piecewise approximately linear with regard to perturbation radii εi whether in the form of cross
entropy or hinge loss in Figs. 6 and 7. Here we randomly choose 50 samples from three datasets
respectively. For perturbation under l2-norm, we perform 10-PGD attack with εi =0, 1, 2, 3 on
MNIST, εi =0, 0.5, 1, 1.5 on CIFAR10 and CIFAR100. For perturbation under l∞-norm, we perform
10-PGD attack with εi =0, 0.1, 0.2, 0.3 on MNIST, εi =0, 4/255, 8/255, 12/255 on CIFAR10 and
Tiny Imagenet. We can see clearly that Figs. 6 and 7 are approximately consistent with the sketch
map we present in Fig. 2 in the main body of this paper, which reveals that our assumption of the
piecewise approximate linearity is reasonable.
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Figure 4: Comparisons on PGD test accuracy with different perturbation radii εtest on three datasets.
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Figure 5: Comparisons on PGD test accuracy with different steps K on three datasets.
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Figure 6: Maximum loss value l̂(xi, yi, fw, εi) with different perturbation radii εi on three datasets
under l2-norm constrained perturbations.

F.4 EXPERIMENTS ON KERNEL SVMS

F.4.1 COMPARED ALGORITHMS

• DSG (Dai et al., 2014): Natural model training algorithm on kernel SVMs with doubly
stochastic gradient descent.

• adv-SVM (Wu et al., 2021): Scalable adversarial training algorithm on kernel SVMs with
doubly stochastic gradient descent.

• SAAT-SVM: Our self-adaptive adversarial training algorithm on kernel SVMs.

F.4.2 IMPLEMENTATION DETAILS

The kernel function that we use for algorithms on kernel SVMs is RBF kernel. The experiments are
conducted on datasets MNIST8m3 and CIFAR10. For SAAT-SVM, we linearly increase λ from 1 to
5 on MNIST8m, from 3 to 8 on CIFAR10.

3MNIST8m is available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets.
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Figure 7: Maximum loss value l̂(xi, yi, fw, εi) with different perturbation radii εi under l∞-norm
constrained perturbations.

F.4.3 RESULTS ON KERNEL SVMS

Since we focus on binary classification on kernel SVMs, we select two similar classes from MNIST8m
and CIFAR10 respectively, i.e., MNIST8m 6 vs. 8 and CIFAR10 automobile vs. truck. MNIST8m 6
vs. 8 has 200,000 samples with 784 features, CIFAR10 automobile vs. truck has 10,000 samples
with 3,072 features.

The robustness of the algorithms against different attacks is shown in Table 5. It is obvious that our
SAAT-SVM enjoys superior performance on clean data which is even better than natural training
method DSG and keeps robustness against adversarial examples at the same time.

Table 8: Test accuracy (%) of various defense methods on kernel SVMs. (The results of DSG on
clean data are just baselines for reference.)

Method Clean FGSM 10-PGD CW ZOO
MNIST8m 6vs. 8

DSG 99.72±0.05 98.33±0.27 97.52±0.46 91.35±0.55 91.90±0.49
adv-SVM 99.35±0.26 98.89±0.39 98.63±0.33 94.55±0.54 94.37±0.68

SAAT-SVM 99.64±0.13 99.07±0.19 98.32±0.35 95.46±0.52 94.83±0.64
CIFAR10 automobile vs. truck

DSG 75.65±0.33 65.13±0.44 63.21±0.31 48.05±0.64 51.82±0.77
adv-SVM 75.25±0.38 73.84±0.55 65.82±0.63 50.55±0.84 53.64 ±0.76

SAAT-SVM 76.70±0.27 74.55±0.43 67.34±0.49 57.95±0.69 54.10±0.81
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