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ABSTRACT

The regularity or implicit bias in neural network optimization has been typically
studied via the parameter norms or the landscape curvature, often overlooking the
trajectory leading to these parameters. However, properties of the trajectory —
particularly its directionality — capture critical aspects of how gradient descent
navigates the landscape to converge to a solution. In this work, we introduce the
notion of a Trajectory Map and derive natural complexity measures that highlight
the directional characteristics of optimization trajectories. Our comprehensive
analysis across vision and language modeling tasks reveals that (a) the trajectory’s
directionality at the macro-level saturates by the initial phase of training, wherein
weight decay and momentum play a crucial but understated role; and (b) in sub-
sequent training, trajectory directionality manifests in micro-level behaviors, such
as oscillations, for which we also provide a theoretical analysis. This implies that
neural optimization trajectories have, overall, a more linear form than zig-zaggy, as
evident by high directional similarity, especially towards the end. To further hone
this point, we show that when the trajectory direction gathers such an inertia, op-
timization proceeds largely unaltered even if the network is severely decapacitated
(by freezing ą 99% of the parameters), — thereby demonstrating the potential for
significant computational and resource savings without compromising performance.

1 INTRODUCTION

Loss landscapes imply optimization trajectories, but also vice versa. Given a network architecture
and the training task, the loss landscape is the high-dimensional surface whose each point characterizes
the fit of the parameters to the task objective. A priori, the loss landscape entails the possible
trajectories (or paths) that might be followed by an optimization algorithm, such as stochastic gradient
descent (SGD). However, the particular sets of optimization trajectories that are realized depend on
the particular optimization choices and hyperparameters, such as the learning rate, momentum, batch
size, weight decay, and more. Such is the importance of trajectory, that it could be argued the regions
of the landscape that are never encountered or realized in typical optimization trajectories, might as
well not be in the landscape at all. Essentially, the possible optimization trajectories that are realized
by an optimization method determine its effective loss landscape.

Implicit bias of optimization and what it means for trajectories. Consequently, a significant
body of literature builds around the principle of implicit bias facilitated by standard optimization
algorithms (Gunasekar et al., 2018; Li et al., 2019; 2020; Moroshko et al., 2020; Barrett and Dherin,
2020), which loosely speaking refers to an undesigned and oftentimes beneficial simplicity that
arises in optimized trajectories. This preferential access of realized landscapes should be contrasted
with the established non-convexity of global neural network (NN) landscapes (Dauphin et al., 2014;
Choromanska et al., 2015; Kawaguchi, 2016; Li et al., 2018), and suggests that implicit bias may
lend a formal and reasonable support to the empirical success of massively over-parameterized NNs.
As a result, one might expect to see signs and hallmarks of regularity in the sequence of steps that
comprise realized NN loss landscape trajectories. In other words, the following questions, which
form the basis of this work, naturally arise:
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What, if any, directional structure exists in neural trajectories? Do these paths have
a lot of zigzags and bends, reaching the solution winding and coiling, or are they
straight and direct? How do these properties evolve as optimization progresses?

Mapping the Trajectory Properties. More precisely, we explore and develop key qualitative as well
as quantitative indicators (hallmarks) about the directional complexity/regularity of the optimization
trajectory. Towards this end, we analyze and compare multiple intermediate checkpoints amongst
themselves, across different scenarios and large-scale case studies. A qualitative hallmark, which
we call the ‘Trajectory Map’, conveys the directional (dis)similarity of the parameters and visually
depicts the nature of optimization within and across various stages of training, i.e., at a pan-trajectory
level. Our quantitative hallmarks are functions of these trajectory maps, measuring various notions
of angles, over and above the sequence of steps in the trajectory.

Benefits of the Trajectory View. We believe the trajectory view has several advantages over other
measures to study NN training landscapes, such as loss-based linear interpolation (Goodfellow et al.,
2014; Frankle et al., 2020) or hidden representation based metrics (Kornblith et al., 2019; Nguyen
et al., 2022; Lange et al., 2023). For example, it: (a) brings in a level of architecture agnosticity and
helps unlock shared insights onto features of optimization, (b) contains an intrinsic independence to
loss and data that necessitates no explicit inference over additional data samples, (c) allows analyzing
and prognosing the developing solution strategy on-the-fly instead of waiting until convergence, and
(d) provides potential hints at the bottlenecks and redundancies in the optimization procedure.

Our contributions are:

(1) We propose the novel perspective of trajectory maps, and showcase how it uncovers new insights
into the nature of directional evolution in parameter space during neural network training.

(2) We use this to uncover that optimization trajectories possess, in general, highly directional
similarity, but simultaneously there reside oscillations at micro-levels — which we study theoretically.

(3) We show how model scale in LLMs has a regularizing effect on the directional complexity of
trajectories, and that directional measures have a trend which is more predictive of performance than
traditional norm-based complexity measures.

(4) We provide evidence that after the trajectory direction saturates, a significant amount of the
network capacity can be frozen without compromising performance while making training efficient.

2 METHODOLOGY

Matrix representation of Trajectory. Let us assume the optimization trajectory consists of a set
T of points tθθθtu

T
t“0, each denoting the (flattened) parameters of the network encountered at some

step and which live in the parameter space θθθ “ Rp, i.e., T Ď θθθ. This set of points need not contain
the entire set of points visited in the course of optimization but instead can represent a subset of
points, possibly sampled at an interval of k points. It will be convenient to organize this set of points,
which define the trajectory, in the form of a matrix, ΘΘΘ P RpT`1qˆp, whose first dimension T ` 1
makes explicit the inclusion of the initialization θθθ0.

Trajectory Map Analyzing the matrix ΘΘΘ, on its own, might get cumbersome as the size of modern
networks ranges in millions and billions of parameters. Hence, we will resort to looking at functions
of the kernel matrix K “ ΘΘΘΘΘΘJ which would be a square matrix of shape n “ T ` 1. Further, it
will also be helpful to isolate and analyze the directional aspect of the trajectory, for which we will
normalize the set of points by their norm, and in effect, consider the set pT “ tθθθt{}θθθt}2uTt“0 with the

respective matrix pΘΘΘ. As a result, the ensuing kernel matrix pΘΘΘpΘΘΘ
J

, which we will refer to as C will
contain the cosine similarities between every pair of points in the trajectory, i.e.,

pCqij “ cos-simpθθθi, θθθjq “ xθθθi, θθθjy{}θθθi}2 }θθθj}2 .

Hereafter, we will refer to C as the Trajectory Map (TM). We remark that, although not necessary,
here we are essentially considering linear kernels, which we will see provide a variety of insights by
themselves. The TM will be our qualitative hallmark of choice for analyzing optimization trajectories.

Quantitative Hallmarks. Besides visualizing the TM as the qualitative hallmark, we will consider
the following set of indicators for quantitatively hallmarking the optimization trajectories.
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(i) Mean Directional Similarity (MDS): We take the cosine similarity averaged over the entire
trajectory map, i.e., over every pair of points in the trajectory. This can be written as, ω :“
1
n2 1J

n ¨ C ¨ 1n, where 1J
n “ p1 ¨ ¨ ¨ 1qJ P R1ˆn denotes the vector of all ones and n “ |T | is the

cardinality of the trajectory. By using the form of the matrix C discussed before, we can further

rewrite MDS as, ω “

›

›

›

1
n

pΘΘΘ
J

1n

›

›

›

2

. Now, it becomes apparent that MDS essentially projects all the
trajectory points onto the unit sphere, computes their average and finally takes the squared norm.

Figure 1: Illustration of two trajectories and
angular measures.

To get a better sense of MDS, we can consider
its two possible extremes: (a) all the parameter
unit-vectors cancel out, yielding a value of ω “ 0.
For instance, this would happen in the scenario
when the points in the trajectory are exactly
following a circular orbit around the origin; or,
(b) when each of the parameters point in the same
direction, implying that the trajectory is simply
a linear path, with ω “ 1. Knowing the nature of
these two extremes, we can expect neither to be
desirable in an ideal trajectory which leads up to a
generalizing solution. Thus, hitting its sweet spot
would be the target, or where that is unknown, at least avoiding these extremes.

(ii) Angular Measures: One such key measure would be the angle between consecutive (net) updates,
i.e., =pθθθt`1 ´ θθθt, θθθt ´ θθθt´1q, which will measure the extent of directional movement along the
trajectory. Next, we can consider a cone with the vertex at at origin and compute the apex angle there,
=pθθθt, θθθ0q. This measure will give us an idea of the amount of directional movement at a global scale.

(iii) Norm-based Measures: Besides, for baselines, we also include measures such as: parameter
norms }θθθt}2, distance from initialization }θθθt ´ θθθ0}2, norm between consecutive points }θθθt`1 ´ θθθt}2.

Remark 1. For extremely large neural networks, building the underlying kernel matrices can start
becoming resource-expensive. In principle, there is a rich body of work in kernel methods that has
focused on developing efficient approximations (Davis et al., 2014; Chen et al., 2021). We do not
resort to such approximations for the sake of accuracy.

Remark 2. While beyond the scope of the main text, the appendix also catalogs results for other vari-
ants of angular/norm-based measures, as well as a relativized version of trajectory map (Section D).

3 GAINING INSIGHTS VIA TRAJECTORY EXEMPLARS

Setup for obtaining the trajectory exemplars. To begin with, in order to obtain a better grasp of
the directionality of trajectories, let us contrast the trajectory map obtained with an optimal choice
of hyperparameters against those with sub-optimal ones. As an exemplar of a desirable trajectory
map, we employ the standard SGD-based training recipe1 for ResNet50 on ImageNet that achieves a
top-1 accuracy of „ 76%. To compare against sub-optimal trajectory maps, we analyze the effects
of disabling2 momentum and weight decay one by one, since empirically they lead to significant
deterioration in performance. The resulting trajectory maps, built from checkpoints taken at each
epoch, are shown in Figure 2.

Observations. We can make out that the trajectory maps for the sub-optimal hyperparameter
choices develop a darker hue much more quickly into training, indicating a significantly higher
directional similarity. To the extent that, when put on the same scale as in Figure 2, the rightmost
(worst hyperparameter choice) trajectory map shows almost no directional variation as compared
to the leftmost (optimal hyperparameter choice) map. Further, for the leftmost trajectory map, the

1Namely, this consists of training for 90 epochs with a learning rate η “ 0.1 (decayed multiplicatively by
a factor of 0.1 at epochs 30 and 60), momentum µ “ 0.9, batch size B “ 256, and weight decay λ “ 0.0001.

2In the Appendix F, we also present the directional effects of hyper-parameters such as learning rate and
batch size, as well as recent regularizers like Sharpness-Aware Minimization (Foret et al., 2021).
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Figure 2: Trajectory Maps of ResNet50 trained on ImageNet with optimal and sub-optimal (in the
order of disabling momentum µ “ 0, weight decay λ “ 0, or both) hyperparameter choices. The MDS
values are, 0.764, 0.901, 0.931, 0.979 respectively. A darker hue represents higher cosine similarity.

directional movement shows a phase-wise trend3, with its last phase 60 ´ 90 epochs having a similar
behaviour as the entire rightmost plot in the figure above. We emphasize that the onset of this dark
hue doesn’t mean the network has converged, as evident from Figure 3(b) which shows the trajectory
length covered over time. Rather, only the directional movement reaches a saturation by the end
of the initial phase (which is „ 30 epochs) as shown in Figure 3(a).

Qualitatively different solutions. More than just the deterioration of the performance („ 8%), we
conclude that this toggling of the hyperparameters leads to solutions that are qualitatively different
in terms of the directionality of their trajectories. In particular, the presence of weight decay or
momentum encourages more directional exploration, while in their absence, the trajectory latches on
to a solution which is nearby in a directional sense.

(a) =pθt, θ0q (b)
řT

i“1 }θt ´ θt´1}2

Figure 3: Evolution of the angle traced at origin by the trajectory and its path length over training
across different momentum and weight decay settings. The left figure suggests that around epoch 30,
marked by the gray dotted line, the directional movement saturates, while based on the right figure,
we see that the trajectory still goes further. Set-up: ResNet50 on ImageNet.

Directional Redundancy. Another visible aspect from the trajectory maps is that, in general, neural
optimization trajectories seem to possess a high mean directionality score (MDS), with ω “ 0.764
being the least amongst these exemplars. To contextualize this better, note that the parameters live
in „ 25.6 million dimensional space. This strongly suggests that network optimization trajectories
do not merely comprise random points4 in high-dimensions whose cosine similarity might go to
zero, but rather the sequence of points encountered in a trajectory must be highly structured to yield
such directionally redundant trajectories. In the Appendix F, we also present a wider set of results,
namely, with adaptive optimizers like AdamW as well as more datasets/architectures such as Vision
Tranformers on ImageNet and VGG16 on CIFAR10, and for different amounts of label noise — all
of which support this finding of directional redundancy.

A word of caution. However, the above experiment also suggests that extreme values of MDS (ě 0.9)
should be avoided5. This can also be understood from the fact that trajectory maps here also comprise

3While 3 phases can be spotted distinctly, if we look closely, there seems to be another phase transition
neighbouring the initialization and the subsequent couple epochs, giving rise to a thin horizontal and vertical sliver
of relatively lighter hue. Empirically, we find in this transient phase, the distance to the solution rapidly decreases.

4In Appendix C, we analyze the relative trajectory map and MDS for a random walk/Brownian motion, and
in comparison we find that (expectedly) the trajectory maps of neural networks are more directionally redundant.

5Besides, a certain amount of directional exploration is crucial as evident from our analysis of the
grokking (Power et al., 2022) phenomenon discussed in Appendix I.
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the random initialization, and hence a trajectory with the maximum possible MDS value of 1 would
have as its end point a scaled version of the random initialization.

Section 3 Key Takeaways:

• Optimization trajectories have, overall, a high directional similarity (MDS ą 0.75 across cases).
• Disabling momentum and weight decay reduces the directional movement in the trajectories.
• Directional movement saturates by the early phase, despite the trajectory going longer than that.

4 UNDERSTANDING DIRECTIONAL MOVEMENT

In this section, our aim is to investigate the nature of directional movement in further depth, and in
particular, focus on the below two questions:

Question 1: How exactly does the directional nature of trajectories manifest in the late phase of
training, when we know from Figure 3(a) that the overall directionality does not change significantly?

Initial Thoughts. A tempting first guess is that perhaps the trajectories are just linear in this phase.
But, if that were the case, we would be just using line-search (Zhang and Hager, 2004; Vaswani et al.,
2019) to train neural networks and skip this otherwise slow second phase of training.

Question 2: How do weight decay and momentum promote directional movement and lower MDS?

Initial Thoughts. The current results might even seem to run against the intuitive pictures of
momentum and weight decay. For instance, intuitively, the use of momentum should strengthen the
previous gradient directions and lead to increased directional similarity, but we find the opposite.
Similarly, in the absence of weight decay, the network is not constrained to remain in a ball around
the origin and, in principle, there should be more license to explore in the landscape.

What are these intuitive impressions not taking into account?

4.1 DIRECTIONAL MOVEMENT AT DIFFERENT LEVELS AND OSCILLATIONS

(a) =pθt`1 ´ θt, θt ´ θt´1q (b) }θt`1 ´ θt}2

Figure 4: (a): Oscillatory nature of updates. (b): Beyond the first phase (after 30 epochs), the updates
reside at a micro-scale with smaller update norms. The different curves show the effect of momentum
and weight decay hyperparameters. The setup is same as before: ResNet50 on ImageNet.

Answer 1. We find that the late phase of training is not so straightforward. Far from co-linear
updates, it is marked by significant noise and oscillation in the (stochastic) gradient descent updates.
The answer to this conundrum then lies in the fact that such noisy directional movement resides at a
‘micro’-level but does not surface up to the ‘macro’-level.6

To see this, let us first take a general overview of the Figure 4, without looking at each of the
individual curves. We see in Figure 4(a) that for a significant part of the training, the angle between
successive update directions7 is obtuse (gray horizontal line marks 90˝). Apart from short intervals

6We use this macro-micro distinction in terms of the angle traced at origin by the trajectory, see Figure 3(a).
7These updates should be thought of as ‘net’ or ‘aggregate’ updates, since they are at an per-epoch granularity

for tractability reasons, and not at every single step taken by the optimizer. Empirically, the current granularity is
still rich enough in that the presented trends persist even if we go 2ˆ to 5ˆ more coarser.
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Figure 5: (Left): Directional movement
due to oscillations results in obtuse angles;
(Right): Added directional movement
due to weight decay. Here, the downward
vector represents the pull towards the
origin (O) due to weight decay, while the
rightward vector the force due to the loss.

near learning rate decay, this obtuse angle holds almost throughout the late phase. However, the
extent to which this angle is obtuse decreases over the phases and further, Figure 4(b) reveals that
beyond the early phase (marked by the vertical gray line), these oscillatory updates have much
smaller norm.8 Consequently, the late-phase oscillations reside at a micro-scale and therefore leave
the macro-level directionality unaffected.

Answer 2. Interestingly, when we look closely at Figure 4(a), we find that the angle between
updates is more obtuse when momentum is turned on versus when off (compare the solid lines versus
dashed-dotted lines). Also, rather visibly, the angle tends to be larger when weight decay is enabled
additionally (compare the solid dark blue and turquoise lines) , suggesting that weight decay and
momentum are closely intertwined. Crucially, this observation points to how there is more direction
movement when these hyperparameters are enabled and thereby decreasing MDS.

Furthermore, weight decay by itself has added directional effects, which we illustrate through a
simple physics-based intuition in the Figure 5, right. In particular, we can think of the loss gradient
pulling the network parameters rightwards, while the force exerted by weight decay tries to pull the
network downwards. The joint presence of these forces lends more directionality to the trajectory, and
is accentuated with increasing weight decay (downward force). See Appendices E.2 and E.4 for more.

4.2 THEORETICAL MODELLING OF THE UNDERLYING MECHANISM

To further understand the mechanism underlying the oscillatory nature and the intertwined role of
momentum and weight decay, we turn to the simplest and oft-employed model of a quadratic problem.
Lemma 1. Given a quadratic problem with ℓ2 regularization of strength α ą 0, namely,
minθθθPRd

1
2θθθ

JMθθθ ` 1
2α}θθθ}2 , with M P Rdˆd symmetric with eigenvalues λ1 ě ¨ ¨ ¨ ě λd, the angle

between successive steps ∆t “ θθθt ´ θθθt´1,∆t`1 “ θθθt`1 ´ θθθt, when using gradient descent with a
one-step momentum (µ ą 0) and learning rates ηt, ηt`1, can be upper and lower bounded as follows:

x∆t,∆t`1y ď ηtηt`1p1 ´ ηtpµ ` α ` λdqqpλd ` αq2}θθθt´1}2

x∆t,∆t`1y ě ηtηt`1p1 ´ ηtpµ ` α ` λ1qqpλ1 ` αq2}θθθt´1}2

The proof, in Appendix A, inherently considers the solution at θθθ‹
“ 0, but if that is not the case, we

can substitute it in the objective and our derived bounds would scale in the squared distance to the
solution, i.e. }θθθt´1 ´ θθθ‹

}2. Besides, in the above proof, we consider a one-step momentum, which
inherently means resetting the momentum after every 2 steps. This is done for convenience, as our
main purpose is to anyways gain insights into the phenomenon and not provide its ultimate proof.

Turning to the bounds themselves, notice that if the learning rate ηt ě 1{pλ1 ` µ ` αq, the lower
bound will turn negative and will be multiplied by a factor of pλ1 ` αq2}θθθt´1}2. On the other hand,
although the first term of the upper bound might still be positive, importantly, it is scaled by a factor
of pλd ` αq2 « α2 for matrices M which are close to degenerate (λd Ñ 0).

Low-rank Hessian and Edge of Stability (EoS). In NNs, the Hessian of the loss with respect to
the parameters will play the role of the matrix M, since we can assume a second-order Taylor series
will hold across the two steps. But it is also known through prior empirical work that the Hessian is
significantly degenerate (Sagun et al., 2017), which has also been proven rigorously for deep linear
fully-connected and convolutional networks (Singh et al., 2021). Furthermore, this requirement on
the learning rate ηt is actually looser than the adaptivity of the largest eigenvalue of the Hessian to
the learning rate λ « 2{η, as shown in the recent work on Edge of Stability (Cohen et al., 2022).

8The smaller update norms and the micro-level directionality in the late phase do not simply arise due to
lower learning rates, but also are closely related to the loss of plasticity (Lyle et al., 2023; Dohare et al., 2024) .
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Explaining the Obtuse angles. Owing to these facts, we will have that λdpMq « 0, and which
further implies that the upper bound on the inner-product between the updates will be approximately
zero (as typically the regularization strength α is also small, e.g., α “ 0.0001 in the ResNet setting),
and the lower-bound will be large in absolute value but negative. Therefore, this explains how the
angles between consecutive epochs can be obtuse. More broadly, the obtuse angle indeed implies
that there are oscillations, especially along the direction of the largest Hessian eigenvector. Further,
from Lemma 1, we see that the magnitude of the inner-product of the updates scales in proportion to
ηt`1. Hence, a way to dampen the oscillations is to decrease the learning rate, and as can be seen in
Figure 4(a), the learning rate decay at epochs 30 and 60 is followed right after with the angles turning
from obtuse to acute. Lastly, here in the constraint on the learning rate (the additive terms α and µ), we
can also see momentum and weight decay go hand-in-hand, each accentuating the effect of the other.

Section 4 Key Takeaways:

• Training close to EoS causes obtuse angles between updates, leading to directional exploration.
• Weight decay and momentum are closely intertwined, and further enhance the oscillations.
• The late-stage oscillations/bouncing reside at a micro-scale, as evident from smaller update

norms (Figure 4(b)) and angles between consecutive epochs (Figure 4(a)).

5 LLMS AND DIRECTIONAL HALLMARKS OF TRAJECTORIES

Having better understood the nature of directional movement, we would like to know how general-
izable are our findings. So, given the increasing relevance of Large Language Models (LLMs), in this
section, we study whether language modelling tasks result in a similar trajectory structure as exhibited
in vision tasks. Besides, in connection to LLMs, scaling comes up as a natural question. Hence, we
would like to investigate how scale affects the directionality of trajectories: does it provide more direc-
tions for learning and increase the complexity of trajectories or if instead it has a regularizing effect?

Figure 6: Trajectory Maps
of Pythia GPT-NeoX mod-
els across two orders of
scales trained on Pile.
The corresponding MDS
ω “ 0.678, 0.759, 0.815.

Thanks to Pythia’s (Biderman et al., 2023) publicly released model checkpoints over training, for
GPT-NeoX (Black et al., 2022) models — ranging in sizes from 14 Million (M) to 12 Billion (B)
— we can provide answers to the above questions. For tractability, we select every fourth available
checkpoint and consider models of sizes: 14M, 70M, 160M, 410M, 1.4B, 2.8B, 6.9B, 12B. The
results for a shortlist of these experiments can be found in Figure 6 (for more, see Figure 69). First
up, these results establish that even the LLM trajectory maps have high directional redundancy
across scales, — suggesting a widespread applicability of our key finding.
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Figure 7: Directional complexity measures correlate better with performance than norm-based ones.

Detailed Observations. Elaborating further, in Figure 6, we find a tiny dark square grid in the
upper-left corner, which delineates precisely the learning rate warmup phase. Next, the trajectory

7



Published as a conference paper at ICLR 2025

map for the 160M model (and smaller) seems to have a discernible substructure, but which becomes
more homogeneous with increasing model scale. In general, increasing scale lends an intense dark
hue to the trajectory maps, suggesting rising directional similarity. Even the horizontal and vertical
slivers (see the first few rows and columns) corresponding to the warmup phase start to assume a
higher cosine similarity with scale. Overall, this seems to suggest that the larger models are biased
towards directionally regular optimization trajectories.

Directional measures correlate with performance better than norm-based measures. In fact,
Figure 7(a) shows that the apex angle made at the origin by the trajectory monotonically decreases
with increasing scale. This is in contrast to norm-based complexity measures such as overall
parameter norm (Gunasekar et al., 2018) and distance from initialization (Nagarajan and Kolter,
2019) which seem to be poorly correlated to performance, as visible in Figures 7(b) and 7(c).
Norm-based measures fail to capture the monotonic trend, and even have the largest complexity
value for the best-performing model.

Why do parameters become aligned with scale? A Theoretical Argument. We prove, in
Appendix B, that this surprising finding about the progressive increase in cosine similarity with scale
has a relatively simple explanation, at least in the case of the large-width limit of deep networks.
The gist of our argument is that in the large width limit, any parameter updates that lead to stable
feature updates must necessarily yield updated parameters that are identically aligned with their
initialisation. While this is not so surprising for lazy learning regimes like the Neural Tangent
Kernel (Jacot et al., 2020) where feature learning does not occur, a more surprising aspect of our
finding is that this is necessarily true also for feature learning regimes, such as µP (Yang et al., 2022).

Section 5 Key Takeaways:

• LLMs up to 12B parameters exhibit like patterns of directionally redundant trajectory maps.
• Apex angle traced at origin monotonically decreases with increasing model scale, as opposed

to traditional norm-based measures, thus showing promise as a useful complexity measure.

6 LEVERAGING DIRECTIONAL REDUNDANCY FOR EFFICIENT TRAINING

Our trajectory map analyses have revealed significant directional redundancy in the optimization
trajectories of a broad range of neural networks, which is especially prominent later into training.
While we have seen that the macro-level directional movement saturates early (Section 3), micro-level
oscillations continue to persist in the late phases (Section 4). We thus hypothesize that once this
directional saturation is achieved, the full capacity of a network might not be required for training. If
true, this would motivate optimization hybrids for efficient training.

How to best decapacitate the network? As the primary desiderata, we want to (i) retain the least
number of parameters possible, (ii) ensure that the capacity is removed in a structured manner to real-
ize speed-ups (unlike, unstructured sparsity), (iii) intervene minimally in the implementation workflow.
Clearly, our desiderata is stringent; but it allows testing the above hypothesis more compellingly.

Figure 8: Training only the BN scalar parameters suffices after the directional movement saturates.
The trajectory map of the original, full network, training is shown on the left and, in the bar chart to the
right, the bars denoting the performance achieved by training BN parameters from a particular epoch.
‘Baseline’ denotes the network accuracy just before switching to optimizing the BN parameters only.
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Approach: Training only Normalization Layers. This meets our desiderata since (i) normalization
layers have typically ă 1% of the parameters, (ii) all other layer types are frozen and do not need
gradient updates, thus ensuring speed-up is realizable, (iii) this is essentially a 1 line change in code.
Also, (batch/layer/group) normalization layers are ubiquitous in modern architectures. Further, this re-
purposing of normalization layers was inspired by Frankle et al. (2021) who empirically demonstrated
the better-than-expected performance when training just the scalar parameters in batch-normalization
(BN) layers from initialization, as well as theoretical expressivity results (Burkholz, 2024).

Experimental Setup. We experiment with ResNet20 on CIFAR10 using SGD over 160 epochs,
freezing non-BN layers at different points in training, and then using only the 1, 376 scalar parameters
in the BN layers for the remaining training duration. Figure 8 presents the results alongside the
trajectory map of the full network training.

Observations. (i) Training just BN layers from initialization, as claimed in Frankle et al. (2021),
results in a network with a test accuracy of 54.8%, which although interesting falls considerably short
of the 91.2% test accuracy obtained by training the entire network. In a way, from the horizontal strip
of trajectory map around 0, we see that at this stage the directional movement is yet to saturate. (ii)
However soon after, from around 40 epochs, where the trajectory map develops a dark hue (and the
cosine similarity to the final parameters is „ 0.9), training BN parameters alone leads to within 2%
of the full-network accuracy. (iii) From around 80-th epoch, this gets to within 1%, and completely
matches thereafter. Notably, this feat is achieved by training only 0.5% of the overall parameters, and
this fares even better than training all the parameters in the bulkier last layer as shown in Figure 77.

Similar findings on ImageNet. Likewise, in our experiments with ResNet50 on ImageNet as in
Figure 2, we found that although training BN layers right from initialization gets a top-1 accuracy of
just „ 6.4%, but this decapacitated training from epoch 30 gets to within „ 10% of the full-network’s
accuracy and from epoch 60 to within about „ 2% of it.This is again a striking result, considering
only 0.18% of the parameters are being trained.

Benefits for Efficient Training. Besides the runtime saved in backward pass, this also leads to
savings in the GPU memory consumption as the optimization buffers (like the momentum buffer
or those used for preconditioning in adaptive methods) now need to be of significantly smaller size
(typically ă 1%, i.e., 99% savings), which could, in turn, make larger batch sizes feasible.

Broader Implications. The above results pointedly demonstrate that the above hypothesis holds
through the strong desiderata fairly well. More broadly, we envision that this proof-of-concept can
be readily adapted into a hybrid optimization scheme, and possibly with more flexible desiderata
that possibly allow for interleaved training with other parameters or equip more parameters to start
with — thereby contributing to non-trivial cost savings. While our computational resources restrict
us to vision models, we anticipate many of these insights will carry over to LLMs, given the observed
similarities in their trajectory maps. We encourage the broader research community to explore the
decapacitation idea as a means to optimize LLM training and spark further innovation in this respect.

Section 6 Key Takeaways:

• When directional movement saturates, neural networks can be severely decapacitated and
trained only through parameters in normalization layers.

• Our results on CIFAR10 and ImageNet show that this comes with little compromise in
performance, while making training much more efficient.

7 RELATED WORK

Directional Redundancy and Trajectory Structure. Prior work (Ji and Telgarsky, 2020) has
theoretically noted a notion of directional convergence, wherein the parameters of simple networks
and classifiers converge quickly, in terms of their direction. Likewise (Merrill et al., 2020) have
observed that cosine similarity between subsequent parameter checkpoints during T5 (Raffel et al.,
2023) pre-training rapidly approaches one. In a similar vein, Guille-Escuret et al. (2023) find that
gradients tend to have a moderate but positive alignment with the solution direction, all throughout
training. Further, in a recent work (Dherin and Rosca, 2024), propose the existence of regions called
‘corridors’ in (full-batch) gradient descent training, whereby the trajectory behaves like line segments.
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All of these can be seen as diverse facets of the core phenomenon of redundancy in the directional
movement, which we elaborate in depth here. In comparison, our work lays out a comprehensive
analysis of the directional aspects of trajectories, which we study through trajectory maps and related
directional measures, and where we uncover different levels of directional movement and their
mechanisms — thus contributing significant nuance over existing literature.

Implicit Effects of Hyperparameters. Implicit bias (Gunasekar et al., 2018; Li et al., 2019; 2020;
Moroshko et al., 2020; Barrett and Dherin, 2020) has emerged as one of the main contenders for
explaining the success of deep neural networks. This principle has also inspired several works which
seek to uncover the implicit effects that might be latent in the regular working of hyperparameters.
To name a few, Andriushchenko et al. (2023) for instance suggest a loss stabilization mechanism
behind weight decay, while (Liu et al., 2023) attempt to characterize the implicit bias of large learning
rates in terms of resulting in a flatter solution, and Jelassi and Li (2022); Cao et al. (2023) explain
the implicit bias of momentum and batch normalization with regards to margin. In contrast, we
showed the implicit effects of momentum and weight decay from a trajectory perspective, i.e., on the
increased directional movement, as well as how these two hyperparameters interact with each other.

Decapacitation. This might be reminiscent of the lottery-ticket hypothesis (Frankle and Carbin,
2019), with a subtle but key distinction that the lottery-tickets are concerned with sub-networks
(certain neurons are set to zero) while here the network structure remains the same and the capacity
is stripped by freezing the parameters. Also, the mechanism of finding lottery-tickets is retrospective
in nature; while here we present a mechanism to decapacitate that depends on the current network
parameters. However, it would be worth investigating the connection further, especially given their
shared reliance on the early phase of training — albeit through directional saturation versus linear
mode connectivity (Frankle et al., 2020). Besides, a similar exploration of tuning normalization
parameters has been tried for fine-tuning (Zhao et al., 2023), although not in the context of
(pre-)training which is our focus here.

8 DISCUSSION

Summary. We observe that optimization trajectories in neural networks exhibit a rich directional
structure, across a wide range of architectures, datasets, optimizers, and hyperparameters. This is
firstly visible through the trajectory maps, which generally have high mean dimensionality scores.
Next, as the angular measures reveal, the directional movement persists throughout training, but
resides at varying levels, with the macro-level behaviour in the early training phase and micro-level
oscillations subsequently. We utilize this to come up with and demonstrate network decapacitation,
whereby once the directional saturation is reached, freezing significant network capacity leaves the
performance unaltered — thus showcasing the potential for efficient training of neural networks.

Future Work. The two most interesting directions of future work are as follows:

(A). Testing the Generalization Potential of Directional Measures. We have seen in Sections 3 and 5,
that directional measures are correlated with generalization. In particular, they appear to exhibit
a U-shape trend, where the extreme values should clearly be avoided. A dedicated study focusing
exclusively on the generalization potential of directional measures, and comparing these findings to
flatness-based analyses, would be highly insightful. Intuitively, flatter solutions will contain several
low curvature directions in their vicinity, which would align well with the discussion here.

(B). Analysis of Layerwise dynamics. Another interesting aspect of trajectory maps is that they can
be easily extended to hone into directional dynamics at a layerwise level. Our initial analysis into
GPTNeoX models discussed in Section 5 shows that the layerwise trajectory maps inhabit a rich struc-
ture, as shown in Figure 75. In particular, for models with less than a billion parameters, the Q,K,V
trajectory maps show significant heterogeneity in the timescales of directional convergence, with
middle layers converging the last directionally. Strikingly, the Q,K,V dynamics homogenize across
depth with higher scale. Moreover, these intriguing observations suggest utilizing trajectory maps
for (data-free) mechanistic understanding, complementing (Elhage et al., 2021; Grosse et al., 2023).

Conclusion. Overall, we have merely scratched the surface of this trajectory perspective into
understanding optimization behaviour in neural networks. We hope this work will bring further
nuance in these areas and contribute towards hybrid optimization schemes that can exploit the
showcased directional redundancy.
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A OMITTED PROOFS

Lemma 2. Given a quadratic problem with ℓ2 regularization of strength α ą 0, namely,
minθθθPRd

1
2θθθ

JMθθθ ` 1
2α}θθθ}2 , with M P Rdˆd symmetric with eigenvalues λ1 ě ¨ ¨ ¨ ě λd, the angle

between successive steps ∆t “ θθθt ´ θθθt´1,∆t`1 “ θθθt`1 ´ θθθt, when using gradient descent with a
one-step momentum (µ ą 0) and learning rates ηt, ηt`1, can be upper and lower bounded as follows:

x∆t,∆t`1y ď ηtηt`1p1 ´ ηtpµ ` α ` λdqqpλd ` αq2}θθθt´1}2

x∆t,∆t`1y ě ηtηt`1p1 ´ ηtpµ ` α ` λ1qqpλ1 ` αq2}θθθt´1}2

Proof. Given function fpθθθq “ 1
2θθθ

JMθθθ ` 1
2α}θθθ}2, the gradient at θθθ will be ∇fpθθθq “ pM ` αIqθθθ.

Then at the first optimization step, we do

θθθt “ θθθt´1 ´ ηtpM ` αIqθθθt´1

The particular update being ∆t :“ θθθt ´ θθθt´1 “ ´ηtpM ` αIqθθθt´1. The next update is similar, but
now we also have to factor in the momentum,

θθθt`1 “ θθθt ´ ηt`1 p∇fpθθθtq ´ µηtpM ` αIqθθθt´1q

∆t`1 :“ θθθt`1 ´ θθθt “ ´ηt`1 ppM ` αIqθθθt ´ µηtpM ` αIqθθθt´1q

“ ´ηt`1

`

pM ` αIqθθθt´1 ´ ηtpM ` αIq2θt´1 ´ µηtpM ` αIqθθθt´1

˘

“ ´ηt`1 pp1 ´ µηt ´ αηtqI ´ ηtMq pM ` αIqθθθt´1

Now, let us evaluate the inner-product x∆t,∆t`1y,

x∆t,∆t`1y “ ηtηt`1θθθ
J
t´1 pM ` αIq pp1 ´ µηt ´ ηtαqI ´ ηtMq pM ` αIq

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

Z

θθθt´1

Now without loss of generality we can consider Z to be a diagonal matrix, as Z is symmetric since
M is symmetric, we can consider its spectral decomposition Z “ UDUJ and project θθθt´1 onto its
eigenvectors contained in U. With this the matrices in the middle are diagonal and we can commute
them, which yields us the following matrix:

Z “ diag

¨

˚

˝

p1 ´ µηt ´ ηtα ´ ηtλ1qpλ1 ` αq2

...
p1 ´ µηt ´ ηtα ´ ηtλdqpλd ` αq2

˛

‹

‚

where, we have denoted the eigenvalues of M as λ1 ě ¨ ¨ ¨ ě λd.

Since the inner product of the updates is a quadratic form, we can upper and lower bound it based on
the maximum and minimum eigenvalues of Z, thus giving:

ηtηt`1λminpZq}θθθt´1}2 ď x∆t,∆t`1y ď ηtηt`1λmaxpZq}θθθt´1}2

Because of the above form of eigenvalues of Z (diagonal matrices have their eigenvalues as their
diagonal entries), we will have:

λmaxpZq “ p1´µηt ´ηtα´ηtλdqpλd `αq2 and λminpZq “ p1´µηt ´ηtα´ηtλ1qpλ1 `αq2
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B WHY COSINE SIMILARITIES INCREASE WITH SCALE?

Note, we assume that the majority of the parameter norm lies in the square hidden matrices, and not
the input or output layers. Moreover, we use o,O,θθθ to denote standard mathematical notation with
regards to scaling in the limit width n Ñ 8. For vectors, this notation is entry-wise.

Suppose we have a hidden layer with input x0 P Rn for width n, that is acted on by (without loss of
generality) a square matrix W0 P Rnˆn to give:

h0 “ W0x0

We suppose x has θθθp1q entries, as is the case with standard initialisations/parameterisations He et al.
(2015). We suppose W0 has i.i.d. elements with initialisation that is Op1{

?
nq in order to ensure that

each element of the features h has entries θθθp1q.

Now, if we take a gradient update with learning rate η on some downstream loss L that depends on h
(and not W or x), we get:

W1 “ W0 ´ ηdh ¨ xJ
0

where dh “ BL
Bh P Rnˆ1 is our feature derivative.

Then if we have new input x1 (wlog x1 “ x0), we have new features:

h1 “ x1W1 “ h0 ´ nηdh ¨
xJ
0 x0

n

For our features to be stable (i.e. θθθp1q) after the update, we need nηdh to be Op1q, because
xJ
0 x0

n “ θθθp1q by assumption on x. NB: if nηdh “ op1q we have no feature learning (ie NTK regime
Jacot et al. (2018)), and if nηdh “ θθθp1q we have feature learning (ie µP Yang et al. (2022)).

In any case, ηdh “ Op1{nq entry-wise, which means that W1 ´W0 “ ´ηdh ¨xJ
0 has Op1{nq entries,

again by assumption on the scale of elements of x0.

But because W0 “ θθθp1{
?
nq, the initialisation will elementwise-dominate the Op1{nq update for the

first training step (and more training steps follows by induction). As a result, the update WT ´ W0

will always be an order of at least
?
n smaller than the initialisation, and hence the new parameters

WT will be exactly aligned with the initialisation W0 for all T in the large width limit, i.e. the cosine
similarities will be 1.
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C COMPARING GRADIENT TRAJECTORIES WITH RANDOM WALKS

The structure that we observe in trajectory maps following gradient trajectories raises the question of
if we would observe similar structure in a random walk.

If we have T timesteps or epochs, with parameter space θθθ P Rp and “learning rate” schedule pηtq
T
t“1,

we can consider a random walk with updates:

θθθt ´ θθθt´1
ind.
„ N p0, η2t Ipq

which is to say that at time step t, each parameter coordinate in the parameter vector is updated
independently with a Gaussian of variance η2t , and the updates are independent across different time
steps.

Then, if θi denotes a single parameter coordinate for a dimension i ď p, for two time steps s ă t, we
have:

pθis, θ
i
tq „ N p0,

`

Hs Hs

Hs Ht

˘

q

where Hu “
řu

t1“1 η
2
t1 is the cumulative squared learning rate from t1 “ 1 to t1 “ u.

Then, by the strong law of large numbers we have for the large parameter space p Ñ 8 limit:

1

p
∥θθθs∥22 “

1

p

p
ÿ

i“1

pθisq2
a.s.
Ñ Hs ,

1

p
∥θθθt∥22 “

1

p

p
ÿ

i“1

pθitq
2 a.s.

Ñ Ht

1

p
xθθθs, θθθty “

1

p

p
ÿ

i“1

θitθ
i
s

a.s.
Ñ Hs

and by the property of composing almost sure limits, we also have almost sure convergence in the
cosine similarity:

xθθθs, θθθty

∥θθθs∥2∥θθθt∥2
a.s.
Ñ

Hs
?
HsHt

“

c

Hs

Ht

in the large parameter space limit, which we use as an approximation to give analytic formulas for
the trajectory map and MDS that we can compare to gradient trajectories.

One thing to note, is that this cosine similarity
b

Hs

Ht
becomes invariant to the scale of the learning

rates η, and instead it is the relative rate of decay in the learning rate schedule that matters.

C.1 EXPERIMENTAL RESULTS

The first thing to note is that our empirical simulation of the random walk matches the theoretical
limit described in the section above, for a finite parameter count (such as 10, 000). Next, comparing
the these relative trajectory maps with those for ResNet50 (Figure 10) we find that the latter reveal a
much more directional redundancy component to their trajectories as opposed to random walks. This
further lends support to the thesis that optimization trajectories ensued when training neural networks
are highly structured and have significant directional redundancy.

An additional thing to note is that the above relative trajectory map for random walks covers the
setting of decreasing the step size to mirror how the optimization procedure is setup for ResNet50. In
the case of no such step size decay, the analytic and empirical versions of the relative trajectory map
are depicted in the Figure 12.

17



Published as a conference paper at ICLR 2025

Figure 9: With step size decay: Relative Trajectory Map for a Random Walk/Brownian motion in
both analytic and empirically simulated settings.

Figure 10: Relative Trajectory Maps, with respect to initialization, of ResNet50 models for different
amounts of momentum and weight decay.

Figure 11: Relative Trajectory Maps, with respect to initialization, of ResNet50 models when
subtracting the trajectory map of a Random Walk (shown in Figure 9) with a corresponding learning
rate schedule. As before, this is carried out for different amounts of momentum and weight decay.

Figure 12: No Step size decay: Relative Trajectory Map for a Random Walk/Brownian motion in
both analytic and empirically simulated settings.
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C.2 EXPECTED MDS VALUES FOR RANDOM WALK

Effectively, to get the MDS, we need to compute the expected mean entry of the matrix whose ps, tq
entry contains the cosine similarity between θs and θt in the described random walk, we’ll start by
noting the following:

In the large parameter space limit (p Ñ 8), the cosine similarity between θs and θt converges almost
surely to

cos θs,t “

d

minpHs, Htq

maxpHs, Htq

where Hu “
řu

t1“1 η
2
t1 is the cumulative squared learning rate up to time u.

For simplicity, let’s consider the case where the learning rate is constant: ηt “ η for all t. Then,
Ht “ tη2, and the cosine similarity simplifies to

cos θs,t “

d

minps, tq

maxps, tq

The expected mean entry of the matrix is the average of all these cosine similarities:

Mean “
1

T 2

T
ÿ

s“1

T
ÿ

t“1

d

minps, tq

maxps, tq

Due to the symmetry of the cosine similarity, we can write this as:

Mean “
2

T 2

T´1
ÿ

s“1

T
ÿ

t“s`1

c

s

t
`

1

T 2

T
ÿ

s“1

c

s

s

Mean “
2

T 2
S `

1

T
where

S “

T´1
ÿ

s“1

T
ÿ

t“s`1

c

s

t

To compute S, we approximate the sum by an integral for large T :

S «

ż T

s“1

ż T

t“s

c

s

t
dt ds

Calculating the integral:

Ipsq “

ż T

t“s

c

s

t
dt “ 2s1{2pT 1{2 ´ s1{2q

S “

ż T

s“1

2s1{2pT 1{2 ´ s1{2q ds “ 2T 1{2

ż T

s“1

s1{2 ds ´ 2

ż T

s“1

s ds

Computing the integrals:
ż T

s“1

s1{2 ds “
2

3
pT 3{2 ´ 1q,

ż T

s“1

s ds “
1

2
pT 2 ´ 1q

Plugging back:

S “ 2T 1{2

ˆ

2

3
pT 3{2 ´ 1q

˙

´ 2

ˆ

1

2
pT 2 ´ 1q

˙

S “
4

3
T 1{2pT 3{2 ´ 1q ´ pT 2 ´ 1q

S “
4

3
pT 2 ´ T 1{2q ´ pT 2 ´ 1q
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S “

ˆ

4

3
T 2 ´ T 2

˙

´
4

3
T 1{2 ` 1

S “
1

3
T 2 ´

4

3
T 1{2 ` 1

Now, under the large T assumption, we have as the MDS:

MDS “
2

T 2
S `

1

T
«

2

T 2

ˆ

1

3
T 2 ´

4

3
T 1{2 ` 1

˙

`
1

T

MDS «
2

3
´

8

3

1

T 3{2
`

2

T 2
`

1

T
(1)

As T Ñ 8, the terms involving
1

T
,

1

T 3{2
, and

1

T 2
vanish, leaving:

MDS «
2

3
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D RELATIVE TRAJECTORY MAPS

In some cases, it might be useful to analyze the trajectory relative to some point θθθτ as the origin, so
there we will instead consider the set of points Tτ “ tθθθt ´ θθθτuTt“0, and correspondingly organize
it in the matrix ΘΘΘτ P RpT`1qˆp. When τ is itself one of the points of the trajectory, then we will
omit the row of zeros and shape the matrix as RTˆp. A natural point from where to contextualize
the trajectory would be the initialization θθθ0, and this relative trajectory will then be denoted as ΘΘΘ0

(where the subscript 0 is not to be confused for the usual origin O, namely, θθθO “ 0).

Trajectory Map. Analyzing the matrix ΘΘΘ or ΘΘΘτ , on its own, might get cumbersome as the size of
modern networks ranges in millions and billions of parameters. Hence, we will resort to looking at
functions of the kernel matrix K “ ΘΘΘΘΘΘJ which would be a square matrix of shape n “ T ` 1, or
for τ ‰ O, the relative kernel matrix Kτ “ ΘΘΘτΘΘΘ

J
τ of shape n “ T ` 1 or n “ T depending if the

point θθθτ is a part of the trajectory or not. Further, it will also be helpful to isolate and analyze the
directional aspect of the trajectory, for which we will normalize the set of points by their norm, and in
effect, consider the set pTτ “ t θθθt´θθθτ

}θθθt´θθθτ }2
uTt“0 with the respective matrix pΘΘΘτ . As a result, the ensuing

kernel matrix pΘΘΘτ
pΘΘΘ

J

τ , which we will refer to as Cτ (or C :“ CO for the usual origin τ “ O), will
contain the relative cosine similarities between every pair of points in the trajectory. So, pCτ qij is,

cos-simpθθθi ´ θθθτ , θθθj ´ θθθτ q “
xθθθi ´ θθθτ , θθθj ´ θθθτ y

}θθθi ´ θθθτ }2 }θθθj ´ θθθτ }2
.

We will refer to C as the Trajectory Map (TM) and Cτ (for τ ‰ O) as the Relative Trajectory Map
(RTM).

E DETAILED EXPERIMENTAL RESULTS

E.1 RESNET50: SWITCHING OFF THE HYPERPARAMETERS

Figure 13: Trajectory Maps of ResNet50 models across different amounts of momentum and weight
decay

The relative trajectory maps can be found in Figure 10.
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Figure 14: Angular measures of the Trajectory for ResNet50 trained on ImageNet
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Figure 15: Norm-based measures of the Trajectory for ResNet50 trained on ImageNet

(a) Train Loss (b) Train Accuracy (c) Test Accuracy

Figure 16: Loss and accuracy values for Momentum, Weight Decay experiments. The final test
accuracy values are 75.96, 72.63, 70.86, 68.73, in the order listed in the figure legend.

(a) Correlation of MDS (b) Correlation of Relative MDS

Figure 17: Correlation plots of MDS and relative MDS with test performance.
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E.2 ADDITIONAL DISCUSSION ON EFFECTS OF MOMENTUM

Besides, in Figure 3(a) and 14(f), we find that in the presence of momentum, a larger angle is traced
at the origin by the trajectory, suggesting a more directional exploration, while the angle traced at
initialization is smaller. The latter can also be seen from Figure 15(b), since with momentum, the
trajectory moves further away from the initialization. Apart from this, in the absence of weight decay,
the updates seem to be strengthening with momentum and the parameter norm rises 15(a) as well,
giving rise to a mental picture of a trajectory similar to that left purple trajectory in Figure 1, at least
until the training hits EoS.

With weight decay, as there is a decrease in parameter norm Figure 15(a) alongside the EoS process,
as well as due to the presence of larger obtuse angles, we expect a reasonable affinity with our
illustration, where we see the updates oscillating and slowly drifting towards the origin O below.

E.3 RESNET50: WEIGHT DECAY, ADAMW

Figure 18: Trajectory Maps of ResNet50 models across different amounts of weight decay

Figure 19: Relative Trajectory Maps, with respect to initialization, of ResNet50 models across
different amounts of weight decay

E.4 ADDITIONAL DISCUSSION ON WEIGHT DECAY

Let us turn to weight decay alone and understand its directional effect. We have already noticed
the increase in mean directional similarity (MDS) when weight decay is disabled for ResNet50
trained with SGD on ImageNet. In fact, we find a similar effect with an adaptive optimizer,
like AdamW (Loshchilov and Hutter, 2017) — the trajectory maps for which are shown in
Figure E.3. Here, we used regularization constants from λ “ 0 until the first value where we
witness a decrease in test performance, which in this case was λ “ 1. Specifically, we analyze the
weight decay coefficients in λ P t1, 0.1, 0.01, 0.001, 0u. The corresponding MDS come out to be,
ω “ 0.731, 0.679, 0.844, 0.882, 0.885. We notice that, as before, increasing weight decay leads to
a heightened directional exploration, or lower MDS; except λ “ 1 being the seeming anomaly.

But we find that this can be remedied simply by looking at the relative trajectory maps (Fig-
ure E.3), and computing the relative MDS, i.e., ω0 is 0.985, 0.807, 0.862, 0.897, 0.900 for λ “

1, 0.1, 0.01, 0.001, 0 respectively. This occurs since such a high weight decay λ “ 1, causes this
particular network to underfit (train/test top-1 accuracy are 54.63%, 50.52%). The performance for
the rest of the networks improves, more or less, as expected with weight decay, and in particular,
achieve accuracies of 75.45%, 73.38%, 71.03%, 71.41%.

Having reaffirmed our results extensively about the directional exploration due to weight decay, we
can understand it through a simple physics-based intuition, as shown in the Figure 5. In particular,
we can think of the loss gradient pulling the network parameters rightwards, while the force exerted
by weight decay tries to pull the network downwards. The relative strengths of these two ‘forces’
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have been represented by the lengths of the two vector arrows. We notice that as the weight decay
strength is increased, from the left subfigure to the right, the angle traced at the origin (O) also
increases. This explains how weight decay can contribute towards directional exploration.
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Figure 20: Angular measures of the Trajectory for ResNet50 trained on ImageNet
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Figure 21: Norm-based measures of the Trajectory for ResNet50 trained on ImageNet

(a) Train Loss (b) Train Accuracy (c) Test Accuracy

Figure 22: Loss and accuracy values for Weight Decay experiments. The final test accuracy values
are 50.54, 75.45, 73.38, 71.03, 71.41, in the order listed in the figure legend.

(a) Correlation of MDS (b) Correlation of Relative MDS

Figure 23: Correlation plots of MDS and relative MDS with test performance. We omit the case
where the weight decay coefficient is set to the extremely large value of 1 such that the network
severely underfits (train accuracy ă 40%).

26



Published as a conference paper at ICLR 2025

F DIRECTIONAL EFFECTS IN OTHER KEY SETTINGS

In addition to the momentum and weight decay, there are other crucial hyperparameters, such as
learning rate and batch size, whose directional effects warrant a mention. We carry out additional
experiments in these settings, and from where, the key findings are that the learning rate, as it
would be easy to guess, indeed encourages directional exploration leading to low MDS scores. But,
somewhat more interestingly, we find that increasing the batch size also helps further exploration
and thereby decreases the MDS scores. The trajectory maps can be found in the Figure 64 While
we encourage the curious reader to have a look at the Appendix F.9, we find that with increased
batch size, the angle between the updates as well as the angle between the update and the current
location become increasingly obtuse, and thus making room for a wider directional exploration. In
contrast, for smaller batch sizes these angles are closer to 90˝. We hypothesize that a similar mutual
interaction, as observed with weight decay and momentum, also occurs with batch size is considered.
A detailed analysis, however, remains outside the current scope.

Lastly, we also experimented with Sharpness-Aware Minimization (Foret et al., 2021) (SAM),
where we found that a higher value of the SAM regularization coefficient leads to a slightly increased
directional similarity, which could potentially be related to SAM directing optimisation to flatter
basins wherein the individual points are more directionally alike and have higher cosine similarities.
The detailed results can be found in the Appendix F.3.

Other Settings and Datasets. As a final remark for this section, we would like to emphasize that
similar results for weight decay as well as momentum, can be found under different hyperparameter
settings in the supplementary material. In particular, we analyze the qualitative and quantitative
hallmarks for multiple values of learning rate, weight decay, and momentum for VGG16 on CIFAR10
as well as other values for momentum and weight decay in the case of ResNet50 trained with SGD,
and even Vision Transformer trained with AdamW on ImageNet across varying weight decay, but
these have to be omitted here due to space constraints.

F.1 VIT: WEIGHT DECAY, ADAMW

Figure 24: Trajectory Maps of ViT models across different amounts of weight decay

Figure 25: Relative Trajectory Maps, with respect to initialization, of ViT models across different
amounts of weight decay
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Figure 26: Angular measures of the Trajectory for ViT trained on the ImageNet dataset
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Figure 27: Norm-based measures of the Trajectory for ViT trained on the ImageNet dataset

(a) Train Loss (b) Test Accuracy

Figure 28: Loss and accuracy values for Weight Decay experiments. The final test accuracy values
are 75.81, 75.36, 73.26, in the order listed in the figure legend. The figures do contain the trends for
both 0.01 and 0.0001, but they often lie on top of each other, so zooming-in might be needed to see
them separately.

(a) Correlation of MDS (b) Correlation of Relative MDS

Figure 29: Correlation plots of MDS and relative MDS with test performance.
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F.2 RESNET50: WEIGHT DECAY, SGD

Figure 30: Trajectory Maps of ResNet50 models across different amounts of weight decay

Figure 31: Relative Trajectory Maps, with respect to initialization, of ResNet50 models across
different amounts of weight decay
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Figure 32: Angular measures of the Trajectory for ResNet50 trained on ImageNet

31



Published as a conference paper at ICLR 2025

0 20 40 60 80

Epochs (t)

50

100

150

200

250

300

P
ar

am
et

er
N

or
m

s
‖θ

t‖
2

Weight Decay

0.001

0.0001

0

(a) }θt}2

0 20 40 60 80

Epochs (t)

0

50

100

150

200

250

‖θ
t+
k
−
θ t
‖ 2

fo
r
k

=
1

Weight Decay

0.001

0.0001

0

(b) }θt`k ´ θt}2

0 20 40 60 80

Epochs (t)

50

100

150

200

250

D
is

ta
n

ce
fr

om
In

it
ia

li
za

ti
on
‖θ

t
−
θ 0
‖ 2

Weight Decay

0.001

0.0001

0

(c) }θt ´ θ0}2

Figure 33: Norm-based measures of the Trajectory for ResNet50 trained on ImageNet

(a) Train Loss (b) Train Accuracy (c) Test Accuracy

Figure 34: Loss and accuracy values for Weight Decay experiments. The final test accuracy values
are 66.42, 75.96, 70.86, in the order listed in the figure legend.

(a) Correlation of MDS (b) Correlation of Relative MDS

Figure 35: Correlation plots of MDS and relative MDS with test performance.
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F.3 RESNET50: SHARPNESS AWARE MINIMIZATION ANALYSIS

Figure 36: Trajectory Maps of ResNet50 models across different values of SAM regularization
coefficient

Figure 37: Relative Trajectory Maps, with respect to initialization, of ResNet50 models across
different values of SAM regularization coefficient
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Figure 38: Angular measures of the Trajectory for ResNet50 trained on ImageNet
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Figure 39: Norm-based measures of the Trajectory for ResNet50 trained on ImageNet

(a) Train Loss (b) Train Accuracy (c) Test Accuracy

Figure 40: Loss and accuracy values for SAM experiments. The final test accuracy values for
ρ “ 0.5, 0.1, 0.05, 0 are 72.72, 76.5, 76.3, 75.96 respectively.

(a) Correlation of MDS (b) Correlation of Relative MDS

Figure 41: Correlation plots of MDS and relative MDS with test performance.
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F.4 RESNET50: MOMENTUM ANALYSIS, LR 0.1, WD 0.0001

Figure 42: Trajectory Maps of ResNet50 models across different amounts of momentum

Figure 43: Relative Trajectory Maps, with respect to initialization, of ResNet50 models across
different amounts of momentum
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Figure 44: Angular measures of the Trajectory for ResNet50 trained on ImageNet
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Figure 45: Norm-based measures of the Trajectory for ResNet50 trained on ImageNet

(a) Train Loss (b) Train Accuracy (c) Test Accuracy

Figure 46: Loss and accuracy values for Weight Decay experiments. The final test accuracy values
are 75.96, 74.98, 72.63, in the order listed in the figure legend.

(a) Correlation of MDS (b) Correlation of Relative MDS

Figure 47: Correlation plots of MDS and relative MDS with test performance.
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F.5 VGG: MOMENTUM ANALYSIS, LR 0.1, WD 0.0001

Figure 48: Trajectory Maps of VGG16 models across different amounts of momentum

Figure 49: Relative Trajectory Maps, with respect to initialization, of VGG16 models across different
amounts of momentum
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Figure 50: Angular measures of the Trajectory for VGG16 models trained on CIFAR10.

F.6 VGG: MOMENTUM ANALYSIS, LR 0.1, WD 0
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Figure 51: Norm-based measures of the Trajectory for VGG16 models trained on CIFAR10.

Figure 52: Trajectory Maps of VGG16 models across different amounts of momentum

Figure 53: Relative Trajectory Maps, with respect to initialization, of VGG16 models across different
amounts of momentum
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Figure 54: Angular measures of the Trajectory for VGG16 models trained on CIFAR10.

F.7 VGG: MOMENTUM ANALYSIS, LR 0.01, WD 0.0001
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Figure 55: Norm-based measures of the Trajectory for VGG16 models trained on CIFAR10.

Figure 56: Trajectory Maps of VGG16 models across different amounts of momentum

Figure 57: Relative Trajectory Maps, with respect to initialization, of VGG16 models across different
amounts of momentum
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Figure 58: Angular measures of the Trajectory for VGG16 models trained on CIFAR10.

F.8 VGG: MOMENTUM ANALYSIS, LR 0.01, WD 0
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Figure 59: Norm-based measures of the Trajectory for VGG16 models trained on CIFAR10.

Figure 60: Trajectory Maps of VGG16 models across different amounts of momentum

Figure 61: Relative Trajectory Maps, with respect to initialization, of VGG16 models across different
amounts of momentum
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Figure 62: Angular measures of the Trajectory for VGG16 models trained on CIFAR10.

F.9 VGG16 BATCH SIZE ANALYSIS
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Figure 63: Norm-based measures of the Trajectory for VGG16 models trained on CIFAR10.

Figure 64: Trajectory Maps of VGG16 models across different batch sizes. The learning rates
have been scaled in proportion to the batch size, and the training schedule was adjusted to en-
sure an equal number of steps (and not simply epochs) for all the runs. We also adjusted the
learning rate schedule to drop learning rates at a corresponding number of steps across the experi-
ments. The respective MDS values are ω “ 0.753, 0.723, 0.660, 0.619 and the test accuracies are
91.63%, 91.82%, 92.44%, 92.39%.

Figure 65: Relative Trajectory Maps, with respect to initialization, of VGG16 models across different
batch sizes
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Figure 66: Angular measures of the Trajectory for VGG16 models trained on CIFAR10.

F.10 TRAJECTORY MAPS IN THE PRESENCE OF LABEL NOISE

We observe that with increasing label noise, the network is required to undergo more directional explo-
ration to find a solution that can interpolate the training set. The MDS scores decrease monotonically
with increasing label noise.

48



Published as a conference paper at ICLR 2025

0 20 40 60 80 100 120 140 160

Epochs (t)

100

200

300

400

500

P
ar

am
et

er
N

or
m

s
‖θ

t‖
2

Batch Size

128

256

512

1024

(a) }θt}2

0 20 40 60 80 100 120 140 160

Epochs (t)

0

100

200

300

400

500

‖θ
t+
k
−
θ t
‖ 2

fo
r
k

=
1

Batch Size

128

256

512

1024

(b) }θt`k ´ θt}2

0 20 40 60 80 100 120 140 160

Epochs (t)

100

200

300

400

500

D
is

ta
n

ce
fr

om
In

it
ia

li
za

ti
on
‖θ

t
−
θ 0
‖ 2

Batch Size

128

256

512

1024

(c) }θt ´ θ0}2

Figure 67: Norm-based measures of the Trajectory for VGG16 models trained on CIFAR10.

(a) Label Noise 0.4 (b) Label Noise 0.7 (c) Label Noise 1.0

Figure 68: Trajectory maps when a CNN is trained on CIFAR10 with different amounts of label
noise, i.e., what fraction of samples have been assigned random labels.
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G GPT-NEOX TRAJECTORY ANALYSIS

Figure 69: Trajectory Maps of Pythia GPT-NeoX models across two orders of model scales trained on
Pile. The corresponding MDS values are ω “ 0.650, 0.672, 0.678, 0.726, 0.759, 0.786, 0.818, 0.815.

Figure 70: Relative Trajectory Maps, with respect to initialization, of Pythia GPT-NeoX models
across two orders of model scales.
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Figure 71: Norm-based measures of the Trajectory for GPT-NeoX trained on the Pile dataset
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Figure 72: Angular measures of the Trajectory for GPT-NeoX trained on the Pile dataset
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H LAYERWISE-TRAJECTORY MAPS

(a) query-key-value, bias

(b) query-key-value, weight

(c) dense, bias

(d) dense, weight

(e) dense-4h-to-h, bias

(f) dense-4h-to-h, weight

Figure 73: Layerwise Trajectory Maps, grouped by layer type, for the 14M GPT-NeoX model trained
on the Pile dataset.
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(a) dense-h-to-4h, bias

(b) dense-h-to-4h, weight

(c) embed-in, weight (d) embed-out, weight (e) final-layer-norm,
bias

(f) final-layer-norm,
weight

(g) input-layernorm, bias (h) input-layernorm, weight

(i) post-attention-layernorm, bias (j) post-attention-layernorm, weight

Figure 74: Layerwise Trajectory Maps, grouped by layer type, for the 14M GPT-NeoX model trained
on the Pile dataset.
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H.1 Q,K,V TRAJECTORY MAPS ACROSS SCALES

(a) 14 M

(b) 160 M

(c) 1.4 B

(d) 12 B

Figure 75: Trajectory maps of Q,K,V layers become homogenized over increasing scale.
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I TRAJECTORY MAPS FOR GROKKING

In grokking (Power et al., 2022), we have that the performance on test samples significantly lags
behind the training performance. Below, we look at the trajectory maps in this setting, considering
the experimental setup of https://github.com/teddykoker/grokking. We can observe

(a) Upto about 1500 steps (b) Upto about 2000 steps

(c) Upto about 4000 steps (d) Upto the end of training.

Figure 76: Trajectory maps during the course of learning. Grokking (Power et al., 2022), or sudden
increase in test accuracy while training accuracy is already at a ceiling, occurs where the trajectory
map also shows a transition point.

in Figure 76 that:

• Upto about 1500 steps: Everything is pitch blue. No directional exploration, test accuracy
remains, more or less, random.

• Upto about 2000 steps: Some directional movement starts to happen, and some initial signs
of improvement in test performance.

• Upto about 4000 steps: Transition point for directional exploration. Test performance visibly
improves.

We think that without (appropriate) directional exploration, the training converges to a
‘lazy’/‘shortcut’/‘dead-end’ like solutions. Moreover, we believe that being ‘lazy’ in the direc-
tional sense is highly intertwined with being ‘lazy’ in the sense of feature learning (Chizat et al.,
2020). Besides, the above experiments show that the resemblance with the lazy regime is more than
an analogy. Kumar et al. (2024) have shown that grokking can be seen as the transition from the lazy
to the non-lazy (rich) training regime. In particular, we find that the precise part of the training, where
the test accuracy first shows a marked growth is also the part where the directional exploration starts
to happen.
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J PUTTING DIRECTIONAL REDUNDANCY TO TEST

Figure 77: Comparison of training only batch norm parameters with training entire last layer
(readout) parameters.

The presented results, and that in the main section, have been averaged over 3 seeds. The standard
deviation is never more than 0.05 (for the batchnorm training, even less), and hence it is difficult to
make it out in the plots and has been omitted.

J.1 COMPARISON WITH (DISCRETIZED) TRAJECTORY MAP

Figure 78: Trajectory Map and the corresponding decapacitation test via tuning only batch-norm
parameters. Here we discretize the trajectory map to 10 color levels to facilitate comparison.
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K EFFECT OF DIFFERENT LEARNING RATE SCHEDULES

In order to ensure that our broader trajectory map results are not sensitive to the particular choice
stepwise learning rate schedule, we run a study for three other learning rate schedules: cosine, linear
decay, and polynomial decay with power p2q. We run this comparison both without and with an initial
warmup for 5 epochs to the base learning rate of 0.1. Besides, to facilitate an easier comparison,
we discretize the plots to 10 color levels. These resulting trajectory maps are illustrated below in
Figures 80, 81, and the learning rate schedules plus the train/test loss are depicted in the Figure 83.

(a) Learning Rate Schedules (b) Train Loss (c) Test Loss

Figure 79: Visualization of different learning rate schedules and the accompanying train and test loss
curves (in the non-warmup case of Figure 80).

K.1 TRAJECTORY MAPS

Without Warmup

Figure 80: Comparison of trajectory maps for ResNet50 trained on ImageNet across different learning
rate schedules.

K.1.1 WITH WARMUP FOR 5 EPOCHS

Figure 81: Comparison of trajectory maps for ResNet50 trained on ImageNet across different
learning rate schedules.

Importantly, we find that the larger nature of the trajectory map is highly similar across the different
schedules, despite minor variations. This demonstrates that our claims about directional similarity
are robust to the choice of learning rate schedules.

57



Published as a conference paper at ICLR 2025

K.2 ANGLE BETWEEN SUCCESSIVE EPOCHS

We also investigate the effect of different learning rate schedules on the angles formed between
successive epochs, and, in particular, how it varies in the presence or absence of momentum and
weight decay. Said differently, this is analogous to the setting of Figure 4(a), but where we swap out
stepwise learning rate schedule for cosine, linear, and polynomial (degree 2) schedules. These results
are located in the Figure 82.

(a) Cosine (b) Linear

(c) Polynomial (degree 2)

Figure 82: Effect of different learning rate schedules on the angle between successive epochs. We
find that as in Figure 4(a), a significant part of the training shows obtuse angles between the updates
(as marked by the part above the dashed gray lines), and which tend to be higher in the setting of
having both momentum and weight decay, like seen previously.
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L EFFECT OF TRAJECTORY GRANULARITY

L.1 TRAJECTORY MAPS WITH FINER GRANULARITY

We run our prototypical ResNet50 experiments at 2ˆ and 4ˆ granularities, each of which amounts
to having 2 and 4 evenly spaced checkpoints for every epoch. This results in an overall (including
initialization) 181 and 361 checkpoints, as opposed to 91 checkpoints considered previously. The
below-mentioned comparisons show that our results at the granularity of 1ˆ are produce highly
similar trends as seen with the finer granularity.

The above holds both for the visualizations of trajectory maps as well as angular hallmarks such as
angle between successive checkpoints.

(a) Trajectory Maps with 10 color levels

(b) Trajectory Maps with 20 color levels

Figure 83: Visualization of different learning rate schedules and the accompanying train and test loss
curves (in the non-warmup case of Figure 80).

L.2 ANGLE BETWEEN SUCCESSIVE EPOCHS
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Figure 84: Direct comparison of building trajectory maps that are at (4ˆ) finer granularity than
previously used. Hyperparameter settings are identical between the two, i.e., momentum is 0.9 and
weight decay is 0.0001.

(a) 4ˆ granularity (b) 1ˆ granularity

Figure 85: Effects of Momentum and Weight Decay at different granularities. The right figure is
the same as the one in the main text. 1ˆ granularity refers to a checkpoint every epoch; while 4ˆ

granularity would mean a checkpoint every quarter of an epoch.
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L.3 FINE-GRAINED VIEW INTO THE FIRST EPOCH

(a) Trajectory Map of the first Epoch (b) Angle between each of the adjacent steps

Figure 86: Trajectory map and Angle between checkpoints take at fine intervals during the first epoch.
The first epoch contains 5004 steps, and so for the left subfigure, we consider checkpoints after every
18 steps which suffices here since still finer granularity will make the already high resolution only
marginally more high resolution. Hence the trajectory map comprises of a total of 279 checkpoints
(including the initialization). As far as the right subfigure is concerned, here we process every single
step to yield a detailed view of the steps in the first epoch. The particular setting shown are for our
prototypical setting with momentum 0.9 and weight decay 0.0001.

M ANGLE BETWEEN SUCCESSIVE EPOCHS FOR VERY LARGE BATCH SIZE
TRAINING

(a) Batch Size: 16384 (b) Batch Size: 256

Figure 87: Angle between successive epochs for networks trained with different batch sizes.
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