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ABSTRACT

The process of revising (or constructing) a policy at execution time—known as
decision-time planning—has been key to achieving superhuman performance in
perfect-information games like chess and Go. A recent line of work has extended
decision-time planning to imperfect-information games, leading to superhuman
performance in poker. However, these methods involve solving subgames whose
sizes grow quickly in the amount of non-public information, making them unhelp-
ful when the amount of non-public information is large. Motivated by this issue,
we introduce an alternative framework for decision-time planning that is not based
on solving subgames, but rather on update equivalence. In this update-equivalence
framework, decision-time planning algorithms replicate the updates of last-iterate
algorithms, which need not rely on public information. This facilitates scalability
to games with large amounts of non-public information. Using this framework,
we derive a provably sound search algorithm for fully cooperative games based
on mirror descent and a search algorithm for adversarial games based on magnetic
mirror descent. We validate the performance of these algorithms in cooperative
and adversarial domains, notably in Hanabi, the standard benchmark for search
in fully cooperative imperfect-information games. Here, our mirror descent
approach exceeds or matches the performance of public information-based search
while using two orders of magnitude less search time. This is the first instance of a
non-public-information-based algorithm outperforming public-information-based
approaches in a domain they have historically dominated.

1 INTRODUCTION

Decision-time planning (DTP) is the process of revising (or even constructing from scratch) a policy
immediately before using that policy to make a decision. In settings involving strategic decision
making, the benefits of DTP can be quite large. For example, while decision-time planning ap-
proaches have achieved superhuman performance in chess (Campbell et al., 2002), Go (Silver et al.,
2016), and poker (Moravčı́k et al., 2017; Brown and Sandholm, 2018; 2019), approaches without
decision-time planning remain non-competitive.

Currently, the dominant paradigm for DTP is based on solving (or improving the policy as much as
possible in) subgames. In perfect-information games, the subgame at a state is naturally defined as
a game beginning from that state that proceeds according to the same rules as the original game. In
contrast, the definition of subgame is nuanced in imperfect-information games, due to the presence
of private information. While multiple definitions have been proposed, all those that facilitate sound
guarantees (Nayyar et al., 2013; Dibangoye et al., 2013; Oliehoek, 2013; Burch et al., 2014; Morav-
cik et al., 2016; Brown and Sandholm, 2017; Moravčı́k et al., 2017; Brown et al., 2020; Sokota
et al., 2023b) rely on variants of a distribution known as a public belief state (PBS)1—i.e., the joint
posterior over each player’s decision point, given public information and the joint policy that has
been played so far.

1Note that different literatures use different names to refer to this distribution and its variants.
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Unfortunately, PBS-based planning has a fundamental limitation: it is ineffective in settings with
large amounts of non-public information. This shortcoming arises because PBS-based DTP dis-
tributes its computational budget across all decision points supported by the PBS and because the
number of such decision points increases with the amount of non-public information in the game.
When the amount of non-public information is small, such as in Texas Hold’em, where there are
only

(
52
2

)
= 1326 possible private hands, this is a non-issue because it is feasible to construct strong

policies for decision points supported by the PBS. However, as the amount of non-public informa-
tion grows, meaningfully improving for all such decision points becomes increasingly inviable. For
example, in games where the only public knowledge is the amount of time that has passed, PBS-
based subgame solving requires reasoning about every decision point consistent with the time step.
In the worst case—games with no public information at all—PBS-based subgame solving requires
solving the entire game, defeating the entire purpose of DTP.

In this work, motivated by the insufficiency of PBS-based conceptualizations, we investigate an al-
ternative perspective on DTP that we call the update-equivalence framework for DTP. Rather than
viewing DTP algorithms as solving subgames, the update-equivalence framework views them as im-
plementing the updates of last-iterate algorithms—a term that we use to refer to algorithms whose
last iterates possess desirable properties, such as monotonic improvements in expected return, de-
creases in exploitability, or convergence to an equilibrium point.2 This framework offers a simple
mechanism for generating and analyzing principled DTP algorithms, contrasting PBS-based algo-
rithms and analyses, which are notorious, especially in adversarial games, for their reconditeness.
Furthermore, importantly, because these last-iterate algorithms need not involve PBSs, the update-
equivalence framework for DTP is not inherently limited by the amount of non-public information.
Indeed, the most natural instances of the framework focus their entire computation budget on the de-
cision point that is actually occupied by the planning agent, entirely ignoring counterfactual decision
points supported by the PBS.

We invoke the update-equivalence framework to derive a DTP algorithm based on mirror descent
(Nemirovsky and Yudin, 1983; Beck and Teboulle, 2003). We prove that this algorithm, which
we call mirror descent search (MDS), guarantees policy improvement in fully cooperative games.
We test MDS in Hanabi (Bard et al., 2020), the standard benchmark for search in fully cooperative
imperfect-information games. Remarkably, MDS exceeds or matches the performance of state-of-
the-art PBS methods while using two orders of magnitude less search time. This is the first instance
of a non-public-information-based algorithm outperforming public-information-based approaches
in a setting they’ve historically dominated. Furthermore, we show that the performance gap between
MDS and PBS methods widens as the amount of non-public information increases, reflecting MDS’s
superior scalability properties. In addition to MDS, we also introduce a search algorithm for adver-
sarial settings based on magnetic mirror descent (MMD) (Sokota et al., 2023a) that we call MMD
search (MMDS). We show empirically that MMDS significantly improves performance in games
where PBS methods are essentially inapplicable due to the large amount of non-public information.

2 BACKGROUND AND NOTATION

We use the formalism of finite-horizon partially observable stochastic games, or POSGs, for short
(Hansen et al., 2004). POSGs are a class of games equivalent to perfect-recall timeable extensive-
form games (Jakobsen et al., 2016; Kovarı́k et al., 2022). To describe finite-horizon POSGs, we
use s ∈ S to notate Markov states, ai ∈ Ai to notate player i’s actions, oi ∈ Oi to notate player
i’s observations, hi ∈ Hi =

⋃
t(Oi × Ai)

t × Oi to notate i’s decision points, a ∈ A = ×iAi to
notate joint actions, h ∈ H = ×iHi to notate histories, Ri : S× A → R to notate player i’s reward
function, T : S× A → ∆(S) to notate the transition function, Oi : S× A → Oi to notate player i’s
observation function.

Each player i interacts with the game via a policy πi, which maps decision points to distributions
over actions πi : Hi → ∆(Ai). Given a joint policy π = (πi)i, we use the notation Pπ to notate

2For example, this definition of last-iterate algorithm would include policy iteration in Markov decision
processes, since its last iterate converges to the optimal policy, but exclude algorithms for imperfect-information
games possessing only average-iterate guarantees, such as counterfactual regret minimization (Zinkevich et al.,
2007) and fictitious play (Brown, 1951).
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probability functions associated with the joint policy π. For example, Pπ(h | hi) denotes the
probability of history h under joint policy π given that player i occupies decision point hi.

The objective of player i is to maximize its expected return Ji(π) := Eπ[G] where the return is de-
fined as the sum of rewards G :=

∑
t Ri(S

t, At) and where we use capital letters to denote random
variables. (We maintain the convention of using capital letters for random variables throughout the
paper.) If the return for each player is the same, we say the game is common payoff. If there are
two players and the returns of these players are the opposite of one another, we say the game is two
player zero sum (2p0s).

We notate the expected value for an agent at a history ht under joint policy π as

vπi (h
t) = Eπ[G

≥t | ht] = Eπ

[∑
t′≥t

Ri(S
t′ , At′) | ht

]
.

The expected action value for an agent at a history ht taking action ati under joint policy π is denoted

qπi (h
t, ati) = Eπ[G

≥t | ht, ati] = Eπ

[
Ri(S

t, At) + vπi (H
t+1) | ht, ati

]
.

The expected value of a decision point ht
i is the weighted sum of history values, where each history

is weighted by its probability, conditioned on the decision point and historical joint policy vπi (h
t
i) =

Eπ [v
π
i (H

t) | ht
i]. Similarly, the expected action value for action ati at a decision point ht

i is defined
as qπi (h

t
i, a

t
i) = Eπ [q

π
i (H

t, ati) | ht
i].

3 THE FRAMEWORK OF UPDATE EQUIVALENCE

The framework of update equivalence rests on the idea that last-iterate algorithms and DTP algo-
rithms may be viewed, implicitly or explicitly, as inducing updates. For last-iterate algorithms, this
induced update refers to the mapping from one iterate (i.e., policy) to the next. For DTP algorithms,
this induced update refers to the mapping from the policy to be revised (called the blueprint policy)
to the policy produced by the search. We define the idea that these updates may be equivalent below.
Definition 3.1 (Update equivalence). For some fixed game, a decision-time planning algorithm and
a last-iterate algorithm are update equivalent if, for any policy πt and any information state hi, the
distribution of actions played by the decision-time planning algorithm at hi with blueprint πt is
equal to the distribution of actions the last-iterate algorithm would play at hi on iteration t+1 given
that it had played πt on iteration t.

There are at least two benefits to considering update-equivalence relationships for decision-time
planning. First, it begets an approach to analyzing DTP algorithms via their last-iterate algorithm
counterparts. This avenue of analysis simply requires determining whether the next iterate is im-
proved from the previous, circumventing a host of complications that make the analysis of PBS
approaches nuanced. Second, and perhaps more importantly, it enables the generation of new prin-
cipled DTP algorithms via last-iterate algorithms with desirable guarantees.

We illustrate these benefits in the two coming subsections. In Section 3.1, we focus on last-iterate
algorithms that operate using action-value feedback, providing a general procedure to generate DTP
analogues of these algorithms and discussing three DTP algorithms constructed via this procedure,
as well as their soundness. In Section 3.2 we also discuss last-iterate algorithms that do not operate
using action-value feedback, demonstrating how the framework of update equivalence can be used
to generate or justify DTP algorithms with more complex structure.

3.1 ACTION-VALUE-BASED PLANNERS

In Algorithm 1, we give a procedure for constructing DTP algorithms that are update-equivalent to
last-iterate algorithms operating on action-value feedback. Specifically, let the last-iterate algorithm
be represented by a continuous function U : (πt(hi), q

πt

(hi)) 7→ πt+1(hi) mapping the current pol-
icy πt to the next policy πt+1 by incorporating the action-value feedback qπ

t

for the current policy.
Algorithm 1 repeatedly samples histories starting from a given decision point and the joint policy
and acquires estimates of the sample returns for these histories via rollouts. When the computational
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budget has been exhausted, Algorithm 1 applies the update function U to the current joint policy and
estimated action values. This leads to an update-equivalent DTP algorithm, as we establish next.
Proposition 3.2. Consider a last-iterate algorithm operating with action-value feedback whose up-
date function U is continuous. Then, as the number of rollouts goes to infinity, the output of Algo-
rithm 1, conditioned on U and given inputs ht

i, π, converges in probability to U(πt(hi), q
πt

(hi))(hi).

Proof. This proposition holds because q̂ converges in probability to qπi (hi) by the law of large
numbers and U is continuous.

Algorithm 1 Update Equivalent Search for Last-Iterate
Algorithm with Action-Value Feedback and Update U

Input: decision point ht
i, joint policy π

Initialize q̄[a] as running mean tracker for a ∈ Ai

repeat
Sample history Ht ∼ Pπ(H

t | ht
i)

for a ∈ Ai do
Sample return G≥t ∼ Pπ(G

≥t | Ht, a)
q̄[a].update running mean(G≥t)

end for
until search budget is exhausted
return U(π(ht

i), q̄)

Monte Carlo Search Algorithm 1 enables
us to relate last-iterate algorithms with DTP
counterparts. A notable existing instance of
such a relationship had already been identified
by Tesauro (1995) and Tesauro and Galperin
(1996) between policy iteration (as the last-
iterate algorithm) and Monte Carlo search (as
the corresponding DTP algorithm). Indeed, by
plugging policy iteration’s local update func-
tion into Algorithm 1 we recover exactly Monte
Carlo search as a special case. The local update
induced by policy iteration can be written as

U : (π̄, q̄) 7→ argmax
π̄′∈∆(Ai)

⟨π̄′, q̄⟩,

where π̄ ∈ ∆(Ai) and q̄ ∈ R|Ai|. In other words, policy iteration’s update simply plays a greedy
policy with respect to its action values. By Proposition 3.2, when the computational budget given
to the Monte Carlo search DTP algorithm grows, the policies produced converge to those of policy
iteration. So, with enough budget, Monte Carlo search inherits all desirable properties enjoyed by
policy iteration, including convergence to optimal policies in single-agent settings and convergence
to Nash equilibrium in perfect-information 2p0s games (Littman, 1996).

Mirror Descent Search Algorithm 1 also enables us to give novel justification to DTP approaches
in settings in which giving guarantees has been historically difficult. One example of such as a set-
ting is common-payoff games, where a naı̈ve application of Monte Carlo search can lead to bad
performance as a result of the posterior over histories induced by the search policy diverging too far
from the blueprint policy’s posterior (Sokota et al., 2022). We show that this issue can be resolved
using mirror descent (Beck and Teboulle, 2003; Nemirovsky and Yudin, 1983), which is a general
approach to optimizing objectives that penalizes the distance between iterates. In the context of se-
quential decision making, a natural means of leveraging mirror descent is to instantiate simultaneous
updaters U of the form

U : (π̄, q̄) 7→ argmax
π̄′∈∆(Ai)

⟨π̄′, q̄⟩ − 1

η
KL(π̄′, π̄)

at each decision point, where π̄ is a local policy, η is a stepsize, q̄ is a local action-value vector.
In the case of discrete action spaces, this update reduces to the closed-form learning algorithm
U(π̄, q̄) ∝ π̄eηq̄ , known in literature as hedge or multiplicative weights update.

In the appendix, we show that mirror descent satisfies the following improvement property.
Theorem 3.3. Consider a common-payoff game. Let πt be a joint policy having positive probability
on every action at every decision point. Then, if we run mirror descent at every decision point with
action-value feedback, for any sufficiently small stepsize η > 0, J (πt+1) ≥ J (πt). Furthermore,
this inequality is strict if πt+1 ̸= πt (that is, if πt is not a local optimum).

We call mirror descent search (MDS) the DTP algorithm obtained by applying Algorithm 1 with
mirror descent as the last-iterate algorithm. By virtue of Proposition 3.2, as the computational
budget increases, MDS inherits the improvement property of Theorem 3.3.

Magnetic Mirror Descent Search Another example of a setting that has been historically dif-
ficult for DTP is 2p0s games. In such settings, neither policy iteration- nor mirror descent-based
approaches yield useful policies—instead, these approaches tend to cycle, diverge, or even exhibit
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formally chaotic behavior already in simple games such as rock-paper-scissors (Cheung and Pil-
iouras, 2019). It was recently shown that this issue can be empirically and reliably resolved using
magnetic mirror descent (Sokota et al., 2023a), which is an extension of mirror descent with addi-
tional proximal regularization to a magnet that dampens these cycles. As with mirror descent, in the
context of sequential decision making, a natural means of leveraging magnetic mirror descent is to
instantiate simultaneous updaters U at each decision point:

U : (π̄, q̄) 7→ argmax
π̄′∈∆(Ai)

⟨π̄′, q̄⟩ − 1

η
KL(π̄′, π̄)− αKL(π̄′, ρ̄),

where α is a regularization temperature and ρ̄ ∈ ∆(Ai) is a local reference policy; in the case of
discrete action spaces, this update reduces to the following closed form: U(π̄, q̄) ∝ [π̄eηq̄ρ̄ηα]

1
1+αη .

We call magnetic mirror descent update equivalent search (MMDS) the DTP algorithm obtained
by applying Algorithm 1 with the particular choices of magnetic mirror descent as the last-iterate
algorithm. Once again from Proposition 3.2, we establish that if the observation of MMD’s reliable
last-iterate convergence to equilibrium made by Sokota et al. (2023a) holds, then MMDS leads to
expected improvement in 2p0s games as the computational budget grows.
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Figure 1: Divergence to AQRE as a function of iterations for last-iterate algorithm analogues of
variants of MMD-based search algorithms. Each variant exhibits empirical convergence.

3.2 BEYOND ACTION-VALUE-BASED PLANNERS

Many DTP algorithms cannot be derived from Algorithm 1 that nevertheless may be useful to view
from the perspective of update equivalence. One class of such approaches makes updates at fu-
ture decision points during search. Approaches of this form, such as Monte Carlo tree search
(MCTS) (Coulom, 2006; Kocsis and Szepesvári, 2006; Browne et al., 2012), played an important
role in successes in perfect information games Silver et al. (2016; 2018); Schrittwieser et al. (2019);
Antonoglou et al. (2022). Another class of approaches fine-tune the belief model (Sokota et al.,
2022) to track the search policy.

We provide empirical evidence for the soundness of three such MMD-based approaches in the con-
text of imperfect-information 2p0s games: 1) With subgame updates, A variant in which the plan-
ning agent also performs MMD updates at its own future decision points; 2) With belief fine-tuning
(BFT), a variant that implements an MMD update on top of a posterior fine-tuned to the search
policy; 3) With opponent updates, a variant that implements an MMD update assuming a subgame
joint policy in which the opponent has performed an MMD update at its next decision point. See
Appendix B.1 for further algorithmic details.

In Figure 1, we measure the divergence of these last-iterate algorithm counterparts to agent quantal
response equilibrium (AQRE) (McKelvey and Palfrey, 1998) as a function of the number of update
iterations. We find that all three last-iterate algorithm analogues exhibit empirical convergence,
suggesting that these DTP algorithms may be safe in 2p0s settings. More generally, these findings
may hint that, so long as MMD is used as a local updater, one may have wide leeway in designing
safe DTP algorithms for 2p0s games.
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4 EXPERIMENTS

In this section, we add further evidence for the update-equivalence framework’s utility by showing
that the novel DTP algorithms derived from it also perform well in practice. We focus on two settings
with imperfect information: i) two variants of Hanabi (Bard et al., 2020), a fully cooperative card
game in which PBS-based DTP approaches are considered state-of-the-art; and ii) 3x3 Abrupt Dark
Hex and Phantom Tic-Tac-Toe, 2p0s games with virtually no public information.

4.1 HANABI

We consider two versions of two-player Hanabi, a standard benchmark in the literature (Bard et al.,
2020). Both versions are scored out of 25 points—scoring a 25 is considered winning. First, we
trained instances of PPO (Schulman et al., 2017) in self play for each setting. We intentionally
selected instances whose final performance roughly matched those of R2D2 (Kapturowski et al.,
2019) instances that have been used to benchmark DTP algorithms. Next, we trained a belief model
for each PPO policy using Seq2Seq with the same setup and hyperparameters as Hu et al. (2021);
in this setup, the belief model takes in the decision point of one player and predicts the private
information of the other player, conditioned on the PPO policy having been played thus far.

We adapted our implementation of MDS from that of single-agent SPARTA with a learned belief
model (Hu et al., 2021). Our adaptation involves three important changes. First, MDS performs
search for all agents, rather than only one agent, as was done in (Hu et al., 2021). Second, MDS
plays the argmax3 of a mirror descent update, rather than the argmax of the empirical Q-values
from search, as SPARTA does. Third, MDS always plays its search policy. This contrasts both
SPARTA (Lerer et al., 2020; Hu et al., 2021) and RLSearch (Fickinger et al., 2021), which, after
doing search, perform a validation check to determine whether the search policy outperforms the
blueprint policy; if the validation check fails, the blueprint policy is played instead of the search
policy. This validation check can be expensive and usually fails (SPARTA and RLSearch only play
their search policies on a handful of turns). Thus, MDS’s ability to sidestep the validation check is
a significant advantage.

5-Card Hanabi We first test MDS in the 5-card 8-hint variant of Hanabi, which is commonly
played by humans. Specifically, we compare MDS using a PPO blueprint policy against single- and
multi-agent SPARTA and RLSearch, which are considered state-of-the-art, with exact belief models
and an R2D2 blueprint policy; we also compare against single-agent SPARTA using the same PPO
blueprint policy and Seq2Seq belief model. For MDS, we use 10, 000 samples from the belief model
for search; this takes about 2 seconds per decision, which is about two orders of magnitude faster
than multi-agent SPARTA and multi-agent RL-Search.

We report our results in Table 1. To give context to the results, the strongest reported performance
of model-free agents in literature exceeds 24.40, while that of the strongest reported search agents
exceeds 24.60 (Hu et al., 2021). It becomes increasingly hard to improve the performance as the
score increases; for high-scoring policies, increases as small as a few hundredths of points are
considered substantial and can translate to multiple percentage points in winning percentage. To
give specific numbers as an illustration, Lerer et al. (2020) report that improving the expected return
from 24.53 to 24.61 can increase the winning percentage from 71.1% to 75.5%.

Despite being handicapped by 1) an approximate belief model, 2) a lack of validation, and 3) two or-
ders of magnitude less search time, we find that MDS achieves superior or comparable performance
to PBS methods. Given the historical dominance of PBS approaches in settings where they are ap-
plicable, the fact that a non-PBS-based method could achieve competitive performance is already
notable; that MDS does so with such a severe handicap is particularly impressive.

7-Card Hanabi We next investigate MDS in the 7-card 4-hint variant of Hanabi. This variant was
introduced by Hu et al. (2021) to illustrate the challenges of performing search as the amount of
private information scales. Specifically, the number of possible histories is too large to enumerate.
As a result, multi-agent SPARTA is inapplicable altogether, single-agent SPARTA and RLSearch
require an approximate belief model, and multi-agent RLSearch requires both an approximate belief

3Note that this differs slightly from our description in the previous section in that we are playing the argmax,
rather than sampling, from the updated policy.
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Table 1: MDS (bold) compared to SPARTA and RLSearch in 5-card 8-hint Hanabi. Despite us-
ing approximate beliefs and roughly two orders of magnitude less search time, MDS matches the
performance of prior methods using exact beliefs. Columns to the left of the divider used an R2D2
blueprint that scored 24.23±0.04; columns to the right used a PPO blueprint that scored 24.24±0.02.

Search
Agents planned
Belief model
Validation used
Time per move

SPARTA
Single
Exact

✓
3s

RLSearch
Single
Exact

✓
35s

SPARTA
Multi
Exact

✓
450s

RLSearch
Multi
Exact

✓
180s

SPARTA
Single

Seq2Seq
✓
1s

MDS
Multi

Seq2Seq
✗

2s
Expected return
Standard error

24.57
± 0.03

24.59
± 0.02

24.61
± 0.02

24.62
± 0.03

24.52
± 0.02

24.62
± 0.02

Table 2: MDS (bold) compared to SPARTA and RLSearch in 7-card 4-hint Hanabi; MDS compares
favorably to these approaches. Columns to the left of the divider used an R2D2 blueprint that scored
23.67± 0.02; columns to the right used a PPO blueprint that scored 23.66± 0.03.

Search
Agents planned
Belief model
Validation used
Time per move

RLSearch
Single

Seq2Seq
✓

35s

RLSearch
Single

BFT
✓

100s

RLSearch
Multi
BFT

✓
310s

SPARTA
Single

Seq2Seq
✓
1s

MDS
Multi

Seq2Seq
✗

2s
Expected Return
Standard error

24.14
± 0.04

24.18
± 0.03

24.18
± 0.03

24.17
± 0.03

24.28
± 0.02

model and belief fine-tuning (Sokota et al., 2022). Because of the significantly increased burden of
running PBS methods in this setting, one would hope that a method that eschews PBSs might be
able to outperform PBS methods. And, indeed, in Table 2, where we report expected return and
standard error over 2000 games, we find that MDS does outperform multi-agent RLSearch with
BFT, as well as a variety of single-agent search techniques. These results support our claim that
the update-equivalence framework offers superior scaling properties in the amount of non-public
information, compared to PBS methods.
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1Figure 2: Performance of MDS as a function
of stepsize in 7-card 4-hint Hanabi. Small step
sizes provide less improvement over the blueprint;
overly large step sizes cause the search policy to
diverge too far from the blueprint, resulting in less
improvement or even detriment.

To offer further intuition for the behavior of
MDS, we show the performance in 7-card 4-
hint Hanabi as a function of mirror descent’s
stepsize in Figure 2. As might be expected, we
find that improvement is a unimodal function
of stepsize: If the stepsize is too small, oppor-
tunities to improve the blueprint policy are ne-
glected; on the other hand, if the stepsize is too
large, the search policy’s posterior diverges too
far from that of the blueprint for the search to
provide useful feedback.

4.2 3X3 ABRUPT
DARK HEX AND PHANTOM TIC-TAC-TOE

Unlike common-payoff games, measuring per-
formance in 2p0s games is difficult because the
usual metric of interest—exploitability (i.e., the
expected return of a best responder)—cannot be
cheaply estimated. Indeed, providing a reasonable lower bound requires training an approximate
best response (Timbers et al., 2022), which may be costly. To facilitate this approximate best re-
sponse training under a modest computation budget, we focus our experiments on a blueprint policy
that selects actions uniformly at random at every decision point so that rollouts may be performed
quickly; furthermore, rather than using a learned belief model, we track an approximate posterior
using particle filtering (Doucet and Johansen, 2009) with 10 particles. If particles remain, our im-
plementation of MMDS performs a rollout for each particle for each legal action until the end of the
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Figure 3: Expected return of uniform random and uniform random blueprint + MMDS (left) and
MMD(1M) and MMD(1M) blueprint + MMDS (right) versus various opponents in 3x3 Abrupt
Dark Hex and Phantom Tic-Tac-Toe. MMDS tends to improve head-to-head expected return.

game and performs an MMD update on top of the empirical means of the returns. Otherwise, the
agent executes the blueprint policy.

We empirically investigate MMDS in 3x3 Abrupt Dark Hex and Phantom Tic-Tac-Toe, two standard
benchmarks available in OpenSpiel (Lanctot et al., 2019). We show approximate exploitability
results in Table 3. We computed these results using OpenSpiel’s (Lanctot et al., 2019) DQN (Mnih
et al., 2015) best response code, trained for 10 million time steps. We show standard error over
5 DQN best response training seeds and 2000 final evaluation games for the fully trained model.
We compare against a bot that plays the first legal action, the uniform random blueprint, Liang
et al. (2018)’s implementation of independent PPO (Schulman et al., 2017), Lanctot et al. (2019)’s
implementation of NFSP (Heinrich and Silver, 2016), and MMD (Sokota et al., 2023a). For the
learning agents, we ran 5 seeds and include checkpoints trained for both 1 and 10 million time steps.

Table 3: Approximate exploitability in 3x3
Abrupt Dark Hex and Phantom Tic-Tac-Toe,
on a 0 to 100 scale. MMDS (bold) substan-
tially reduces Random’s exploitability.

Agent 3x3 Ab. DH Phantom TTT
1st Legal Action 100± 0 100± 0
Random 74± 1 78± 0
PPO(1M steps) 85± 6 89± 6
PPO(10M steps) 100± 0 90± 4
NFSP(1M steps) 91± 4 95± 1
NFSP(10M steps) 59± 1 78± 5
Random+MMDS 50± 1 50± 1
MMD(1M steps) 34± 2 37± 1
MMD(10M steps) 20± 1 15± 1

We find that MMDS reduces the approximate
exploitability of the uniform random blueprint
by more than a third, despite using a meager
10-particle approximate posterior. Furthermore,
MMDS achieves lower approximate exploitability
than all non-MMD-based approaches.

We also investigate the performance of MMDS
in head-to-head matchups. We show results us-
ing the uniform random blueprint with 10 parti-
cles and also a MMD(1M) blueprint with 100 par-
ticles in Figure 3. The values shown are aver-
ages over 10,000 games with bootstrap estimates
of 95% confidence intervals. We find that MMDS
tends to improve the performance of the blueprint
policies in both cases, despite the short length of the games.

5 RELATED WORK

Other Approaches to Imperfect Information Motivated by the deficiencies of PBS-based DTP
described above, a small group of existing works has advocated for alternative approaches to DTP
for common-payoff games (Tian et al., 2020) and 2p0s games (Zhang and Sandholm, 2021). Tian
et al. (2020)’s approach relies on a result that shows that it is possible to decompose the change
in expected return for two different joint policies across decision points. By leveraging this result,
Tian et al. (2020) introduce a search procedure called joint policy search (JPS) that is guaranteed to
not decrease the expected return. Zhang and Sandholm (2021)’s approach is based on the insight
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that, in practice, it is effective to consider a subgame that excludes most of the decision points
supported by the PBS. Specifically, Zhang and Sandholm (2021) advocate in favor of solving a
maxmargin subgame (Moravcik et al., 2016) that includes the planning agent’s true decision point,
as well as any opponent decision points that are possible from the perspective of the planning agent.
Despite proving the existence of games in which this approach, which they call 1-KLSS, increases
the exploitability of the policy, Zhang and Sandholm (2021) find experimentally that, on small and
medium-sized games, 1-KLSS reliably decreases exploitability. In concurrent work, Liu et al. (2023)
derive an alternative variant of 1-KLSS that guarantees safety, making it a promising approach for
scaling search to adversarial settings with large amounts of non-public information.

Structurally Similar Approaches While the motivation for the update-equivalence framework
most closely resembles of the works of Tian et al. (2020) and Zhang and Sandholm (2021), nat-
ural instances of the update-equivalence framework are structurally more similar to search algo-
rithms unrelated to resolving issues with PBS-based planning. As discussed previously, arguably the
most fundamental instance of the framework of update equivalence is Monte Carlo search (MCS)
(Tesauro, 1995; Tesauro and Galperin, 1996), which is update equivalent to policy iteration, as was
articulated by Tesauro and Galperin (1996) themselves: “[MCS] basically implements a single step
of policy iteration.” More recently, Anthony et al. (2019); Anthony (2021); Hamrick et al. (2021);
Lerer et al. (2020); Hu et al. (2021) investigate MCS in a variety of settings: Anthony et al. (2019)
and Anthony (2021) find that it yields perhaps surprisingly good performance relative to MCTS in
Hex; Hamrick et al. (2021) report comparable performance with MCTS across a variety of settings,
with the exception of Go; Lerer et al. (2020) and Hu et al. (2021) show strong results for Hanabi
(under the names single-agent SPARTA and learned belief search).

In his work, Anthony (2021) also investigates a search algorithm called policy gradient search that
performs policy gradient updates at future decision points. He finds that a variant of this approach
that involves regularization toward the blueprint policy tends to outperform not regularizing. This
approach is similar to some of the variants of MMDS investigated in Section 3.2. The combination
of policy gradient search and the framework of update equivalence may be a fruitful direction in the
pursuit of algorithms that perform well in both perfect and imperfect information games.

Separately from Anthony (2021), Jacob et al. (2022) also investigate approaches to DTP involving
regularization toward a blueprint. Jacob et al. (2022) show empirically that, by performing regular-
ized search, it is possible to increase the expected return of an imitation learned policy without a loss
of prediction accuracy (for the policy being imitated). The most immediately related experiments
to this work are those concerning Hanabi, in which Jacob et al. (2022) investigated MDS (under the
name piKL SPARTA) applied on top of imitation learned blueprint policies. Jacob et al. (2022) note
that this approach reliably increases the performance of weak policies, but neither recognize that it
possesses an improvement guarantee nor that it is simply performing a hedge update, as we do in
this work. Jacob et al. (2022)’s experiments on Diplomacy (Paquette et al., 2019) are also related in
that their approach is similar to a follow-the-regularized-leader analogue of MMDS. This approach
played an important role in recent empirical successes for Diplomacy (Bakhtin et al., 2023; Meta
Fundamental AI Research Diplomacy Team (FAIR) et al., 2022), suggesting that the framework of
update equivalence is a natural approach to general-sum settings.

6 CONCLUSION AND FUTURE WORK

In this work, motivated by the deficiencies of search algorithms based on public belief state rep-
resentation of imperfect-information games, we advocate for a new paradigm for decision-time
planning, which we call the framework of update equivalence. We show how the framework of
update equivalence can be used to generate and ground new decision-time planning algorithms for
imperfect-information games. Furthermore, we show that these algorithms can achieve competitive
(or superior) performance compared with state-of-the-art PBS-based methods in Hanabi and can
reduce approximate exploitability in 3x3 Abrupt Dark Hex and Phantom Tic-Tac-Toe.

We believe the framework of update equivalence opens the door to many exciting possibilities for
DTP and expert iteration (Anthony et al., 2017; Anthony, 2021) in settings with large amounts of im-
perfect information. Among these are the prospects of extending algorithms resembling AlphaZero
(Silver et al., 2018), Stochastic MuZero (Antonoglou et al., 2022), and Diplodocus (Bakhtin et al.,
2023) to imperfect-information games.
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A THEORY

In this section, we prove Theorem 3.3. To start, consider the following more general lemma.

Lemma A.1 (Folklore). Let f ∈ C1(X ), where X ⊆ Rd is convex and compact, x0 ∈ X , and x+

be the solution to the mirror descent step

x+ := argmin
x∈X

{η⟨∇f(x0), x⟩+Dφ(x, x0)} .

where φ is differentiable and 1-strongly convex with respect to a norm ∥ · ∥. Then, for η small
enough, if x+ ̸= x0,

f(x+) < f(x0),

Proof. From the first-order necessary optimality conditions for the mirror descent step, we have

⟨η∇f(x0) +∇φ(x+)−∇φ(x0), x̂− x+⟩ ≥ 0 ∀x ∈ X .

Hence, letting x̂ := x0, and using the strong convexity of φ and the assumption that x+ ̸= x0, we
obtain

⟨∇f(x0), x
+ − x0⟩ ≤ −1

η
∥x+ − x0∥2 < 0,

and with a further application of the Cauchy-Schwarz inequality,

∥x+ − x0∥ ≤ η∥∇f(x0)∥.

By continuity of the gradient of f , there must exist ϵ > 0 such that

⟨∇f(x), x+ − x0⟩ < 0 ∀x ∈ B(x0, ϵ).

Furthermore, the mean value theorem guarantees that

f(x+)− f(x0) = ⟨∇f(ξ), x+ − x0⟩

for some ξ on the line connecting x0 to x+. So, as long as η∥∇f(x0)∥ < ϵ, we have

f(x+) < f(x0),

as we wanted to show.

Theorem 3.3 Consider a common-payoff game. Let πt be a joint policy having positive probability
on every action at each decision point. Then, if we run mirror descent at every decision point with
action-value feedback, for any sufficiently small stepsize η,

J (πt1) ≥ J (πt).

Furthermore, this inequality is strict if πt1 ̸= πt (that is, if πt is not a local optimum).

Proof. The space of joint policies Π is a Cartesian product of probability simplices, immediately
implying that it is convex and compact. Furthermore, the expected return function is a polynomial
function of any joint policy π ∈ Π. Hence, J ∈ C1(Π). The result then follows directly from
Lemma A.1, as, by hypothesis, the players are performing mirror descent steps on J .

B EXPERIMENTS

In this section, we provide further details about some of our empirical results and also show some
additional results.

B.1 BEYOND ACTION-VALUE-BASED PLANNERS

First, we describe in greater detail the DTP algorithms that we investigated in Section 3.2.
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With Subgame Updates With subgame updates differs from MMDS in the feedback it uses. In
particular, rather than using the action values for the current policy, with subgame updates uses the
action-values for the joint policy induced by performing MMD updates at its own future decision
points (but leaving the opponent’s policy fixed). Because the opponent is fixed, in tabular settings,
we can compute the feedback for the last-iterate algorithm analogue of this approach using one
backward induction pass for each player.

With Belief Fine-Tuning With BFT differs from MMDS in the distribution it samples histories
from. In particular, rather than sampling from the distribution induced by the current policy, it
samples from the distribution induced by the search policy for each player.

With Opponent Update With opponent update differs from MMDS in the feedback it uses. In
particular, rather than using the action values for the current policy, with opponent update uses the
action values for the joint policy induced by performing an MMD update for the opponent at the next
time step. Note that, as a DTP algorithm, this approach would involve two belief model sampling
steps: one to sample an opponent decision point for updating and one to sample an unbiased history
for that opponent information state.

Agent Quantal Response Equilibria Solving In Figure 4, we show the convergence results from
the main body, along with the exploitabilities of the corresponding iterates. For these experiments,
we used α = 0.1 and η = α/10, except for with opponent updates on Leduc, where we used
η = α/20, and with subgame updates on Leduc, where we used η = α/50.
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Figure 4: Solving for agent quantal response equilibria using last-iterate algorithm analogues of
variants of MMDS.

MiniMaxEnt Equilibrium Solving In Figure 5, we show convergence results for solving for
MiniMaxEnt equilibria, which are the solutions of MiniMaxEnt objectives (Perolat et al., 2021). A
MiniMaxEnt objective is an objective of the form

Ji : π 7→ E

[∑
t

Ri(S
t, At) + αH(πi(H

t
i ))− αH(π−i(H

t
−i)) | π

]
.
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We used α = 0.1 and η = α/10, except for with opponent update on Leduc, where we used
η = α/20, and with subgame updates on Leduc, which used η = α/50. We again observe empirical
convergence.
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Figure 5: Solving for MiniMaxEnt equilibria using last-iterate algorithm analogues of variants of
MMDS.

Solving for Nash Equilibria Next we show that these last-iterate algorithm analogues can be
made to converge to Nash equilibria by annealing the amount of regularization used. We show that
these results in Figure 6 compared against CFR (Zinkevich et al., 2007). The hyperparameters for
these results are shown in Table 4.
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Figure 6: Exploitability of different MMDS analogues with annealed regularization.
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Method\Game Kuhn Poker 2x2 Abrupt
Dark Hex

4-Sided Liar’s Dice Leduc Poker

Standard αt = ηt =
1√
t

αt = ηt =
1√
t

αt =
1√
t
, ηt =

2√
t

αt =
5√
t
, ηt =

1√
t

With Subgame Updates αt = ηt =
1√
t

αt = ηt =
1√
t

αt =
1√
t
, ηt =

1
2
√
t

αt =
5√
t
, ηt =

1
5
√
t

With BFT αt = ηt =
1√
t

αt = ηt =
1√
t

αt =
1√
t
, ηt =

2√
t

αt =
5√
t
, ηt =

1
2
√
t

With Opponent Update αt = ηt =
1√
t

αt = ηt =
1√
t

αt = ηt =
1√
t

αt =
5√
t
, ηt =

1
2
√
t

Table 4: Schedules for Figure 6.

Solving for Nash Equilibria with MiniMaxEntRL objectives We also show analogous results
for MiniMaxEnt objectives in Figure 7. The hyperparameters for these experiments are shown in
Table 5.

CFR

Kuhn Poker 2x2 Abrupt Dark Hex 4-Sided Liar’s Dice Leduc Poker

Iterations

Ex
pl

oi
ta

bi
lit

y

Standard With Subgame Updates With BFT With Opponent Update

Figure 7: Exploitability of different MMDS analogues under MiniMaxEnt objectives with annealed
regularization.

Method\Game Kuhn Poker 2x2 Abrupt
Dark Hex

4-Sided Liar’s Dice Leduc Poker

One-Step Search αt = ηt =
1√
t

αt = ηt =
1√
t

αt =
1√
t
, ηt =

2√
t

αt =
5√
t
, ηt =

1√
t

Multi-Step Search αt = ηt =
1√
t

αt = ηt =
1√
t

αt =
1√
t
, ηt =

1
2
√
t

αt =
5√
t
, ηt =

1
5
√
t

BFT Search αt = ηt =
1√
t

αt = ηt =
1√
t

αt =
1√
t
, ηt =

2√
t

αt =
5√
t
, ηt =

1√
t

Opponent Search αt = ηt =
1√
t

αt = ηt =
1√
t

αt = ηt =
1√
t

αt =
5√
t
, ηt =

1
2
√
t

Table 5: Schedules for Figure 7.

B.2 HANABI

For our Hanabi experiments, we used η = 20 for the MDS results in Tables 1 and 2. We performed
search with 10,000 samples.

B.3 3X3 ABRUPT DARK HEX AND PHANTOM-TIC-TAC-TOE

For our 3x3 Abrupt Dark Hex and Phantom-Tic-Tac-Toe experiments with a uniform blueprint, we
used η = 50, α = 0.01, and set ρ to be uniform. For the MMD(1M) blueprint, used η = 10,
α = 0.05, and set ρ to be uniform. For particle filtering, we sampled 10 particles for the uniform
blueprint and 100 particles for the MMD(1M) blueprint from the start of the game independently
at every decision point to reduce bias. For the baselines, we used the same setup as Sokota et al.
(2023a).
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