
Overcoming the Convex Barrier for Simplex Inputs:
Supplementary Material

Harkirat Singh
University of Oxford

harkirat@robots.ox.ac.uk

M. Pawan Kumar
DeepMind

mpawan@deepmind.com

Philip H.S. Torr
University of Oxford

phst@robots.ox.ac.uk

Krishnamurthy (Dj) Dvijotham
DeepMind

dvij@google.com

Appendix

1 Technical Appendix

1.1 Proofs

In this section, we present proofs for the theoretical results presented in the main paper Section 3.1.
Theorem 1.1. The convex hull of set S, CH(S), is the set of all (y,x) satisfying the following
convex constraints:

y ≥ σ
(
wTx + b

)
, x ∈ ∆, (1a)

y ≤
∑
i

xi
(
σ
(
wTei + b

)
− σ (b)

)
+ σ (b) , (1b)

where ei ∈ Rn, eii = 1, eij = 0∀j 6= i, denotes the i-th coordinate vector in Rn.

Proof. In this proof, for brevity, we write CH to denote CH (S). To begin with, we note that CH is
clearly a convex set, since σ is a convex function.

The convex hull of the set

S = {(x, y) : y = σ
(
wTx + b

)
,x ∈ ∆}

can be characterized as the intersection of all the halfspaces that contain it [Boyd and Vandenberghe,
2004]. Equivalently, if we demonstrate that any linear function obtains the same maximum value
over S as over CH, the proof is complete.

Let α ∈ Rn, β ∈ R denote coefficients of a linear function on S.

If β > 0, the maximum is given by

max
(x,y)∈S

αTx + βy = max
x∈∆

αTx + βσ
(
wTx + b

)
= max

e∈V
αT e+ βσ

(
wT e+ b

)
where V = {0, e1, e2, . . . , en} denotes the set of vertices of the simplex ∆, and the second inequality
follows from the fact that the objective is a convex function of x. Since the constraint is invariant to
scaling β, we can assume β = 1. Thus, we have that for any (x, y) ∈ S,

max
(x,y)∈S

αTx + y = σ (b) + max
(

max
i
αi + σ

(
wTei + b

)
− σ (b) , 0

)

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



If we optimize the same linear function over CH, we obtain

max
(x,y)∈CH

αTx + y = max
x∈∆

αTx +
∑
i

xi
(
σ
(
wTei + b

)
− σ (b)

)
+ σ (b)

= max
x∈∆

∑
i

xi
(
αi + σ

(
wTei + b

)
− σ (b)

)
+ σ (b)

= σ (b) + max
(

max
i

(
αi + σ

(
wTei + b

)
− σ (b)

)
, 0
)

Thus the linear functions obtain the same optimum over both sets when β > 0.

If β < 0, the maximum value of the linear function over S
max

(x,y)∈S
αTx + βy = max

x∈∆
αTx + βσ

(
wTx + b

)
= max

(x,y)∈CH
αTx + βy

where the last equality follows from the fact that β < 0 and CH only contains one lower bound on y
for any fixed x, ie, y ≥ σ

(
wTx + b

)
(equation 1b) and the objective is optimized by setting y to its

lower bound.

The only remaining case is when β = 0 and in this case, the optimization over both S, CH reduce to

max
x∈∆

αTx = max
e∈V

αT e

and are indeed identical.

Thus, we have demonstrated that the maximum value of any linear function over S and over CH are
identical, and hence CH is the convex hull of S.

Proposition 1.2. For any input dimension m, CH∆ is provably tighter than P∆. Specifically, we can
characterize the gap between CH∆ and P∆ by the gap in the optimal value of the problem

max y − y′ subject to (y,x) ∈ P∆, (y
′,x) ∈ CH∆. (2)

The gap in the optimal value is shown to be proportional to the variance in the weight vector w.

Proof. Let x ∈ ∆n, h(x) = ReLU(wTx + b). Let wmin = mini wi. Note here that wmin includes
comparison to 0 to take care of the origin point of the simplex. Let imin or imax denote the indices
corresponding to wmin and wmax respectively. We use the pre-activation bounds computed using
simplex, as per the definition of P∆, which is l = wmin + b and u = wmax + b. We assume that
l ≤ 0 ≤ u. The upper bounding cut in planet relaxation is

yP(x) =
u

u− l
(wTx + b− l).

We can write this as
yP(x) =

wmax + b

wmax − wmin
(wTx− wmin).

To compare the tightness, we compare the difference yP − h(x) for the simplex vertices. We begin
by noting that the value yP at a vertex point ei will be

yP(ei) =
wmax + b

wmax − wmin
(wi − wmin). (3)

By the definition and construction of the Planet relaxation, yP = h(.) when i = imin or i = imax. For
i ∈ {0, .., n} we have

yP − h (ei) =


− l wmax − wi

wmax − wmin
if wi + b ≥ 0,

u
wi − wmin

wmax − wmin
if wi + b < 0.

(4a)

(4b)

Since the difference yP − h (ei) will be non-zero, we can conclude that the planet relaxation does
not represent the convex hull. Since our relaxation represents the convex hull (see Theorem 1.1), thus
it follows that our relaxation is tighter than the Planet relaxation.

2



Let yCH denote the upper bound corresponding to our proposed relaxation. Note that at the simplex
vertices ei, yCH = h(ei). Thus at these vertices, the gap yP − yCH can be given by Equation 4. This
difference provides a valid lower bound to the gap in Equation 2. Note that this gap is proportional to
the variance in the weight vector w.

1.2 Comparison to Anderson relaxation [Anderson et al., 2020]

To compare the tightness with respect to the Anderson relaxation [Anderson et al., 2020, Tjandraat-
madja et al., 2020], we use a two dimensional example. The example corresponds to the weights in
Figure 1 of the main paper. We use x ∈ ∆2 with w = [2, 1], b = −1.25 and y = ReLU(wTx + b).
To derive the anderson relaxation for this two dimensional setting, we take inspiration from Example
1 in Appendix of Tjandraatmadja et al. [2020]. Figure 1 in our main paper compares the tightness
between different relaxations. It can be seen that the Anderson relaxation does not describe the
convex hull, and is much looser than our proposed relaxation.

For using the Anderson relaxation, we need to replace the input simplex with the unit hypercube.
The relaxation first uses Kuhn triangulation of [0, 1]n [Todd, 1976], which is used to describe the
collection of simplices whose union is [0, 1]n. It requires an exponential number of simplices to
describe the unit hypercube. The method then constructs a unique affine interpolation of the function
h(x) on each of these simplices. This gives an overall exponential number of inequalities. For our
two dimensional example, we need to divide the unit square into two triangles T1 and T2 as shown
in Figure 1. Then constraints r1 and r2 are constructed using these two triangles. In contrast, our
relaxation works directly with the input simplex and only requires one upper constraint. Figure 1
shows a visualization for this intuition behind why our relaxation only requires a linear number
of constraints in comparison to the exponential constraints of the Anderson relaxation [Anderson
et al., 2020]. To show a direct correspondence, we construct this figure by modifying Figure 3 from
Appendix of Tjandraatmadja et al. [2020].

1.3 Implementation Details

In this section, we provide implementation details for various components of the method.

Conditioning from `1 to simplex Here we show how `1 norm perturbations on images can be
modelled as simplex perturbations. Let x ∈ Rm denote the image input space and let the input
perturbations lie within an `1 ball: {x |

∥∥x− x0
∥∥

1
≤ ε}. This input domain can be reformulated as

a simplex as

x = x0 + εMz, z ∈ ∆2m, M
(m×2m)

=


1 −1 0 0 . . . 0 0
0 0 1 −1 . . . 0 0
...
0 0 0 0 . . . 1 −1

 . (5)

This transformation can be achieved by conditioning the first layer as

Wx + b = W (x0 + εMz) + b (6a)

= εWMz + (Wx0 + b) (6b)

= W ′z + b′, (6c)

where W ′ and b′ denote the weights and bias of the conditioned layer whose input lies in a simplex.

Conditioning intermediate layers In Section 4.1 of the main paper, we proposed a technique to
propagate simplex constraints throughout the network. We derived inequalities of the following form
on the intermediate layers: ∑

i

xk,i ≤ max
j∈{0,...,nk−1}

1Thk
(
ej
)

= αk. (7)

Here, xk,i denotes the i-th coordinate of the vector of activations xk at the output of layer hk. Here we
show how to condition the activations of the layers to propagate simplex using the above inequality,
assuming that the non-linearity σ is ReLU.

3



x2

x1

y

e(1)

e(2)T1

(a) Constructing r1 (yellow) using
T1 from the Anderson relaxation.
This relaxation requires replacing
the input simplex with the unit hy-
percube.

x2

x1

y

e(1)

e(2)

e(2)

e(1)

T2

(b) Constructing r2 (yellow) us-
ing T2 from the Anderson relax-
ation.

x2

x1

y

T∆

(c) Constructing r∆ using the in-
put simplex T∆. Our relaxation
can directly model the input sim-
plex T∆.

Figure 1: Visualisation for the intuition behind why our relaxation requires only a linear number of
inequalities, whereas the Anderson relaxation [Tjandraatmadja et al., 2020] requires an exponential
number of constraints. Note that since the Anderson relaxation [Tjandraatmadja et al., 2020]
relaxation cannot handle the simplex constraint on the input, we have to replace the input constraint
with the unit hypercube. Sub-figures (a) and (b) show the construction of the simplices in Kuhn
triangulation of the unit [0, 1]2 cube, which requires an exponential number of simplices. The bottom
figure in each sub-figure shows the simplex and the top figure shows the constraint corresponding to
the simplex. Since there are an exponential number of simplices, an exponential number of constraints
are required to describe the convex hull.
Sub-figure (c) shows the input simplex T∆, and the upper bound (in red) corresponding to our
relaxation. It can be noted that we only require one upper bound, and a total linear number of
inequalities to describe the convex hull for the composition of a linear function with a convex
activation function, when the input lies in a simplex.

4



It requires conditioning both layer k, (hk) and layer k + 1, (hk+1). We first condition layer k. Let
the cut be

∑
i xk,i ≤ α, where αk > 0. We can write it as∑

i

xk,i
αk
≤ 1 (8a)

∑
i

σ(
∑

j Wk,ijxk−1,j + bk,i)

αk
≤ 1 (8b)

∑
i

σ(
∑
j

Wk,ij

αk
xk−1,j +

bk,i
αk

) ≤ 1 (8c)

∑
i

x̃k,i ≤ 1. (8d)

We have achieved
∑

i x̃k,i ≤ 1 by down-scaling each xk,i by a factor αk. Note that we also need
to condition layer k + 1, (hk+1), such that the final output remains the same. This is achieved by
up-scaling the weights of layer k + 1 by a factor αk.

1.4 Opt-Lirpa Planet Baseline

Algorithm 1 Opt-Lirpa Planet

1: function OPT-LIRPA_PLANET(Ψ)
2: Initialise a with values between 0 and 1
3: for t ∈ J0, tmax − 1K do
4: LP (at) = OPT-LIRPA_BACKWARD(Ψ,at)
5: Compute gradients dLP

dat via backpropagation
6: at+1 ← update gradient ascent (or Adam)
7: at+1 ← π

(
at+1

)
(projection)

8: end for
9: return LP (at+1)

10: end function
11: function OPT-LIRPA_BACKWARD(Ψ,a)
12: fN ← Ψ
13: for k ∈ Jn− 1, 0K do
14: Set fk (x)← f−

k+1 (uk (x)) + f+
k+1 (ak � Lk (x)) + fc

k+1.
15: end for
16: LP (a) = minx0∈∆ f0 (x0)
17: return LP (a)
18: end function

As mentioned in the main paper, the Opt-Lirpa Planet baseline uses a similar algorithm as our
proposed simplex verify algorithm, with the only difference being that it does not have the upper
bound corresponding to our relaxation. More precisely, it solves the following optimization problem

LP (a) = min
x

Ψ (xn−1) (9a)

s.t. x0 ∈ ∆ (9b)
xk ≥ ak � Lk (xk−1) k ∈ [n− 1], (9c)
xk ≤ uk (xk−1) k ∈ [n− 1]. (9d)

Note that there is only one upper bound, and thus there is no need for an upper weighting coefficient
a. The complete algorithm is shown in Algorithm 1.

2 Experimental Appendix

In this section, we present experimental details for the experiments presented in the main paper. We
also present a comparison to other baselines.

5



2.1 Comparison to disjunctive relaxation from Anderson et al. [2020]

In Anderson et al. [2019, 2020], the authors proposed a tight relaxation that describes the convex
hull of a composition of a linear function of a vector within an `∞ ball with the ReLU non-linearity.
Although the relaxation has an exponential number of constraints, it admits a linear time separation
oracle. More recently, de Palma et al. [2021] proposed an efficient dual algorithm for this relaxation.
The dual algorithm uses Lagrangian relaxation, and maintains and updates a set of active constraints
(Active Sets). Please see de Palma et al. [2021] for more details. In this section, we establish a
comparison with the Active Set method [de Palma et al., 2021]. This relaxation does not directly
handle the simplex constraint on the input. Since it relies on `∞ constraints on the input to derive
the upper bounds, we use the unit hypercube to derive the upper bounds for the first layer. For the
intermediate layers, we can use the intermediate upper and lower bounds to form the relaxation. We
also compare with the Bigm-adam solver presented in [de Palma et al., 2021], which is a Lagrangian
relaxation based dual solver for the unprojected version (Bigm) of the planet relaxation.

The Verification accuracy and time taken are compared to other solvers presented in the main paper,
in Table 1. Note that Bigm-adam and Active Set methods also use the same intermediate bounds as
the other methods. We compare the efficiency of the different methods in computing the final layer
bounds. We use 850 iterations for Bigm-adam as is used in de Palma et al. [2021]. Active set method
is initialized with Bigm-adam run for 500 iterations, and the active set is then run for 100 iterations.
The active set uses 2 inequalities, which is the same as is used in de Palma et al. [2021].

It can be seen that our Simplex Verify achieves better verified accuracy than the Active Set solver,
while being 2 orders of magnitudes faster. One main limitation of the anderson relaxation [Anderson
et al., 2020] is that it requires multiple upper bounds to define the convex hull. In comparison, our
method only requires a single upper bound to describe the convex hull. In future work, it would be
interesting to explore a combination of upper bounds from the anderson relaxation [Anderson et al.,
2020] and our proposed relaxation, for even tighter verification.

2.2 Experimental Setting, Hyper-parameters

Hyper-parameter tuning for `1 perturbation experiments was done on a small subset of the CIFAR-10
test set, on the adversarially-trained Wide network. All the methods use the same intermediate bounds.
The intermediate bounds were computed using Opt-Lirpa planet run for 20 iterations. The weighting
coefficients are optimized using the Adam optimizer [Kingma and Ba, 2015]. The coefficients

Dataset MNIST CIFAR-10

Model Wide Base Wide Deep Wide
Training SLIDE SLIDE SLIDE SLIDE SGD

Accuracy Nominal 98.80% 75.1% 79.3% 72.1% 74.4%
Pgd 98.23% 73.5% 77.0% 69.8% 73.3%

Gurobi Planet 31.7% 34.1% 18.4% 11.1% 13.5%
Verified Gurobi Simplex 45.2% 48.6% 29.4% 13.4% 23.7%

Accuracy Bigm-adam [de Palma et al., 2021] 31.4% 33.6% 17.8% 10.6% 13.4%
Active Set [de Palma et al., 2021] 43.0% 45.5% 26.8% 10.9% 20.9%

Opt-Lirpa Planet 31.0% 33.7% 17.9% 10.8% 13.5%
Simplex Verify 44.6% 48.0% 28.8% 13.4% 22.4%

Gurobi Planet 74.61s 22.80s 114.92s 86.84s 114.70s
Avg. Verified Gurobi Simplex 72.47s 22.95s 72.17s 59.22s 70.42s
Time/Sample Bigm-adam [de Palma et al., 2021] 4.46s 4.36s 4.56s 6.80s 4.45s

Active Set [de Palma et al., 2021] 4.45s 4.63s 4.60s 7.00s 4.63s
Opt-Lirpa Planet 0.04s 0.04s 0.04s 0.06s 0.04s
Simplex Verify 0.04s 0.04s 0.04s 0.05s 0.04s

Table 1: Verified accuracy and verification time of different solvers on MNIST and CIFAR-10 models. We
test on the entire test set for MNIST, and random 1000 test images for CIFAR-10. Simplex Verify denotes our
proposed solver. Our proposed method achieves much higher verified accuracy in comparison to the state of the
art baseline, in the same amount of time.

6



Network Name No. of Properties Network Architecture

OVAL-BASE 1000

Conv2d(3,8,4, stride=2, padding=1)
Conv2d(8,16,4, stride=2, padding=1)

linear layer of 100 hidden units
linear layer of 10 hidden units

(Total ReLU activation units: 3172)

OVAL-WIDE 1000

Conv2d(3,16,4, stride=2, padding=1)
Conv2d(16,32,4, stride=2, padding=1)

linear layer of 100 hidden units
linear layer of 10 hidden units

(Total ReLU activation units: 6244)

OVAL-DEEP 1000

Conv2d(3,8,4, stride=2, padding=1)
Conv2d(8,8,3, stride=1, padding=1)
Conv2d(8,8,3, stride=1, padding=1)
Conv2d(8,8,4, stride=2, padding=1)

linear layer of 100 hidden units
linear layer of 10 hidden units

(Total ReLU activation units: 6756)

VNN-COMP-Med 1000

Conv2d(3, 32, 5, stride=2, padding=2)
Conv2d(32, 128, 4, stride=2, padding=1)

linear layer of 250 hidden units
linear layer of 10 hidden units

(Total ReLU activation units: 16634)

VNN-COMP-Big 1000

Conv2d(3, 32, 3, stride=1, padding=1)
Conv2d(32, 32, 4, stride=2, padding=1)
Conv2d(32, 128, 4, stride=2, padding=1)

linear layer of 250 hidden units
linear layer of 10 hidden units

(Total ReLU activation units: 49402)
Table 2: For each incomplete verification experiment, the network architecture used and the number of
verification properties tested, a subset of the CIFAR-10 test dataset. Each layer but the last is followed by a
ReLU activation function.

corresponding to the lower bounds are initialized using CROWN coefficients. The initial and final
learning rates are 10−5 and 1 respectively.

We compare the efficiency of the different methods in computing the final layer bounds. For a fair
comparison, the iterations for both the Lirpa style algorithms (Opt-Lirpa Planet and Simplex Verify)
are tuned such that they take the same amount of time. The weighting coefficients corresponding to
the lower bounds in both the methods are initialized with CROWN coefficients. Opt-Lirpa Planet
is run for 6 iterations, and Simplex Verify is run for 3 iterations. The weighting coefficients are
optimized using the Adam optimizer [Kingma and Ba, 2015]. The initial and final learning rates
for the weighting coefficients corresponding to the lower bounds are 10−5 and 10 respectively, for
Simplex Verify. The initial and final learning rates for the weighting coefficients corresponding to the
upper bounds for Simplex Verify are 102 and 103 respectively.

Details about the network architectures used for the `1 experiments are presented in Table 2. Note
that the MNIST network uses the same architecture as CIFAR-Wide network, except that it has 1
input channel. These architectures are the same as used in de Palma et al. [2021].

The networks for multi-modal experiment are also trained with adversarial training. Both during
training and verification, we allow arbitrary text perturbations from the vocabulary. For these attacks,
the vocabulary comprises of the 1000 most frequent words from the training dataset. We also selected
a subset of 10 classes from the Food-101 dataset. These classes include donuts, pizza, french fries,
ice cream, onion rings, chicken wings, pad thai, apple pie, chicken curry, waffles.

The models in both, `1 robustness verification and multi-modal classifier robustness verification,
are trained using SLIDE (sparse `1-descent attack) from Tramer and Boneh [2019]. Tuning of the
sparsity constant for the SLIDE attack was crucial for training robust networks for the multi-modal
classifier on the Food-101 dataset. We used sparsity of 0.3 for all the networks on this dataset. The

7



same sparsity was used for computing the upper bounds for CIFAR networks. We noted that the
SLIDE attack performed much better than the normal `1 PGD attack for training on Food-101 dataset.
We also tried the EAD attack for the MNIST network, where SLIDE accuracy was 98.2% and the
EAD accuracy was 98.3%. SLIDE performs at par with the EAD attack while being computationally
much more efficient than the EAD attack. See Appendix C of Tramer and Boneh [2019] for an
empirical comparison between the EAD attack and SLIDE. This was the motivation for choosing the
SLIDE attack over the EAD attack.

References
G. Anderson, S. Pailoor, I. Dillig, and S. Chaudhuri. Optimization and abstraction: a synergistic

approach for analyzing neural network robustness. PLDI, 2019.

R. Anderson, J. Huchette, W. Ma, C. Tjandraatmadja, and J. P. Vielma. Strong mixed-integer
programming formulations for trained neural networks. Mathematical Programming, 2020.

S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

A. de Palma, H. Behl, R. R. Bunel, P. Torr, and M. P. Kumar. Scaling the convex barrier with active
sets. In International Conference on Learning Representations, 2021.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. International Conference on
Learning Representations, 2015.

C. Tjandraatmadja, R. Anderson, J. Huchette, W. Ma, K. Patel, and J. P. Vielma. The convex
relaxation barrier, revisited: Tightened single-neuron relaxations for neural network verification.
arXiv preprint arXiv:2006.14076, 2020.

M. Todd. The Computation of Fixed Points and Applications. Lecture Notes in Mathematics; 513.
Springer-Verlag, 1976.

F. Tramer and D. Boneh. Adversarial training and robustness for multiple perturbations. In Advances
in Neural Information Processing Systems, volume 32, 2019.

8


	Technical Appendix
	Proofs
	Comparison to Anderson relaxation Anderson2020
	Implementation Details
	Opt-Lirpa Planet Baseline

	Experimental Appendix
	Comparison to disjunctive relaxation from Anderson2020
	Experimental Setting, Hyper-parameters


