
CoAtNet: Marrying Convolution and Attention
for All Data Sizes

Zihang Dai, Hanxiao Liu, Quoc V. Le, Mingxing Tan
Google Research, Brain Team

{zihangd,hanxiaol,qvl,tanmingxing}@google.com

Abstract

Transformers have attracted increasing interests in computer vision, but they still
fall behind state-of-the-art convolutional networks. In this work, we show that
while Transformers tend to have larger model capacity, their generalization can be
worse than convolutional networks due to the lack of the right inductive bias. To
effectively combine the strengths from both architectures, we present CoAtNets
(pronounced “coat” nets), a family of hybrid models built from two key insights:
(1) depthwise Convolution and self-Attention can be naturally unified via simple
relative attention; (2) vertically stacking convolution layers and attention layers in
a principled way is surprisingly effective in improving generalization, capacity and
efficiency. Experiments show that our CoAtNets achieve state-of-the-art perfor-
mance under different resource constraints across various datasets: Without extra
data, CoAtNet achieves 86.0% ImageNet top-1 accuracy; When pre-trained with
13M images from ImageNet-21K, our CoAtNet achieves 88.56% top-1 accuracy,
matching ViT-huge pre-trained with 300M images from JFT-300M while using
23x less data; Notably, when we further scale up CoAtNet with JFT-3B, it achieves
90.88% top-1 accuracy on ImageNet, establishing a new state-of-the-art result.

1 Introduction

Since the breakthrough of AlexNet [1], Convolutional Neural Networks (ConvNets) have been the
dominating model architecture for computer vision [2, 3, 4, 5]. Meanwhile, with the success of
self-attention models like Transformers [6] in natural language processing [7, 8], many previous
works have attempted to bring in the power of attention into computer vision [9, 10, 11, 12]. More
recently, Vision Transformer (ViT) [13] has shown that with almost1 only vanilla Transformer layers,
one could obtain reasonable performance on ImageNet-1K [14] alone. More importantly, when
pre-trained on large-scale weakly labeled JFT-300M dataset [15], ViT achieves comparable results
to state-of-the-art (SOTA) ConvNets, indicating that Transformer models potentially have higher
capacity at scale than ConvNets.

While ViT has shown impressive results with enormous JFT 300M training images, its performance
still falls behind ConvNets in the low data regime. For example, without extra JFT-300M pre-training,
the ImageNet accuracy of ViT is still significantly lower than ConvNets with comparable model
size [5] (see Table 13). Subsequent works use special regularization and stronger data augmentation
to improve the vanilla ViT [16, 17, 18], yet none of these ViT variants could outperform the SOTA
convolution-only models on ImageNet classification given the same amount of data and computa-
tion [19, 20]. This suggests that vanilla Transformer layers may lack certain desirable inductive biases
possessed by ConvNets, and thus require significant amount of data and computational resource
to compensate. Not surprisingly, many recent works have been trying to incorporate the induc-
tive biases of ConvNets into Transformer models, by imposing local receptive fields for attention

1The initial projection stage can be seen as an aggressive down-sampling convolutional stem.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

layers [21, 22] or augmenting the attention and FFN layers with implicit or explicit convolutional
operations [23, 24, 25]. However, these approaches are either ad-hoc or focused on injecting a
particular property, lacking a systematic understanding of the respective roles of convolution and
attention when combined.

In this work, we systematically study the problem of hybridizing convolution and attention from
two fundamental aspects in machine learning – generalization and model capacity. Our study shows
that convolutional layers tend to have better generalization with faster converging speed thanks to
their strong prior of inductive bias, while attention layers have higher model capacity that can benefit
from larger datasets. Combining convolutional and attention layers can achieve better generalization
and capacity; however, a key challenge here is how to effectively combine them to achieve better
trade-offs between accuracy and efficiency. In this paper, we investigate two key insights: First, we
observe that the commonly used depthwise convolution can be effectively merged into attention
layers with simple relative attention; Second, simply stacking convolutional and attention layers, in a
proper way, could be surprisingly effective to achieve better generalization and capacity. Based on
these insights, we propose a simple yet effective network architecture named CoAtNet, which enjoys
the strengths from both ConvNets and Transformers.

Our CoAtNet achieves SOTA performances under comparable resource constraints across different
data sizes. Specifically, under the low-data regime, CoAtNet inherits the great generalization property
of ConvNets thanks to the favorable inductive biases. Moreover, given abundant data, CoAtNet not
only enjoys the superior scalability of Transformer models, but also achieves faster convergence and
thus improved efficiency. When only ImageNet-1K is used for training, CoAtNet achieves 86.0%
top-1 accuracy, matching the prior art NFNet [20] under similar computation resource and training
conditions. Further, when pre-trained on ImageNet-21K with about 10M images, CoAtNet reaches
88.56% top-1 accuracy when finetuned on ImageNet-1K, matching the ViT-Huge pre-trained on
JFT-300M, a 23× larger dataset. Finally, when JFT-3B is used for pre-training, CoAtNet exhibits
better efficiency compared to ViT, and pushes the ImageNet-1K top-1 accuracy to 90.88% while
using 1.5x less computation of the prior art set by ViT-G/14 [26].

2 Model

In the section, we focus on the question of how to “optimally” combine the convolution and trans-
former. Roughly speaking, we decompose the question into two parts:

1. How to combine the convolution and self-attention within one basic computational block?

2. How to vertically stack different types of computational blocks together to form a complete
network?

The rationale of the decomposition will become clearer as we gradually reveal our design choices.

2.1 Merging Convolution and Self-Attention

For convolution, we mainly focus on the MBConv block [27] which employs depthwise convolu-
tion [28] to capture the spatial interaction. A key reason of this choice is that both the FFN module
in Transformer and MBConv employ the design of “inverted bottleneck”, which first expands the
channel size of the input by 4x and later project the the 4x-wide hidden state back to the original
channel size to enable residual connection.

Besides the similarity of inverted bottleneck, we also notice that both depthwise convolution and
self-attention can be expressed as a per-dimension weighted sum of values in a pre-defined receptive
field. Specifically, convolution relies on a fixed kernel to gather information from a local receptive
field

yi =
∑

j∈L(i)

wi−j � xj (depthwise convolution), (1)

where xi, yi ∈ RD are the input and output at position i respectively, and L(i) denotes a local
neighborhood of i, e.g., a 3x3 grid centered at i in image processing.

2

In comparison, self-attention allows the receptive field to be the entire spatial locations and computes
the weights based on the re-normalized pairwise similarity between the pair (xi, xj):2

yi =
∑
j∈G

exp
(
x>i xj

)∑
k∈G exp

(
x>i xk

)︸ ︷︷ ︸
Ai,j

xj (self-attention), (2)

where G indicates the global spatial space. Before getting into the question of how to best combine
them, it is worthwhile to compare their relative strengths and weaknesses, which helps to figure out
the good properties we hope to retain.

• First of all, the depthwise convolution kernel wi−j is an input-independent parameter of static value,
while the attention weight Ai,j dynamically depends on the representation of the input. Hence, it is
much easier for the self-attention to capture complicated relational interactions between different
spatial positions, a property that we desire most when processing high-level concepts. However,
the flexibility comes with a risk of easier overfitting, especially when data is limited.

• Secondly, notice that given any position pair (i, j), the corresponding convolution weight wi−j only
cares about the relative shift between them, i.e. i− j, rather than the specific values of i or j. This
property is often referred to translation equivalence, which has been found to improve generalization
under datasets of limited size [29]. Due to the usage of absolution positional embeddings, standard
Transformer (ViT) lacks this property. This partially explains why ConvNets are usually better than
Transformers when the dataset is not enormously large.

• Finally, the size of the receptive field is one of the most crucial differences between self-attention
and convolution. Generally speaking, a larger receptive field provides more contextual information,
which could lead to higher model capacity. Hence, the global receptive field has been a key
motivation to employ self-attention in vision. However, a large receptive field requires significantly
more computation. In the case of global attention, the complexity is quadratic w.r.t. spatial size,
which has been a fundamental trade-off in applying self-attention models.

Table 1: Desirable properties found in convolution or self-attention.
Properties Convolution Self-Attention

Translation Equivariance X
Input-adaptive Weighting X
Global Receptive Field X

Given the comparison above, an ideal model should be able to combine the 3 desirable properties in
Table 1. With the similar form of depthwise convolution in Eqn. (1) and self-attention in Eqn. (2), a
straightforward idea that could achieve this is simply to sum a global static convolution kernel with
the adaptive attention matrix, either after or before the Softmax normalization, i.e.,

ypost
i =

∑
j∈G

(
exp

(
x>i xj

)∑
k∈G exp

(
x>i xk

) + wi−j

)
xj or ypre

i =
∑
j∈G

exp
(
x>i xj + wi−j

)∑
k∈G exp

(
x>i xk + wi−k

)xj . (3)

Interestingly, while the idea seems overly simplified, the pre-normalization version ypre corresponds
to a particular variant of relative self-attention [30, 31]. In this case, the attention weight Ai,j is
decided jointly by the wi−j of translation equivariance and the input-adaptive x>i xj , which can
enjoy both effects depending on their relative magnitudes. Importantly, note that in order to enable
the global convolution kernel without blowing up the number of parameters, we have reloaded the
notation of wi−j as a scalar (i.e., w ∈ RO(|G|)) rather than a vector in Eqn. (1). Another advantage of
the scalar formulation of w is that retrieving wi−j for all (i, j) is clearly subsumed by computing
the pairwise dot-product attention, hence resulting in minimum additional cost (see Appendix A.1).
Given the benefits, we will use the Transformer block with the pre-normalization relative attention
variant in Eqn. (3) as the key component of the proposed CoAtNet model.

2To simplify the presentation, we deliberately omit the multi-head query, key and value projections for now.
In the actual implementation, we always use the multi-head projections.

3

2.2 Vertical Layout Design

After figuring out a neat way to combine convolution and attention, we next consider how to utilize it
to stack an entire network.

As we have discuss above, the global context has a quadratic complexity w.r.t. the spatial size. Hence,
if we directly apply the relative attention in Eqn. (3) to the raw image input, the computation will
be excessively slow due to the large number of pixels in any image of common sizes. Hence, to
construct a network that is feasible in practice, we have mainly three options:

(A) Perform some down-sampling to reduce the spatial size and employ the global relative attention
after the feature map reaches manageable level.

(B) Enforce local attention, which restricts the global receptive field G in attention to a local field L
just like in convolution [22, 21].

(C) Replace the quadratic Softmax attention with certain linear attention variant which only has a
linear complexity w.r.t. the spatial size [12, 32, 33].

We briefly experimented with option (C) without getting a reasonably good result. For option (B), we
found that implementing local attention involves many non-trivial shape formatting operations that
requires intensive memory access. On our accelerator of choice (TPU), such operation turns out to be
extremely slow [34], which not only defeats the original purpose of speeding up global attention, but
also hurts the model capacity. Hence, as some recent work has studied this variant [22, 21], we will
focus on option (A) and compare our results with theirs in our empirical study (Section 4).

For option (A), the down-sampling can be achieved by either (1) a convolution stem with aggressive
stride (e.g., stride 16x16) as in ViT or (2) a multi-stage network with gradual pooling as in ConvNets.
With these choices, we derive a search space of 5 variants and compare them in controlled experiments.

• When the ViT Stem is used, we directly stack L Transformer blocks with relative attention, which
we denote as VITREL.

• When the multi-stage layout is used, we mimic ConvNets to construct a network of 5 stages (S0,
S1, S2, S3 & S4), with spatial resolution gradually decreased from S0 to S4. At the beginning
of each stage, we always reduce the spatial size by 2x and increase the number of channels (see
Appendix A.1 for the detailed down-sampling implementation).
The first stage S0 is a simple 2-layer convolutional Stem and S1 always employs MBConv blocks
with squeeze-excitation (SE), as the spatial size is too large for global attention. Starting from
S2 through S4, we consider either the MBConv or the Transformer block, with a constraint that
convolution stages must appear before Transformer stages. The constraint is based on the prior
that convolution is better at processing local patterns that are more common in early stages. This
leads to 4 variants with increasingly more Transformer stages, C-C-C-C, C-C-C-T, C-C-T-T and
C-T-T-T, where C and T denote Convolution and Transformer respectively.

To systematically study the design choices, we consider two fundamental aspects generalization
capability and model capacity: For generalization, we are interested in the gap between the training
loss and the evaluation accuracy. If two models have the same training loss, then the model with
higher evaluation accuracy has better generalization capability, since it can generalize better to unseen
evaluation dataset. Generalization capability is particularly important to data efficiency when training
data size is limited. For model capacity, we measure the ability to fit large training datasets. When
training data is abundant and overfitting is not an issue, the model with higher capacity will achieve
better final performance after reasonable training steps. Note that, since simply increasing the model
size can lead to higher model capacity, to perform a meaningful comparison, we make sure the model
sizes of the 5 variants are comparable.

To compare the generalization and model capacity, we train different variants of hybrid models on
ImageNet-1K (1.3M) and JFT (>300M) dataset for 300 and 3 epochs respectively, both without
any regularization or augmentation. The training loss and evaluation accuracy on both datasets are
summarized in Figure 1.

• From the ImageNet-1K results, a key observation is that, in terms of generalization capability (i.e.,
gap between train and evaluation metrics), we have

C-C-C-C ≈ C-C-C-T ≥ C-C-T-T > C-T-T-T � VITREL.

4

0.12

0.25

0.50

Training loss
ViTrel
CCTT
CTTT
CCCT
CCCC

25k 30k 35k 40k 45k 50k 55k 60k 65k 70k 75k 80k 85k 90k 95k

65%

70%

Evaluation Accuracy

(a) ImageNet-1K

5.00

5.50

Training loss
ViTrel
CCTT
CTTT
CCCT
CCCC

40k 60k 80k 100k 120k 140k 160k 180k 200k 220k

28%

30%

32%

Evaluation Precision@1

(b) JFT

Figure 1: Comparison for model generalization and capacity under different data size. For fair
comparison, all models have similar parameter size and computational cost.

Particularly, VITREL is significantly worse than variants by a large margin, which we conjecture
is related to the lack of proper low-level information processing in its aggressive down-sampling
Stem. Among the multi-stage variants, the overall trend is that the more convolution stages the
model has, the smaller the generalization gap is.

• As for model capacity, from the JFT comparison, both the train and evaluation metrics at the end
of the training suggest the following ranking:

C-C-T-T ≈ C-T-T-T > VITREL > C-C-C-T > C-C-C-C.

Importantly, this suggests that simply having more Transformer blocks does NOT necessarily
mean higher capacity for visual processing. On one hand, while initially worse, VITREL ultimately
catch up with the two variants with more MBConv stages, indicating the capacity advantage of
Transformer blocks. On the other hand, both C-C-T-T and C-T-T-T clearly outperforming VITREL

suggest that the ViT stem with an aggressive stride may have lost too much information and hence
limit the model capacity. More interestingly, the fact that C-C-T-T ≈ C-T-T-T indicates the for
processing low-level information, static local operations like convolution could be as capable as
adaptive global attention mechanism, while saving computation and memory usage substantially.

Finally, to decide between C-C-T-T and C-T-T-T, we conduct another transferability test3 — we
finetune the two JFT pre-trained models above on ImageNet-1K for 30 epochs and compare their
transfer performances. From Table 2, it turns out that C-C-T-T achieves a clearly better transfer
accuracy than C-T-T-T, despite the same pre-training performance.

Table 2: Transferability test results.
Metric C-C-T-T C-T-T-T

Pre-training Precision@1 (JFT) 34.40 34.36
Transfer Accuracy 224x224 82.39 81.78
Transfer Accuracy 384x384 84.23 84.02

Taking generalization, model capacity, transferability and efficiency into consideration, we adapt the
C-C-T-T multi-stage layout for CoAtNet. More model details are included in Appendix A.1.

3 Related Work

Convolutional network building blocks. Convolutional Networks (ConvNets) have been the dom-
inating neural architectures for many computer vision tasks. Traditionally, regular convolutions, such
as ResNet blocks [3], are popular in large-scale ConvNets; in contrast, depthwise convolutions [28]
are popular in mobile platforms due to its lower computational cost and smaller parameter size [27].
Recent works show that an improved inverted residual bottlenecks (MBConv [27, 35]), which is
built upon depthwise convolutions, can achieve both high accuracy and better efficiency [5, 19]. As
discussed in Section 2, due to the strong connection between MBConv and Transformer blocks , this
paper mostly employs MBConv as convolution building blocks.

3Rigorously speaking, this test examines not only the transferability but also the generalization.

5

Self-attention and Transformers. With the key ingredients of self-attention, Transformers have
been widely adopted for neural language processing and speech understanding. As an early work,
stand-alone self-attention network [34] shows self-attention alone can work well for different vision
tasks, though with some practical difficulties. Recently, ViT [13] applies a vanilla Transformer
to ImageNet classification, and achieves impressive results after pre-training on a large-scale JFT
dataset. However, ViT still largely lags behind state-of-the-art ConvNets when training data is limited.
Following that, many recent works have been focused on improving vision Transformers for data
efficiency and model efficiency. For a more comprehensive review of vision Transformers, we refer
readers to the dedicated surveys [36, 37].

Relative attention. Under the general name of relative attention, there have been various variants
in literature [30, 38, 39, 34, 40, 31]. Generally speaking, we can separate them into two categories:
(a) the input-dependent version where the extra relative attention score is a function of the input
states f(xi, xj , i − j), and (b) the input-independent version f(i − j). The variant in CoAtNet
belongs to the input-independent version, and is similar to the one used in T5 [31], but unlike T5, we
neither share the relative attention parameters across layers nor use the bucketing mechanism. As
a benefit of the input independence, obtaining f(i− j) for all (i, j) pairs is computationally much
cheaper than the input-dependent version on TPU. In addition, at inference time, this only needs to be
computed once and cached for future use. A recent work [22] also utilizes such an input-independent
parameterization, but it restricts the receptive field to a local window.

Combining convolution and self-attention. The idea of combining convolution and self-attention
for vision recognition is not new. A common approach is to augment the ConvNet backbone with
explicit self-attention or non-local modules [9, 10, 11, 12], or to replace certain convolution layers
with standard self-attention [11] or a more flexible mix of linear attention and convolution [41]. While
self-attention usually improves the accuracy, they often come with extra computational cost and hence
are often regarded as an add-on to the ConvNets, similar to squeeze-and-excitation [42] module. In
comparison, after the success of ViT and ResNet-ViT [13], another popular line of research starts with
a Transformer backbone and tries to incorporate explicit convolution or some desirable properties of
convolution into the Transformer backbone [25, 24, 23, 22, 21, 43, 44].

While our work also belongs to this category, we show that our relative attention instantiation is a
natural mixture of depthwise convolution and content-based attention with minimum additional cost.
More importantly, starting from the perspectives of generalization and model capacity, we take a
systematic approach to the vertical layout design and show how and why different network stages
prefer different types of layers. Therefore, compared to models that simply use an off-the-shelf
ConvNet as the stem layer, such as ResNet-ViT [13], CoAtNet also scales the Convolution stage
(S2) when the overall size increases. On the other hand, compared to models employing local
attention [22, 21], CoAtNet consistently uses full attention for S3 & S4 to ensure the model capacity,
as S3 occupies the majority of the computation and parameters.

4 Experiments

In this section, we compare CoAtNet with previous results under comparable settings. For complete-
ness, all the hyper-parameters not mentioned here are included in Appendix A.2.

4.1 Experiment Setting

CoAtNet model family. To compare with existing models of different sizes, we also design a
family of CoAtNet models as summarized in Table 3. Overall, we always double the number of
channels from S1 to S4, while ensuring the width of the Stem S0 to be smaller or equal to that of S1.
Also, for simplicity, when increasing the depth of the network, we only scale the number of blocks in
S2 and S3.

Evaluation Protocol. Our experiments focus on image classification. To evaluate the performance
of the model across different data sizes, we utilize three datasets of increasingly larger sizes, namely
ImageNet-1K (1.28M images), ImageNet-21K (12.7M images) and JFT (300M images). Following
previous works, we first pre-train our models on each of the three datasets at resolution 224 for 300, 90
and 14 epochs respectively. Then, we finetune the pre-trained models on ImageNet-1K at the desired

6

Table 3: L denotes the number of blocks and D denotes the hidden dimension (#channels). For all
Conv and MBConv blocks, we always use the kernel size 3. For all Transformer blocks, we set the
size of each attention head to 32, following [22]. The expansion rate for the inverted bottleneck is
always 4 and the expansion (shrink) rate for the SE is always 0.25.

Stages Size CoAtNet-0 CoAtNet-1 CoAtNet-2 CoAtNet-3 CoAtNet-4

S0-Conv 1/2 L=2 D=64 L=2 D=64 L=2 D=128 L=2 D=192 L=2 D=192
S1-MbConv 1/4 L=2 D=96 L=2 D=96 L=2 D=128 L=2 D=192 L=2 D=192
S2-MBConv 1/8 L=3 D=192 L=6 D=192 L=6 D=256 L=6 D=384 L=12 D=384
S3-TFMRel 1/16 L=5 D=384 L=14 D=384 L=14 D=512 L=14 D=768 L=28 D=768
S4-TFMRel 1/32 L=2 D=768 L=2 D=768 L=2 D=1024 L=2 D=1536 L=2 D=1536

resolutions for 30 epochs and obtain the corresponding evaluation accuracy. One exception is the
ImageNet-1K performance at resolution 224, which can be directly obtained at the end of pre-training.
Note that similar to other models utilizing Transformer blocks, directly evaluating models pre-trained
on ImageNet-1K at a larger resolution without finetuning usually leads to performance drop. Hence,
finetuning is always employed whenever input resolution changes.

Data Augmentation & Regularization. In this work, we only consider two widely used data
augmentations, namely RandAugment [45] and MixUp [46], and three common techniques, including
stochastic depth [47], label smoothing [48] and weight decay [49], to regularize the model. Intuitively,
the specific hyper-parameters of the augmentation and regularization methods depend on model size
and data scale, where strong regularization is usually applied for larger models and smaller dataset.

Under the general principle, a complication under the current paradigm is how to adjust the regular-
ization for pre-training and finetuning as data size can change. Specifically, we have an interesting
observation that if a certain type of augmentation is entirely disabled during pre-training, simply
turning it on during fine-tuning would most likely harm the performance rather than improving.
We conjecture this could be related to data distribution shift. As a result, for certain runs of the
proposed model, we deliberately apply RandAugment and stochastic depth of a small degree when
pre-training on the two larger datasets, ImageNet21-K and JFT. Although such regularization can
harm the pre-training metrics, this allows more versatile regularization and augmentation during
finetuning, leading to improved down-stream performances.

4.2 Main Results

0 5 10 15 20 25 30 35 40
FLOPs (Billions)

80

81

82

83

84

Im
ag

eN
et

 T
op

-1
 A

cc
ur

ac
y

(%
)

DeiT

CaiT

T2T-ViT
DeepViT

CvT

PvT

ConViT

SwinTFM

CoAtNet-0

CoAtNet-1

CoAtNet-2

CoAtNet-3

Figure 2: Accuracy-to-FLOPs scaling curve un-
der ImageNet-1K only setting at 224x224.

0 50 100 150 200 250 300
Params (Millions)

83

84

85

86

87

88

89

Im
ag

eN
et

 T
op

-1
 A

cc
ur

ac
y

(%
)

EffNetV2

HaloNet
ViT

SwinTFM

CvT

CoAtNet88.55 (ViT-H/14 JFT Pre-train) 88.56

Figure 3: Accuracy-to-Params scaling curve un-
der ImageNet-21K⇒ ImageNet-1K setting.

ImageNet-1K The experiment results with only the ImageNet-1K dataset are shown in Table 4.
Under similar conditions, the proposed CoAtNet models not only outperform ViT variants, but also
match the best convolution-only architectures, i.e., EfficientNet-V2 and NFNets. Additionally, we
also visualize the all results at resolution 224x224 in Fig. 2. As we can see, CoAtNet scales much
better than previous model with attention modules.

7

Table 4: Model performance on ImageNet. 1K only denotes training on ImageNet-1K only; 21K+1K
denotes pre-training on ImageNet-21K and finetuning on ImageNet-1K; PT-RA denotes applying
RandAugment during 21K pre-training, and E150 means 150 epochs of 21K pre-training, which is
longer than the standard 90 epochs. More results are in Appendix A.3.

Models Eval Size #Params #FLOPs ImageNet Top-1 Accuracy

1K only 21K+1K

Conv Only
EfficientNet-B7 6002 66M 37B 84.7 -
EfficientNetV2-L 4802 121M 53B 85.7 86.8
NFNet-F3 4162 255M 114.8B 85.7 -
NFNet-F5 5442 377M 289.8B 86.0 -

ViT-Stem TFM

DeiT-B 3842 86M 55.4B 83.1 -
ViT-L/16 3842 304M 190.7B - 85.3
CaiT-S-36 3842 68M 48.0B 85.0 -
DeepViT-L 2242 55M 12.5B 83.1 -

Multi-stage TFM
Swin-B 3842 88M 47.0B 84.2 86.0
Swin-L 3842 197M 103.9B - 86.4

Conv+TFM

BotNet-T7 3842 75.1M 45.8B 84.7 -
LambdaResNet-420 3202 - - 84.8 -
T2T-ViT-24 2242 64.1M 15.0B 82.6 -
CvT-21 3842 32M 24.9B 83.3 -
CvT-W24 3842 277M 193.2B - 87.7

Conv+TFM
(ours)

CoAtNet-0 2242 25M 4.2B 81.6 -
CoAtNet-1 2242 42M 8.4B 83.3 -
CoAtNet-2 2242 75M 15.7B 84.1 87.1
CoAtNet-3 2242 168M 34.7B 84.5 87.6

CoAtNet-0 3842 25M 13.4B 83.9 -
CoAtNet-1 3842 42M 27.4B 85.1 -
CoAtNet-2 3842 75M 49.8B 85.7 87.1
CoAtNet-3 3842 168M 107.4B 85.8 87.6
CoAtNet-4 3842 275M 189.5B - 87.9

+ PT-RA 3842 275M 189.5B - 88.3
+ PT-RA-E150 3842 275M 189.5B - 88.4

CoAtNet-2 5122 75M 96.7B 85.9 87.3
CoAtNet-3 5122 168M 203.1B 86.0 87.9
CoAtNet-4 5122 275M 360.9B - 88.1

+ PT-RA 5122 275M 360.9B - 88.4
+ PT-RA-E150 5122 275M 360.9B - 88.56

ImageNet-21K As we can see from Table 4 and Fig. 3, when ImageNet-21K is used for pre-
training, the advantage of CoAtNet becomes more obvious, substantially outperforming all previous
models. Notably, the best CoAtNet variant achieves a top-1 accuracy of 88.56%, matching the ViT-
H/14 performance of 88.55%, which requires pre-training the 2.3x larger ViT model on a 23x larger
proprietary weakly labeled dataset (JFT) for 2.2x more steps. This marks a dramatic improvement in
both data efficiency and computation efficiency.

JFT Finally, in Table 5, we further evaluate CoAtNet under the large-scale data regime with JFT-
300M and JFT-3B. Encouragingly, our CoAtNet-4 can almost match the best previous performance
with JFT-300M set by NFNet-F4+, while being 2x more efficient in terms of both TPU training
time and parameter count. When we scale up the model to consume similar training resource as
NFNet-F4+, CoAtNet-5 reaches 89.77% on top-1 accuracy, outperforming previous results under
comparable settings.

Moreover, as we further push the training resource towards the level used by ViT-G/14 and utilize the
same JFT-3B dataset of an even larger size [26], with over 4x less computation, CoAtNet-6 is able to

8

Table 5: Performance Comparison on large-scale JFT dataset. TPUv3-core-days denotes the pre-
training time, Top-1 Accuracy denotes the finetuned accuracy on ImageNet. Note that the last 3 rows
use a larger dataset JFT-3B [26] for pre-training, while others use JFT-300M [15]. See Appendix A.2
for the size details of CoAtNet-5/6/7. †: Down-sampling in the MBConv block is achieved by stride-2
Depthwise Convolution. �: ViT-G/14 computation consumption is read from Fig. 1 of the paper [26].

Models Eval Size #Params #FLOPs TPUv3-core-days Top-1 Accuracy

ResNet + ViT-L/16 3842 330M - - 87.12
ViT-L/16 5122 307M 364B 0.68K 87.76
ViT-H/14 5182 632M 1021B 2.5K 88.55

NFNet-F4+ 5122 527M 367B 1.86K 89.2

CoAtNet-3† 3842 168M 114B 0.58K 88.52
CoAtNet-3† 5122 168M 214B 0.58K 88.81
CoAtNet-4 5122 275M 361B 0.95K 89.11
CoAtNet-5 5122 688M 812B 1.82K 89.77

ViT-G/14 5182 1.84B 5160B >30K� 90.45
CoAtNet-6 5122 1.47B 1521B 6.6K 90.45
CoAtNet-7 5122 2.44B 2586B 20.1K 90.88

match the performance of ViT-G/14 of 90.45%, and with 1.5x less computation, CoAtNet-7 achieves
89.77% on top-1 accuracy 90.88%, achieving the new state-of-the-art performance.

4.3 Ablation Studies

In this section, we will ablate our design choices for CoAtNet.

Firstly, we study the importance of the relative attention from combining convolution and attention
into a single computation unit. Specifically, we compare two models, one with the relative attention
and the other without, under both the ImageNet-1K alone and ImageNet-21K transfer setting. As we
can see from Table 6, when only the ImageNet-1K is used, relative attention clearly outperforms the
standard attention, indicating a better generalization. In addition, under the ImageNet-21K transfer
setting, the relative attention variant achieves a substantially better transfer accuracy, despite their
very close pre-training performances. This suggests the main advantage of relative attention in visual
processing is not in higher capacity but in better generalization.

Table 6: Ablation on relative attention.
Setting Metric With Rel-Attn Without Rel-Attn

ImageNet-1K Accuracy (2242) 84.1 83.8
Accuracy (3842) 85.7 85.3

ImageNet-21K
⇒ ImageNet-1K

Pre-train Precision@1 (2242) 53.0 52.8
Finetune Accuracy (3842) 87.9 87.4

Table 7: Ablation on architecture layout.
Setting Models Layout Top-1 Accuracy

ImageNet-1K
V0: CoAtNet-2 [2, 2, 6, 14, 2] 84.1
V1: S2⇐ S3 [2, 2, 2, 18, 2] 83.4
V2: S2⇒ S3 [2, 2, 8, 12, 2] 84.0

ImageNet-21K
⇒ ImageNet-1K

V0: CoAtNet-3 [2, 2, 6, 14, 2] 53.0→ 87.6
V1: S2⇐ S3 [2, 2, 2, 18, 2] 53.0→ 87.4

Secondly, as S2 with MBConv blocks and S3 with relative Transformer blocks occupy most of the
computation of the CoAtNet, a question to ask is how to split the computation between S2 (MBConv)
and S3 (Transformer) to achieve a good performance. In practice, it boils down to deciding the
number of blocks to have in each stage, which we will refer to as “layout” design. For this purpose,
we compare a few different layouts that we experimented with in Table 7.

9

Table 8: Ablation on head size and normalization type.
Setting Models Image Size Top-1 Accuracy

ImageNet-1K
CoAtNet-2 2242 84.1

Head size: 32→ 64 2242 83.9
Norm type: BN→ LN 2242 84.1

ImageNet-21K
⇒ ImageNet-1K

CoAtNet-3 3842 87.9
Norm type: BN→ LN 3842 87.8

• If we keep the total number of blocks in S2 and S3 fixed and vary the number in each stage, we
observe that V0 is a sweet spot between V1 and V2. Basically, having more Transformer blocks in
S3 generally leads to better performance until the number of MBConv blocks in S2 is too small to
generalize well.

• To further evaluate whether the sweet spot also holds in the transfer setting, where a higher
capacity is often regarded more important, we further compare V0 and V1 under the ImageNet-
21K transferring to ImageNet-1K setup. Interestingly, despite that V1 and V0 have the same
performance during ImageNet-21K pre-training, the transfer accuracy of V1 clearly falls behind
V0. Again, this suggests the importance of convolution in achieving good transferability and
generalization.

Lastly, we study two choices of model details, namely the dimension of each attention (default to
32) head as well as the type of normalization (default to BatchNorm) used in MBConv blocks. From
Table 8, we can see increasing head size from 32 to 64 can slightly hurt performance, though it
actually improves the TPU speed by a significant amount. In practice, this will be a quality-speed
trade-off one can make. On the other hand, BatchNorm and LayerNorm have almost the same
performance, while BatchNorm is 10 - 20% faster on TPU depending on the per-core batch size.

5 Conclusion

In this paper, we systematically study the properties of convolutions and Transformers, which leads
to a principled way to combine them into a new family of models named CoAtNet. Extensive
experiments show that CoAtNet enjoys both good generalization like ConvNets and superior model
capacity like Transformers, achieving state-of-the-art performances under different data sizes and
computation budgets.

Note that this paper currently focuses on ImageNet classification for model development. However,
we believe our approach is applicable to broader applications like object detection and semantic
segmentation. We will leave them for future work.

10

References

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems, pages
1097–1105, 2012.

[2] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In ICLR, 2015.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[4] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1–9,
2015.

[5] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. ICML, 2019.

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762,
2017.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[8] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[9] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
7794–7803, 2018.

[10] Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens, and Quoc V Le. Attention
augmented convolutional networks. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 3286–3295, 2019.

[11] Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter Abbeel, and Ashish
Vaswani. Bottleneck transformers for visual recognition. arXiv preprint arXiv:2101.11605,
2021.

[12] Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Efficient attention:
Attention with linear complexities. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 3531–3539, 2021.

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[15] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable
effectiveness of data in deep learning era. In Proceedings of the IEEE international conference
on computer vision, pages 843–852, 2017.

[16] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. arXiv
preprint arXiv:2012.12877, 2020.

[17] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou.
Going deeper with image transformers. arXiv preprint arXiv:2103.17239, 2021.

[18] Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xiaochen Lian, Qibin Hou, and Jiashi
Feng. Deepvit: Towards deeper vision transformer. arXiv preprint arXiv:2103.11886, 2021.

11

[19] Mingxing Tan and Quoc V Le. Efficientnetv2: Smaller models and faster training. ICML, 2021.

[20] Andrew Brock, Soham De, Samuel L Smith, and Karen Simonyan. High-performance large-
scale image recognition without normalization. arXiv preprint arXiv:2102.06171, 2021.

[21] Ashish Vaswani, Prajit Ramachandran, Aravind Srinivas, Niki Parmar, Blake Hechtman, and
Jonathon Shlens. Scaling local self-attention for parameter efficient visual backbones. arXiv
preprint arXiv:2103.12731, 2021.

[22] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. arXiv preprint
arXiv:2103.14030, 2021.

[23] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang.
Cvt: Introducing convolutions to vision transformers. arXiv preprint arXiv:2103.15808, 2021.

[24] Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou,
and Matthijs Douze. Levit: a vision transformer in convnet’s clothing for faster inference. arXiv
preprint arXiv:2104.01136, 2021.

[25] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Francis EH Tay, Jiashi Feng, and
Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on imagenet.
arXiv preprint arXiv:2101.11986, 2021.

[26] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transform-
ers. arXiv preprint arXiv:2106.04560, 2021.

[27] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4510–4520, 2018.

[28] Laurent Sifre. Rigid-motion scattering for image classification. Ph.D. thesis section 6.2, 2014.

[29] Mirgahney Mohamed, Gabriele Cesa, Taco S Cohen, and Max Welling. A data and compute
efficient design for limited-resources deep learning. arXiv preprint arXiv:2004.09691, 2020.

[30] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position repre-
sentations. arXiv preprint arXiv:1803.02155, 2018.

[31] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.

[32] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers
are rnns: Fast autoregressive transformers with linear attention. In International Conference on
Machine Learning, pages 5156–5165. PMLR, 2020.

[33] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking
attention with performers. arXiv preprint arXiv:2009.14794, 2020.

[34] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Levskaya, and
Jonathon Shlens. Stand-alone self-attention in vision models. arXiv preprint arXiv:1906.05909,
2019.

[35] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2820–2828,
2019.

[36] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui
Tang, An Xiao, Chunjing Xu, Yixing Xu, et al. A survey on visual transformer. arXiv preprint
arXiv:2012.12556, 2020.

[37] Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan,
and Mubarak Shah. Transformers in vision: A survey. arXiv preprint arXiv:2101.01169, 2021.

[38] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis
Hawthorne, Andrew M Dai, Matthew D Hoffman, Monica Dinculescu, and Douglas Eck. Music
transformer. arXiv preprint arXiv:1809.04281, 2018.

12

[39] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

[40] Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan
Salakhutdinov. Transformer dissection: A unified understanding of transformer’s attention via
the lens of kernel. arXiv preprint arXiv:1908.11775, 2019.

[41] Irwan Bello. Lambdanetworks: Modeling long-range interactions without attention. arXiv
preprint arXiv:2102.08602, 2021.

[42] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 7132–7141, 2018.

[43] Kun Yuan, Shaopeng Guo, Ziwei Liu, Aojun Zhou, Fengwei Yu, and Wei Wu. Incorporating
convolution designs into visual transformers. arXiv preprint arXiv:2103.11816, 2021.

[44] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping
Luo, and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction
without convolutions. arXiv preprint arXiv:2102.12122, 2021.

[45] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical
automated data augmentation with a reduced search space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pages 702–703, 2020.

[46] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.

[47] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In European conference on computer vision, pages 646–661. Springer, 2016.

[48] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2818–2826, 2016.

[49] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[50] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pages 630–645. Springer, 2016.

[51] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

[52] Zihang Dai, Guokun Lai, Yiming Yang, and Quoc V Le. Funnel-transformer: Filtering out
sequential redundancy for efficient language processing. arXiv preprint arXiv:2006.03236,
2020.

13

A Appendix

A.1 Model Details

First of all, the overview of CoAtNet is illustrated in Fig. 4.

S2: Repeat L2 times
(28 x 28)

S1: Repeat L1 times
(56 x 56)

FFN
 (E=4)

Rel-A
ttention

++ +

C
onv 1x1

D
C

onv 3x3
(E=4)

C
onv 1x1

+ +Input

C
onv 3x3
(S=2)

C
onv 3x3

C
onv 1x1

D
C

onv 3x3
(E=4)

C
onv 1x1

FFN
 (E=4)

Rel-A
ttention

+ +

O
utput

G
lobal Pool

FC

S3: Repeat L3 times
(14 x 14)

S4: Repeat L4 times
(7 x 7)

S0: Stem stage
(112 x 112)

224 x 224

Figure 4: Overview of the proposed CoAtNet.

2D Relative Attention To implement the pre-norm version of relative attention in Eqn. 3 for 2D
images of size [H×W], for each head, we create a trainable parameter P of size [(2H−1)×(2W−1)],
as the maximum distance is 2H − 1 and 2W − 1 respectively. Then, for two spatial locations
(i, j) and (i′, j′), the corresponding relative bias is Pi−i′+H,j−j′+W under 1-based indexing. For
implementation, we need to index H2W 2 elements from the [(2H−1)× (2W −1)] matrix. On TPU,
we utilize two einsums, along the height and width axis respectively, to index the relative bias with
complexity O(HW (H +W)), which is strictly subsumed by the O(H2W 2D) attention complexity.
On GPUs, the indexing can be done more efficiently with gather, which only requires memory
access. Note that, at inference time, indexing the H2W 2 elements from the [(2H − 1)× (2W − 1)]
matrix can be pre-computed and cached to further increase the throughput.

When finetuned on a larger resolution, we simply use bi-linear interpolation to increase the size
[(2H − 1)× (2W − 1)] to the desired size [(2H ′ − 1)× (2W ′ − 1)] for any H ′ > H and W ′ > W .

Pre-Activation To promote homogeneity in the model architecture, we consistently use pre-
activation structure [50] for both the MBConv and the Transformer block, i.e.,

x← x+ Module (Norm(x)) ,

where Module denotes the MBConv, Self-Attention or FFN module, while Norm corresponds to
BatchNorm for MBConv and LayerNorm for Self-Attention and FFN. We have experimented with
using LayerNorm in the MBConv block, which achieves the same performance while being signif-
icantly slower on our accelerator (TPU). In general, we recommend whichever is faster on your
device. Following the same spirit, Gaussian Error Linear Units (GELUs) [51] is used as the activation
function in both the MBConv blocks and Transformer blocks.

Down-Sampling For the first block inside each stage from S1 to S4, down-sampling is performed
independently for the residual branch and the identity branch. Specifically, for the Transformer block,
the standard max pooling of stride 2 is directly applied to the input states of both branches of the
self-attention module, similar to Funnel Transformer [52]. Also, a channel projection is applied to
the identity branch to enlarge the hidden size. Hence, the down-sampling self-attention module can
be expressed as

x← Proj(Pool(x)) + Attention (Pool(Norm(x))) . (4)

As for the MBConv block, the down-sampling in the residual branch is instead achieved by using a
stride-2 convolution to the normalized inputs, i.e.,

x← Proj(Pool(x)) + Conv (DepthConv (Conv (Norm(x), stride = 2)))) . (5)

This is different from the standard MBConv where the down-sampling is done by applying stride-
2 depthwise convolution to the inverted bottleneck hidden states. We later found using stride-2
depthwise convolution is helpful but slower when model is small but not so much when model scales,
as shown in Table 9. Hence, if not mentioned otherwise, numbers reported in the main text uses
the down-sampling implementation in Eqn. (5). In practice, this could be yet another quality-speed
trade-off one can tweak for smaller models.

14

Table 9: The effect of performing down-sampling in first Conv v.s. the Depthwise Conv.
Models Eval Size #Params #FLOPs ImageNet Top-1 Accuracy

CoAtNet-0 2242 25M 4.2B 81.6
Strided DConv 2242 25M 4.6B 82.0

CoAtNet-1 2242 42M 8.4B 83.3
Strided DConv 2242 42M 8.8B 83.5

CoAtNet-2 2242 75M 15.7B 84.1
Strided DConv 2242 75M 16.6B 84.1

Classification head Instead of adding an additional <cls> token as in ViT to perform classification,
we apply global average pooling to the last-stage output to get the representation for simplicity.

A.2 Hyper-Parameters

Table 10: Hyper-parameters used in the main experiments. The slash sign “ / ” is used to separate
the different hyper-parameters used for various CoAtNet model sizes. �: For finetuning the slightly
larger CoAtNet-3, RandAugment of 2, 20 is used. †: RandAugment of 2, 5 is applied to the PT-RA
variants of CoAtNet-4 in Table 14.

Hyper-parameter
ImageNet-1K ImageNet-21K JFT

Pre-Training Finetuning Pre-Training Finetuning Pre-Training Finetuning
(CoAtNet-0/1/2/3) (CoAtNet-2/3/4) (CoAtNet-3/4/5)

Stochastic depth rate 0.2 / 0.3 / 0.5 / 0.7 0.3 / 0.5 / 0.7 0.0 / 0.1 / 0.0 0.1 / 0.3 / 0.2
Center crop True False True False True False
RandAugment 2, 15 2, 15� None / None / 2, 5† 2, 5 2, 5
Mixup alpha 0.8 0.8 None None None None
Loss type Softmax Softmax Sigmoid Softmax Sigmoid Softmax
Label smoothing 0.1 0.1 0.0001 0.1 0.0001 0.1
Train epochs 300 30 90 30 14 30
Train batch size 4096 512 4096 1024 4096 512
Optimizer type AdamW AdamW AdamW AdamW AdamW AdamW
Peak learning rate 1e-3 5e-5 1e-3 5e-5 1e-3 / 5e-4 / 5e-4 5e-5
Min learning rate 1e-5 5e-5 1e-5 5e-5 1e-5 5e-5
Warm-up 10K steps None 5 epochs None 20K steps None
LR decay schedule Cosine None Linear None Linear None
Weight decay rate 0.05 1e-8 0.01 1e-8 0.01 1e-8
Gradient clip 1.0 1.0 1.0 1.0 1.0 1.0
EMA decay rate None 0.9999 None 0.9999 None 0.9999

The hyper-parameters used for the main experiments presented in Section 4 are summarized in Table
10.

The model size of CoAtNet-5 used in the JFT experiment is summarized in Table 11. Different from
the standard CoAtNet models in Table 3, we set the size of each attention head to 64 rather than 32
for CoAtNet-5, as this achieves a better speed-performance trade-off as discussed in Section 4.3.

Table 11: CoAtNet-5 model sizes.
Stages Size CoAtNet-5
S0-Conv 1/2 L=2 D=192
S1-MbConv 1/4 L=2 D=256
S2-MBConv 1/8 L=12 D=512
S3-TFMRel 1/16 L=28 D=1280
S4-TFMRel 1/32 L=2 D=2048

For CoAtNet-6 and CoAtNet-7, to reduce the memory consumption, we move 2/3 of the MBConv
blocks of S2 into S3 and double its hidden dimension. While this modification does not change the

15

complexity in terms of FLOPs, this will reduce the activation related memory usage of these MBConv
blocks by half, which enables us to build a larger model. With this adjustment, the S3 becomes a
stage of mixed block types and hidden dimensions. In addition, we increase the attention head size to
128 further to boost the speed-performance trade-off. The specific sizes are summarized in Table 12.
Basically, CoAtNet-6 and CoAtNet-7 share the same depth but differ in width.

Table 12: Model sizes for the scaled models.
Stages Size CoAtNet-6 CoAtNet-7
S0-Conv 1/2 L=2 D=192 L=2 D=192

S1-MbConv 1/4 L=2 D=192 L=2 D=256

S2-MBConv 1/8 L=4 D=384 L=4 D=512

S3-MBConv 1/16
L=8 D=768 L=8 D=1024

S3-TFMRel L=42 D=1536 L=42 D=2048

S4-TFMRel 1/32 L=2 D=2048 L=2 D=3072

A.3 Complete Comparison

16

Table 13: Complete comparison under the ImageNet-1K only setting.
Models Eval Size #Params #FLOPs Top-1 Accuracy

Conv Only

ResNet-RS-152 2562 87M 31B 83.0
ResNet-RS-420 3202 192M 128B 84.4

NFNet-F0 2562 72M 12.4B 83.6
NFNet-F1 3202 133M 35.5B 84.7
NFNet-F2 3522 194M 62.6B 85.1
NFNet-F3 4162 255M 114.8B 85.7
NFNet-F4 5122 316M 215.2B 85.9
NFNet-F5 5442 377M 289.8B 86.0

ENetV2-S 3842 24M 8.8B 83.9
ENetV2-M 4802 55M 24B 85.1
ENetV2-L 4802 121M 53B 85.7

ViT-Stem TFM Only

DeiT-S 2242 22M 4.6B 79.8
DeiT-B 2242 86M 17.5B 81.8
DeiT-B 3842 86M 55.4B 83.1

CaiT-S-24 2242 46.9M 9.4B 82.7
CaiT-S-36 2242 68.2M 13.9B 83.3
CaiT-M-24 2242 185.9M 36.0B 83.4
CaiT-S-24 3842 46.9M 32.2B 84.3
CaiT-S-36 3842 68M 48.0B 85.0
CaiT-M-24 3842 185.9M 116.1B 84.5

DeepViT-S 2242 27M 6.2B 82.3
DeepViT-L 2242 55M 12.5B 83.1

Multi-Stage TFM Only

PVT-Small 2242 24.5M 3.8B 79.8
PVT-Medium 2242 44.2M 6.7B 81.2
PVT-Large 2242 61.5M 9.8B 81.7

Swin-T 2242 29M 4.5B 81.3
Swin-S 2242 50M 8.7B 83.0
Swin-B 2242 88M 15.4B 83.3
Swin-B 3842 88M 47.0B 84.2

Multi-Stage Conv+TFM

BotNet-T7 3842 75.1M 45.80B 84.7
LambdaResNet-420 3202 - - 84.8

T2T-ViT-14 2242 21.5M 6.1B 81.7
T2T-ViT-19 2242 39.2M 9.8B 82.2
T2T-ViT-24 2242 64.1M 15.0B 82.6

CvT-13 2242 20M 4.5B 81.6
CvT-21 2242 32M 7.1B 82.5
CvT-13 3842 20M 16.3B 83.0
CvT-21 3842 32M 24.9B 83.3

Proposed
Multi-Stage Conv+TFM

CoAtNet-0 2242 25M 4.2B 81.6
CoAtNet-1 2242 42M 8.4B 83.3
CoAtNet-2 2242 75M 15.7B 84.1
CoAtNet-3 2242 168M 34.7B 84.5

CoAtNet-0 3842 25M 13.4B 83.9
CoAtNet-1 3842 42M 27.4B 85.1
CoAtNet-2 3842 75M 49.8B 85.7
CoAtNet-3 3842 168M 107.4B 85.8
CoAtNet-2 5122 75M 96.7B 85.9
CoAtNet-3 5122 168M 203.1B 86.0

17

Table 14: Complete comparison under the ImageNet-21K pre-training + ImageNet-1K finetuning
set up. “PT-RA” denotes applying RandAugment during 21K pre-training and “E150” means 150
epochs of pre-training, which is longer than the standard 90 epochs.

Models Eval Size #Params #FLOPs Top-1 Accuracy

Conv Only
ENetV2-S 3842 24M 8.8B 85.0
ENetV2-M 4802 55M 24B 86.1
ENetV2-L 4802 121M 53B 86.8

ViT-Stem TFM Only ViT-B/16 3842 87M 55.4B 84.6
ViT-L/16 3842 304M 190.7B 85.3

Multi-Stage TFM Only

HaloNet-H4 3842 85M - 85.6
HaloNet-H4 5122 85M - 85.8

Swin-B 3842 88M 47.0B 86.0
Swin-L 3842 197M 103.9B 86.4

Multi-Stage Conv+TFM
HaloNet-Conv-H4 3842 87M - 85.5
HaloNet-Conv-H4 5122 87M - 85.8

CvT-13 3842 20M 16B 83.3
CvT-21 3842 32M 25B 84.9
CvT-W24 3842 277M 193.2B 87.7

Proposed
Multi-Stage Conv+TFM

CoAtNet-2 3842 75M 49.8B 87.1
CoAtNet-3 3842 168M 107.4B 87.6
CoAtNet-4 3842 275M 189.5B 87.9

+ PT-RA 3842 275M 189.5B 88.3
+ PT-RA-E150 3842 275M 189.5B 88.4

CoAtNet-2 5122 75M 96.7B 87.3
CoAtNet-3 5122 168M 203.1B 87.9
CoAtNet-4 5122 275M 360.9B 88.1

+ PT-RA 5122 275M 360.9B 88.4
+ PT-RA-E150 5122 275M 360.9B 88.56

18

	Introduction
	Model
	Merging Convolution and Self-Attention
	Vertical Layout Design

	Related Work
	Experiments
	Experiment Setting
	Main Results
	Ablation Studies

	Conclusion
	Appendix
	Model Details
	Hyper-Parameters
	Complete Comparison

