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ABSTRACT

We consider reinforcement learning with vectorial rewards, where the agent re-
ceives a vector of K ≥ 2 different types of rewards at each time step. The agent
aims to maximize the minimum total reward among the K reward types. Differ-
ent from existing works that focus on maximizing the minimum expected total
reward, i.e. ex-ante max-min fairness, we maximize the expected minimum total
reward, i.e. ex-post max-min fairness. Through an example and numerical exper-
iments, we show that the optimal policy for the former objective generally does
not converge to optimality under the latter, even as the number of time steps T
grows. Our main contribution is a novel algorithm, Online-ReOpt, that achieves
near-optimality under our objective, assuming an optimization oracle that returns
a near-optimal policy given any scalar reward. The expected objective value un-
der Online-ReOpt is shown to converge to the asymptotic optimum as T increases.
Finally, we propose offline variants to ease the burden of online computation in
Online-ReOpt, and we propose generalizations from the max-min objective to
concave utility maximization.

1 INTRODUCTION

The prevailing paradigm in reinforcement learning (RL) concerns the maximization of a single
scalar reward. On one hand, optimizing a single scalar reward is sufficient for modeling simple
tasks. On the other hand, in many complex tasks there are often multiple, potentially competing,
rewards to be maximized. Expressing the objective function as a single linear combination of the
rewards can be constraining and insufficiently expressive for the nature of these complex tasks. In
addition, a suitable choice of the linear combination is often not clear a priori.

In this work, we consider the reinforcement learning with max-min fairness (RL-MMF) problem.
The agent accumulates a vector of K ≥ 1 time-average rewards V̄1:T = (V̄1:T,k)Kk=1 ∈ RK in T
time steps, and aims to maximize E[mink∈{1,...,K} V̄1:T,k]. The maximization objective represents
ex-post max-min fairness, in contrast to the objective of ex-ante max-min fairness by maximizing
mink∈{1,...,K} E[V̄1:T,k].

Our main contributions are the design and analysis of the Online-ReOpt algorithm, which achieves
near-optimality for the ex-post max-min fairness objective. More specifically, the objective under
Online-ReOpt converges to the optimum as T increases. Our algorithm design involves a novel
adaptation of the multiplicative weight update method (Arora et al., 2012), in conjunction with
a judiciously designed re-optimization schedule. The schedule ensures that the agent adapts his
decision to the total vectorial reward collected at a current time point, while allowing enough time
for the currently adopted policy to converge before switching to another policy.

En route, we highlight crucial differences between the ex-ante and ex-post max-min fairness objec-
tives, by showing that an optimal algorithm for the former needs not converge to the optimality even
when T increases. Finally, our results are extended to the case of maximizing E[g(V̄1:T )], where g
is a Lipschitz continuous and concave reward function.
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2 RELATED WORKS

The Reinforcement Learning with Max-Min Fairness (RL-MMF) problem described is related to an
emerging body of research on RL with ex-ante concave reward maximization. The class of ex-ante
concave reward maximization problems include the maximization of g(E[V̄1:T ]), as well as its ex-
ante variants, including the long term average variant g(E[limT→∞ V̄1:T ]) and its infinite horizon
discounted reward variant. The function g : RK → R is assumed to be concave.

The class of ex-ante concave reward maximization problems is studied by the following research
works. Chow et al. (2017) study the case where g is specialized to the Conditional Value-at-Risk
objective. Hazan et al. (2019) study the case when g models the entropy function over the probability
distribution over the state space, in order to construct a policy which induces a distribution over the
state space that is as close to the uniform distribution as possible. Miryoosefi et al. (2019) study
the case of minimizing the distance between E[V̄1:T ] and a target set in RK . Lee et al. (2019) study
the objective of state marginal matching, which aims to make the state marginal distribution match
a given target state distribution. Pareto optimality of E[V̄1:T ] and its ex-ante variants are studied in
(Mannor & Shimkin, 2004; Gábor et al., 1998; Barrett & Narayanan, 2008; Van Moffaert & Nowé,
2014). Lastly, a recent work Zahavy et al. (2021) provides a unifying framework that encompasses
many of the previously mentioned works, by studying the problem of maximizing g(E[V̄1:T ]) and
its ex-ante variants, where g is concave and Lipschitz continuous. Our contributions, which concern
the ex-post max-min fairness E[mink∈{1,...,K} V̄1:T,k] and its generalization to the ex-post concave
case, are crucially different from the body of works on the ex-ante case. The difference is further
highlighted in the forthcoming Section 3.2.

Additionally, a body of works Altman (1999); Tessler et al. (2019); Le et al. (2019); Liu et al.
(2020) study the setting where g is a linear function, subject to the constraint that E[V̄1:T ] (or its
ex-ante variants) is contained in a convex feasible region, such as a polytope. There is another line
of research works Tarbouriech & Lazaric (2019); Cheung (2019); Brantley et al. (2020) focusing
on various online settings. The works Tarbouriech & Lazaric (2019); Cheung (2019) focus on the
ex-post setting like ours, but they crucially assume that the underlying g is smooth, which is not the
case for our max-min objective nor the case of Lipschitz continuous concave functions. In addition,
the optimality gap (quantified by the notion of regret) degrades linearly with the number of states,
which makes their applications to large scale problems challenging. Brantley et al. (2020) focus on
the ex-ante setting, different from our ex-post setting, and their optimality gap also degrades linearly
with the number of states.

3 MODEL

Set up. An instance of the Reinforcement Learning with Max-Min Fairness (RL-MMF) problem is
specified by the tuple (S, s1,A, T,O). The set S is a finite state space, and s1 ∈ S is the initial
state. In the collection A = {As}s∈S , the set As contains the actions that the agent can take when
he is at state s. Each set As is finite. The quantity T ∈ N is the number of time steps.

When the agent takes action a ∈ As at state s, he receives the array of stochastic outcomes
(s′, U(s, a)), governed by the outcome distribution O(s, a). For brevity, we abbreviate the rela-
tionship as (s′, U(s, a)) ∼ O(s, a). The outcome s′ ∈ S is the subsequent state he transits to. The
outcome U(s, a) = (Uk(s, a))Kk=1 is a random vector lying in [−1, 1]K almost surely. The random
variable Uk(s, a) is the amount of type-k stochastic reward the agent receives. We allow the random
variables s′, U1(s, a), . . . UK(s, a) to be arbitrarily correlated.

Dynamics. At time t ∈ {1, . . . T}, the agent observes his current state st. Then, he selects an action
at ∈ Ast . After that, he receives the stochastic feedback (st+1, Vt(st, at)) ∼ O(st, at). We denote
Vt(st, at) = (Vt,k(st, at))

K
k=1, where Vt,k(st, at) is the type-k stochastic reward received at time t.

The agent select the actions {at}Tt=1 with a policy π = {πt}Tt=1, which is a collection of functions.
For each t, the function πt inputs the history Ht−1 = ∪t−1

q=1{sq, aq, Vq(sq, aq)} and the current state
{st}, and outputs at ∈ Ast . We use the notation aπt to highlight that the action is chosen under
policy π. A policy π is stationary if for all t,Ht−1, st it holds that πt(Ht−1, st) = π̄(st) for some
function π̄, where π̄(s) ∈ As for all s. With a slight abuse of notation, we identify a stationary
policy with the function π̄.
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Objective. We denote V̄ π1:t = 1
t

∑t
q=1 Vq(sq, a

π
q ) as the time average vectorial reward during

time 1 to t under policy π. The agent’s over-arching goal is to design a policy π that maximizes
E[gmin(V̄ π1:T )], where gmin : RK → R is defined as gmin(v) = mink∈{1,...,K} vk. Denoting V̄ π1:T,k

as the k-th component of the vector V̄ π1:T , the value gmin(V̄ π1:T ) = mink V̄
π
1:T,k is the minimum time

average reward, among the reward types 1, . . . ,K. The function gmin is concave, and is 1-Lipschitz
w.r.t. ‖ · ‖∞ over the domain RK .

When K = 1, the RL-MMF problem reduces to the conventional RL problem with scalar reward
maximization. The case of K > 1 is more subtle. Generally, the optimizing agent needs to focus on
different reward types in different time steps, contingent upon the amounts of the different reward
types at the current time step. Since the max-min fairness objective could lead to an intractable
optimization problem, we aim to design a near-optimal policy for the RL-MMF problem.

3.1 REGRET

We quantify the near-optimality of a policy π by the notion of regret, which is the difference between
a benchmark opt(P(gmin)) and the expected reward E[gmin(V̄ π1:T )]. Formally, the regret of a policy π
in a T time step horizon is

Reg(π, T ) = opt(P(gmin))− E[gmin(V̄ π1:T )]. (1)

The benchmark opt(P(gmin)) is a fluid approximation to the expected optimum. To define
opt(P(gmin)), we introduce the notation p = {p(s′|s, a)}s∈S,a∈As , where p(s′|s, a) is the prob-
ability of transiting to s′ from s, a. In addition, we introduce v = {v(s, a)}s∈S,a∈As , where
v(s, a) = E[U(s, a)] is the vector of the K expected rewards. The benchmark opt(P(gmin)) is
the optimal value of the maximization problem P(gmin). For any g : RK → R, we define

P(g): max
x

g

 ∑
s∈S,a∈As

v(s, a)x(s, a)


s.t.

∑
a∈As

x(s, a) =
∑

s′∈S,a′∈As′

p(s|s′, a′)x(s′, a′) ∀s ∈ S (2a)

∑
s∈S,a∈As

x(s, a) = 1 (2b)

x(s, a) ≥ 0 ∀s ∈ S, a ∈ As. (2c)

The concave maximization problem P(gmin) serves as a fluid relaxation to RL-MMF. For each s ∈
S, a ∈ As, the variable x(s, a) can be interpreted as the frequency of the agent visiting state s and
taking action a. The set of constraints (2a) stipulates that the rate of transiting out of a state s is equal
to the rate of transiting into the state s for each s ∈ S , while the sets of constraints (2b , 2c) require
that {x(s, a)}s∈S,a∈As forms a probability distribution over the state-action pairs. Consequently,
opt(P(gmin)) is an asymptotic (in T ) upper bound to the expected optimum.

Our goal is to design a policy π such that its regret1 Reg(T ) satisfies

Reg(T ) = opt(P(gmin))− E[gmin(V̄ π1:T )] ≤ D

T γ
(3)

holds for all initial state s1 ∈ S and all T ∈ N, with parameters D, γ > 0 independent of T . We
assume the access to an optimization oracle Λ, which returns a near-optimal policy given any scalar
reward. For ϑ ∈ RK , define the linear function gϑ : RK → R as gϑ(w) = ϑ>w =

∑K
k=1 ϑkwk.

The oracle Λ inputs ϑ ∈ RK , and outputs a policy π satisfying

opt(P(gϑ))− E[gϑ(V̄ π1:T )] = opt(P(gϑ))− E[ϑ>V̄ π1:T ] ≤ Dlin

T β
(4)

for all initial state s1 ∈ S and all T ∈ N, with parameters Dlin, β > 0 independent of T . By
assuming β > 0, we are assuming that the output policy π is near-optimal, in the sense that the
difference opt(P(gϑ))− E[ϑ>V̄ π1:T ] converges to 0 as T tends to the infinity. A higher β signifies a

1We omit the notation with π for brevity sake
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faster convergence, representing a higher degree of near-optimality. We refer to ϑ as a scalarization
of v, with the resulting scalarized reward being ϑ>v(s, a) for each s, a.

Our algorithmic frameworks involve invoking Λ as a sub-routine on different ϑ’s. In other words,
we assume an algorithmic sub-routine that solves the underlying RL problem with scalar reward
(the case of K = 1), and delivers an algorithm that ensures max-min fairness (the case of K ≥ 1).
Finally, while the main text focuses on gmin, our algorithm design and analysis can be generalized to
the case of concave g, as detailed in Appendix C.

3.2 COMPARISON BETWEEN MAXIMIZING E[gMIN(V̄ π1:T )] AND gMIN(E[V̄ π1:T ])

Before introducing our algorithms, we illustrate the difference between the objectives of maximizing
E[gmin(V̄ π1:T )] and gmin(E[V̄ π1:T ]) by the deterministic instance in Figure 1, with initial state s1 = so.

so srs`
(
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)(
0
0

)
(

0
0

)(
0
1

) (
0
0

)
(

0
0

)

Figure 1: States and actions are
represented by circles and arcs.

The figure depicts an instance with K = 2. An arc represents
an action that leads to a transition from its tail to its head. For
example, the arc from so to s` represents the action ao`, with
p(s` | so, ao`) = 1. Likewise, the loop at s` represents the
action a`` with p(s` | s`, a``) = 1. Each arc is labeled with
its vectorial reward, which is deterministic. For example, with
certainty we have V (so, ao`) =

(
0
0

)
and V (s`, a``) =

(
0
1

)
.

Consider two stationary policies π`, πr, defined as π`(sr) = aro, π`(so) = ao`, π`(s`) = a`` and
πr(sr) = arr, πr(so) = aor, πr(s`) = a`o. The policy π` always seeks to transit to s`, and then
loop at s` indefinitely, likewise for πr. With certainty, V̄ π

`

1:T =
(

0
1−1/T

)
, V̄ π

r

1:T =
(

1−1/T
0

)
.

The objective gmin(E[V̄ π1:T ]) is maximized by choosing πran uniformly at random from the collection
{π`, πr}. We have E[V̄ πran

1:T ] =
(

1/2−1/(2T )
1/2−1/(2T )

)
, leading to the optimal value of 1/2 − 1/(2T ). More

generally, existing research focuses on maximizing g(E[V̄ π1:T ]) for certain concave g, and the related
objectives of maximizing g(limT→∞ E[V̄ π1:T ]) or g(E[

∑∞
t=1 α

tVt(st, a
π
t )]), where α ∈ (0, 1) is the

discount factor. In these research works, a near-optimal policy π is constructed by first generating a
collection Π of stationary policies, then sampling π uniformly at random from Π.

Interestingly, πran is sub-optimal for maximizing E[gmin(V̄ π1:T )]. Indeed, Pr(V̄ πran
1:T =

(
0

1−1/T

)
) =

Pr(V̄ πran
1:T =

(
1−1/T

0

)
) = 1/2, so we have E[gmin(V̄ πran

1:T )] = 0 for all T . Now, consider the deter-
ministic policy πsw, which first follows π` for the first bT/2c time steps, then follows πr in the
remaining dT/2e time steps. We have V̄ πsw

1:T,k ≥ 1/2 − 2/T for each k ∈ {1, 2}, meaning that
gmin(V̄ πsw

1:T ) ≥ 1/2− 2/T . Note that gmin(E[V̄ πsw
1:T ]) ≥ gmin(E[V̄ πran

1:T ])− 2/T , so the policy πsw is also
near-optimal for maximizing gmin(E[V̄ π1:T ]).

Altogether, an optimal policy for maximizing gmin(E[V̄ π1:T ]) can be far from optimal for maximizing
E[gmin(V̄ π1:T )]. In addition, for the latter objective, it is intuitive to imitate πsw, which is to partition
the horizon into episodes and run a suitable stationary policy during each episode. A weakness to
πsw is that its partitioning requires the knowledge on T . While our algorithm follows the intuition
to imitate πsw, we propose an alternate partitioning that allows does not require T as an input.

4 ONLINE-REOPT ALGORITHM FOR RL-MMF

We propose the Online-ReOpt algorithm, displayed in Algorithm 1. The algorithm runs in episodes.
An episode m ∈ {1, 2, . . .} starts at time τ(m) (defined in Line 2), and ends at time τ(m+ 1)− 1.
Before the start of episode m, the algorithm computes the scalarization ϑτ(m) based on the Mul-
tiplicative Weight Update (MWU), which we detail later. Then, the algorithm invokes the opti-
mization oracle Λ, which returns a policy πm that is near-optimal for the MDP with scalar rewards
rm = {rm(s, a)}s,a, where rm(s, a) = ϑ>τ(m)v(s, a). Note that we only assume a black-box access
to Λ, and the parametersDlin, β do not need to be input to the Algorithm. Finally, the algorithm runs
policy πm during episode m. The Online Re-Opt algorithm is an anytime algorithm, since it does
not require T as an input. Rather, it requires knowing T only during the terminal time step T . To
complete the description of the algorithm, we provide the details about the scalarization.
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Algorithm 1 Online-ReOpt for gmin

1: Inputs: Optimization oracle Λ.
2: Set τ(m) = bm3/2c for m ∈ N.
3: for Episode m = 1, 2, . . . do
4: Define ϑτ(m) according to (5).
5: Compute policy πm ← Λ(ϑτ(m)).
6: for Time t = τ(m), . . . , τ(m+ 1)− 1 do
7: Choose action at = πm(st).
8: Observe the outcomes Vt(st, at) and the next state st+1.
9: if t = T then

10: Break the for loops and terminate the algorithm.
11: end if
12: end for
13: end for

Scalarization by MWU. At a time step t, we define the scalarization ϑt = {ϑt,k}Kk=1 as

ϑt,k =
exp

[
−ηt−1

∑t−1
j=1 Vj,k(sj , aj)

]
∑K
κ=1 exp

[
−ηt−1

∑t−1
j=1 Vj,κ(sj , aj)

] , (5)

where

ηt−1 =

√
logK

max{(t− 1)2/3, 1}
. (6)

In particular, at the start of each episode m, we apply (5) with t = τ(m) in Line 4. For the case
m = 1, we have ϑτ(1),k = 1/K for all k ∈ {1, . . . ,K}, meaning that all reward types are assigned
with the same weight at the beginning. The exponent 2/3 in the learning rate ητ(m)−1 in (5) is
different from the conventional choice of 1/2 (Arora et al., 2012). Our exponent is chosen for
optimizing the resulting regret bound from our forthcoming analysis. We follow the approach in
Chapter 7 in (Orabona, 2019) to define a time-varying learning rate.

The scalarization ϑt by (5) promotes max-min fairness. Consider two reward types k, k′ with∑t−1
q=1 Vq,k(sq, aq) >

∑t−1
q=1 Vq,k′(sq, aq). We have ϑt,k′ > ϑt,k, meaning that a higher weight

is assigned to reward type k′ than type k. This implies that there is a higher emphasis on increasing
the type-k′ reward, which is in shortage as compared to type k, than the type-k reward. Hence,
max-min fairness is promoted.

4.1 THEORETICAL GUARANTEES

We provide the following theoretical guarantee for Online-ReOpt.

Theorem 1 Consider the RL-MMF problem. Online-ReOpt, displayed in Algorithm 1, satisfies

Reg(T ) ≤ 114
√

logK

T 1/3
+

144Dlin

T β/3
, (7)

where Dlin, β are parameters related to the optimization oracle Λ.

Theorem 1 is a generalization result, in the sense that it generalizes the ability of achieving near-
optimality for the case of K = 1 to the case of K ≥ 1. Indeed, as long as β > 0, meaning that
the regret of the optimization oracle Λ diminishes with a growing T on any RL with scalar reward
problem, the regret bound (7) in Theorem 1 also tends to zero as T increases.

Theorem 1 is proved in Appendix section C.3. The first regret term in (7) arises from two sources:
(a) the regret of the MWU algorithm, (b) the update delay on the scalarization due to the episodic
structure. To elaborate on (b), consider a time step t in episodem. Recall that the scalarization ϑt by
(5) promotes max-min fairness, and ideally we should have employed the policy returned by Λ(ϑt)
at time t. In contrast, in Online-ReOpt the action at is determined by πm, the output of Λ(ϑτ(m)).
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Item (b) accounts for the regret due to using ϑτ(m) rather then ϑt. We crucially use the fact that ϑt
are slowly changing in t so that the resulting regret is still diminishing with t.

The second term in (7) is due to the regret of the optimization oracle Λ. The exponent β/3 in the term
is less than the exponent β in (4), as each policy πm is run for only τ(m+1)− τ(m) = O(

√
τ(m))

many time steps. Our design of {τ(m)}Mm=1 allows a shorter time frame for πm to converge to its
expected reward, as compared to running a policy for T steps in (4). When we increase the episode
length τ(m+1)−τ(m), the regret due to (b) increases, while the regret due to the second term in (7)
decreases, and vice versa. Our design of {τ(m)}Mm=1 strikes an optimal (in terms of our analysis)
balance between these two sources of regret.

The regret bound (7) does not feature a direct dependence on the sizes of the state and action spaces.
The dependence on the hardness of the underlying MDP is only reflected through the parameters
Dlin, β. Therefore, apart from the deterioration of the exponent β to β/3 and the first term in (7),
our algorithm does not introduce any overhead in the generalization from the case of K = 1 to
the case of K ≥ 1. Improving the exponent β/3 in (7) is an interesting open question. Finally,
Theorem 1 is generalized to the case of maximizing a concave utility objective E[g(V̄ π1:T )], where
g is Lipschitz continuous and concave. We detail the generalization in the model, algorithm and
theoretical results in Appendix C.1.

4.2 OFFLINE VARIANTS TO ONLINE-REOPT

While the Online-ReOpt Algorithm achieves near-optimality, the efficiency of its implementation
could be hindered by the need of online computation in Line 5 in Algorithm 1. Indeed, in order to
compute πm, the agent has to input the optimization oracle Λ and the scalarization ϑτ(m), which is
only known at the end of time step τ(m) − 1. In the case when the optimization oracle involves
heavy computation, for example training deep neural networks, such online computation may not be
realistic.

In this section, we propose Offline-ReOpt, which is a variant of Online-ReOpt that does not require
invoking Λ during the horizon. The Offline-ReOpt is obtained from the Online-ReOpt by modifying
two lines in Algorithm 1, as enumerated below. The full algorithm of Offline-ReOpt is provided in
Appendix section A.1.

1. Replace the input of Λ in Line 1 with the input of the policy family Π = {(ϑ, π(ϑ))}ϑ∈Ω.
The index set Ω is a finite subset of {ϑ ∈ RK : ‖ϑ‖1 = 1, ϑ ≥ 0}, the collection of all
possible scalarizations. For each ϑ ∈ Ω, the policy π(ϑ) is the output of Λ(ϑ).

2. Replace the online computation in Line 5 with these two lines:

(a) Identify ϑ̃τ(m) ∈ Ω that achieves minϑ∈Ω

∥∥ϑ− ϑτ(m)

∥∥
1
.

(b) Select policy πm = π(ϑ̃τ(m)).

In item (1), all the policies in Π are computed before the execution of the algorithm, unlike the case
in Online-ReOpt. Consequently, in item (2), the selection of policy πm does not require invoking
the optimization oracle Λ.

The main idea behind item (2) is that, in the case when the desired scalarization ϑτ(m) does not lie in
Ω, we chooses the surrogate scalarization ϑ̃τ(m) that is closest to ϑτ(m), so that the resulting policy
π(ϑ̃τ(m)) will be a reasonable approximation to the desired policy π(ϑτ(m)).

In order for the surrogate ϑ̃τ(m) to be close to ϑτ(m), it is desirable for the finite index set Ω to be so
diverse that every scalarization ϑτ(m) would be in a close neighborhood of a scalarization in Ω. We
propose two families of Ω for the desired diversification. The first is the random point family, de-
tailed in Appendix section A.2. The family is constructed by sampling random points in the domain
{ϑ ∈ RK : ‖ϑ‖1 = 1, θ ≥ 0} of all possible scalarizations. The second is the imitation based fam-
ily, also detailed in Appendix section A.2. The family is constructed by first running Online-ReOpt
multiple times, then collecting the scalarizations and the corresponding policies generated.
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5 EXPERIMENTS

We evaluate our proposed algorithms and benchmark algorithms in a controlled queueing system
involving vectorial rewards. For each of the algorithms, we first run the algorithm for Zpo = Zan×Ξ

independent trials, resulting in the Zpo average vectorial rewards2 {V̄ (zan,ξ)
1:T }1≤zan≤Zan,1≤ξ≤Ξ. We

plot the following three quantities against T :

• Ex-post Fairness: Ψ̄ = 1
Zan

1
Ξ

∑Zan
zan=1

∑Ξ
ξ=1 gmin

(
V̄

(zan,ξ)
1:T

)
, an estimate to E[gmin(V̄1:T )].

• Ex-ante Fairness: Γ̄ = 1
Zan

∑Zan
zan=1 gmin

(
1
Ξ

∑Ξ
ξ=1 V̄

(zan,ξ)
1:T

)
, an estimate to gmin(E[V̄1:T ]).

• Type k rewards for each 1 ≤ k ≤ K: Φ̄k = 1
Zan

1
Ξ

∑Zan
zan=1

∑Ξ
ξ=1 V̄

(zan,ξ)
1:T,k , an estimate to

E[V̄1:T,k].

We define the upper and lower error bars respectively as the 75 and 25-percentiles of the data, see
Appendix section B.1 for details. For the forthcoming discussions, we denote ek as the k-th standard
basis vector for k ∈ {1, . . .K} in RK . In addition, we denote 1K , 0K as the all one vector and the
all zero vector in RK .

5.1 QUEUING NETWORK

Queuing problems are studied extensively due to their relevance in fields such as manufacturing and
in communication systems. In our evaluation, we focus on a discrete-time queuing system. The
queuing network that we have tested our algorithms on, consisting of two servers and four queues
arranged in a bidirectional fashion, has been previously studied in works by Rybko & Stolyar (1992),
Kumar & Seidman (1990), Chen & Meyn (1998), de Farias & Van Roy (2003) and Banijamali et al.
(2019). This network is shown in Figure 2.

Figure 2: A bi-directional four-queue network

There are two servers in the system. Server 1 only serves Queue 1 or Queue 4 with service rates
µ1 = 0.3 and µ4 = 0.3 respectively, and where Server 2 similarly only serves Queue 2 or Queue 3
at the rates of µ2 = 0.3 and µ3 = 0.3. Arrivals occur at a rate of λ1 = 0.2 and λ2 = 0.2 at Queues
1 and 3 respectively. An arrival that gets served at Queue 1 by Server 1 then progresses to Queue 2,
and only leaves the system after it has been served by Server 2. Likewise, arrivals at Queue 3 have
to be served by Server 2, before moving on to Queue 4 to be served by Server 1 in order to leave
the system. Each queue i has a maximum length of Li = 9, and a customer is rejected at a queue if
the queue is at its full capacity. Conversely, an empty queue remains at length 0 even if an action is
taken to serve that queue.

The state of the system is thus defined by the vector xt = (xt,1, xt,2, xt,3, xt,4) whereby xt,i rep-
resents the length of the queue i at time t. At each time step t, a decision has to be made by each
server to serve only one or neither of its queues, which we can represent by a 4-component vector
at = (at,1, at,2, at,3, at,4) ∈ {0, 1}4, where at,i = 1 indicates the decision to serve Queue i at time
t, and at,i = 0 otherwise. Note that the condition of being able to only serve one queue at each
server naturally imposes the constraints at,1 + at,4 ≤ 1 and at,2 + at,3 ≤ 1 at each t, meaning that
As = {a ∈ {0, 1}4 : a1 + a4 ≤ 1, a2 + a3 ≤ 1} for each s.

2To avoid clutter, we omit the upper-script for the algorithm.
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The transition dynamics for the system can then defined by the following equation when 0 < xt,i <
Li, where ei refers to the basis vector in R4:

xt+1 =



xt + e1 with probability λ1

xt + e3 with probability λ2

xt + e2 − e1 with probability µ1a1

xt − e2 with probability µ2a2

xt + e4 − e3 with probability µ3a3

xt − e4 with probability µ4a4

xt otherwise

(8)

We define the type-i reward at time t as Vt,i(x,a) = 1− xt,i
Li

, for i ∈ {1, . . . , 4}. Recall that xt,i is
the queue length of Queue i at time t. The reward Vt,i(x,a) is equal to 1 if Queue i is empty, and the
reward Vt,i(x,a) decreases linearly with the length of Queue i at time t. In particular, Vt,i(x,a) = 0
if Queue i is full. Altogether, the agent’s reward for Queue i at time t positively correlates with the
degree of idleness of the Queue. The maximization of gmin(V̄1:T ) = min1≤i≤4 V̄1:T,i is equivalent
to the minimization of time-average queue lengths among all queues, hence enforcing all queues to
be stable simultaneously.

5.1.1 SIMULATION RESULTS

In our simulation, we evaluate 5 algorithms. Three of them are our proposed algorithms, namely
Online-ReOpt, Offline-ReOpt with Random Point Family and Offline-ReOpt with Imitation based
family. The other two are existing baselines. The Meta Algorihtm by Zahavy et al. (2021) is
the state-of-the-art for maximizing gmin(E[V̄1:T ]), while the longer queue first heuristic is a well-
established algorithm in the queuing theory literature. As the name suggests, each server serves
the longer of the two queues at each time round. We ran each of the algorithms with the following
parameters: T = 100000, Zan = 10 and Ξ = 100, meaning Zpo = Zan × Ξ = 1000.3 All of the al-
gorithms employ the same optimization oracle Λ, with the same hyper-parameters and architecture,
a double deep Q-learning network algorithm (Double DQN) by Hasselt et al. (2016).

Figure 3: Ex-ante Fairness of various algorithms in a queuing network

Figure 3 plots the quantity Ψ̄ against T under the 5 algorithms. Notice in Figure 3 how the Of-
fline and Online-ReOpt algorithms, as well as the Meta Algorithm by Zahavy et al. (2021) perform
similarly well in terms of ex-ante fairness. Among them, the Meta Algorithm has the best perfor-
mance, since the Re-Optimization schedule in our proposed algorithms compromises the ex-ante
fairness objective. All algorithms demonstrate converging behavior, in the sense that the error bars
diminishes as T grows.

3Except for Online-ReOpt, where we set Ξ = 5 since running an online algorithm for 1000 trials is not as
practical as running an offline algorithm, which only needs to be trained once.
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Figure 4: Ex-post Fairness of various algorithms in a queuing network

Figure 4 plots the quantity Γ̄ against T under the 5 algorithms. In terms of ex-post fairness, the Of-
fline and Online-ReOpt algorithms perform significantly better than Meta Algorithm and the Longer
Queue First Heuristic. The sub-optimality of the Meta Algorithm corroborates with Section 3.2 that
policies designed for the ex-ante fairness objective could be far from optimal for the ex-post fairness
objective. While the Meta Algorithm has a similar performance to the Longer Queue First heuristic,
the former has a significantly wider error bar than the latter, meaning that the latter is more stable.

Figure 5: Type k-rewards for 1 ≤ k ≤ K of various algorithms in a queuing network. Figure is read
from left to right, top to bottom.

Figure 5 plots Φi against T for i ∈ {1, . . . , 4}. In a nutshell, the plotted lines explain the trends in
Figure 3, while the error bars shed light on the trends in Figure 4. Firstly, the plotted lines indicate
that the Meta Algorithm has the highest (or close to the highest) individual average reward Φi for
each queue, signifying that the Meta Algorithm has the highest E[V̄1:T,i] for each i ∈ {1, . . . , 4}.
This explains the superiority of the Meta Algorithm shown in Figure 3.

When we focus on the error bars, the plots in Figure 5 tell a different story. Notably, the error bars
for the Meta Algorithm is significantly wider than others, meaning that the Zpo trials of the Meta
Algorithm have significantly different results from one another.4 When we unpack the summands
in Φ1, . . . ,Φ4 and compute the minimum reward in each trial, it results in Figure 4, which is vastly
different from Figure 3, signifying the ex-ante and ex-post objectives are fundamentally different.

As a final remark, our numerical experiments do not imply that the Longer Queue Heuristic is a
worse algorithm than the other 4 algorithms. Indeed, the Longer Queue Heuristic does not require
the knowledge of λ1, λ2, µ1, . . . , µ4, whereas the other 4 algorithms crucially uses these parameters
for generating their policies. In addition, the Longer Queue Heuristic is computationally much less
onerous than the others. Finally, the Longer Queue Heuristic demonstrates converging behaviors in
all the plots, in the sense that the error bars diminish when T increases.

4It is helpful to revisit Section 3.2, where Zpo trials would result in ≈ Zpo/2 outcomes of
(

0
1−1/T

)
and

≈ Zpo/2 outcomes of
(
1−1/T

0

)
.
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A SUPPLEMENTARY DETAILS

A.1 A FULL DESCRIPTION OF OFFLINE-REOPT FOR gMIN

The full description is provided in Algorithm 2, with the modifications colored in blue.

Algorithm 2 Offline-ReOpt for gmin

1: Inputs: policy family Π = {(ϑ, π(ϑ))}ϑ∈Ω, where Ω ⊆ {ϑ ∈ RK : ‖ϑ‖1 = 1, ϑ ≥ 0}.
2: Set τ(m) = bm3/2c for m ∈ N.
3: for Episode m = 1, 2, . . . ,M do
4: Define ϑτ(m) according to (5).
5: Identify ϑ̃τ(m) ∈ Ω that achieves minϑ∈Ω

∥∥ϑ− ϑτ(m)

∥∥
1
.

6: Select policy πm = π(ϑ̃τ(m)).
7: for Time t = τ(m), . . . , τ(m+ 1)− 1 do
8: Choose action at = πm(st).
9: Observe the outcomes Vt(st, at) and the next state st+1.

10: if t = T then
11: Break the For loops and terminate the algorithm.
12: end if
13: end for
14: end for

A.2 CONSTRUCTIONS OF THE RANDOM POINT AND IMITATION BASED FAMILIES

The random point family and the imitation based family are constructed according to Algorithms 3
and 4 respectively.

Algorithm 3 Construction of an Random Point Family
1: Inputs: Trial numbers N , rejection threshold ε > 0, optimization oracle Λ.
2: Initialize Π← ∅.
3: while |Π| < N do
4: Sample ϑ from {ϑ ∈ [0, 1]K : ‖ϑ‖1 = 1} uniformly at random.
5: if minϑ′∈Ω ‖ϑ′ − ϑ‖1 > ε then . When Π = ∅, define minϑ′∈Ω ‖ϑ′ − ϑ‖1 =∞
6: Apply the optimization oracle Λ(ϑ)→ π(ϑ)

7: Update Π← Π ∪ {(ϑ, π(ϑ))}.
8: end if
9: end while

10: Return Π.

The motivation behind Algorithm 3 is to generate a collection of scalarizations that covers {ϑ ∈
[0, 1]K : ‖ϑ‖1 = 1} through random sampling. We impose a rejection procedure to remove redun-
dant polices.

Algorithm 4 Construction of an Imitation-Based Family
1: Inputs: Trial numbers N , and the inputs for the Online-ReOpt Algorithm.
2: Initialize Π← ∅.
3: for Trial n = 1, 2, . . . , N do
4: Run Algorithm 1, which generates scalarizations {ϑ(n)

τ(m)}
M
m=1 as well as policies π(n)

m ,

where π(n)
m = Λ(ϑ

(n)
τ(m)). . M is the number of episode in the run.

5: Update Π← Π ∪
(
∪Mm=1

{(
ϑ

(n)
τ(m), π

(n)
m

)})
.

6: end for
7: Return Π.
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The motivation behind Algorithm 4 is simple - by saving each scalarization and stationary policy
pair generated at specific episodic intervals determined during Online-ReOpt, we would expect the
policy family to contain scalarizations that would be reasonable proxies to the true scalarizations
that would be encountered during the deployment of the Offline-ReOpt algorithm, should we look
up the policy family for a proxy scalarization at the very same episodic intervals found during the
running of Onine-ReOpt, and then deploy the corresponding stationary policy associated with this
proxy.

In a way, we are simulating the trajectory to be taken in the environment by running the Online-
ReOpt algorithm multiple times, and then meticulously following these ”well-trodden” trajectories
again in run-time. A similar analogy to this would be how people navigate in cities by memorizing
landmarks/waypoints and the corresponding series of directions to take upon reaching them, so as
to be able to retrace a path previously used in the future.

B ADDITIONAL DETAILS ABOUT NUMERICAL EXPERIMENTS

B.1 DETAILS ABOUT PLOTS AND ERROR BARS

Recall that in each of these environments and for each of the algorithms, we first run the al-
gorithm for Zpo = Zan × Ξ independent trials, resulting in the Zpo average vectorial rewards5

{V̄ (zan,ξ)
1:T }1≤zan≤Zan,1≤ξ≤Ξ. For our plots, we use three sets of data Ψ,Γ, {Φ}k∈{1,...,K}, with the

quantities to be evaluated in bold.

• Ex-post Fairness: Ψ = {Ψ(zan,ξ)}1≤zan≤Zan,1≤ξ≤Ξ, where

Ψ(zan,ξ) = gmin

(
V̄

(zan,ξ)
1:T

)
for each (zan, ξ) ∈ {1, . . . , Zan} × {1, . . . ,Ξ}.

• Ex-ante Fairness: Γ = {Γzan}1≤zan≤Zan , where

Γzan = gmin

 1

Ξ

Ξ∑
ξ=1

V̄
(zan,ξ)
1:T

 for each zan ∈ {1, . . . , Zan}.

• Type k-reward: Φk = {Φ(zan,ξ),k}1≤zan≤Zan,1≤ξ≤Ξ, where

Φ(zan,ξ),k = V̄
(zan,ξ)
1:T,k for each (zan, ξ) ∈ {1, . . . , Zan} × {1, . . . ,Ξ}.

Also, recall that we plot these three quantities against T :

• Ex-post Fairness: Ψ̄ = 1
Zan

1
Ξ

∑Zan
zan=1

∑Ξ
ξ=1 Ψ(zan,ξ), an estimate to E[gmin(V̄1:T )].

• Ex-ante Fairness: Γ̄ = 1
Zan

∑Zan
zan=1 Γzan , an estimate to gmin(E[V̄1:T ]).

• Type k-reward: Φ̄k = 1
Zan

1
Ξ

∑Zan
zan=1

∑Ξ
ξ=1 Φ(zan,ξ),k, an estimate to E[V̄1:T,k].

In each plot, the upper and lower error bars are defined as the 75-percentile and the 25-percentile of
the data points. More precisely:

• Ex-post Fairness: Order the quantities {Ψ(zan,ξ)}1≤zan≤Zan,1≤ξ≤Ξ in an increasing order
to get Ψ(1) ≤ Ψ(2) ≤ . . . ≤ Ψ(Zpo). The 25-percentile and 75-percentile are respectively
Ψ(b0.25×Zpoc),Ψ(b0.75×Zpoc).
• Ex-ante Fairness: Order the quantities Γ1, . . . ,ΓZan in an increasing order to get

Γ(1) ≤ Γ(2) ≤ . . . ≤ Γ(Zan). The 25-percentile and 75-percentile are respectively
Γ(b0.25×Zanc),Γ(b0.75×Zanc).

• Individual Reward for type k: Order the quantities {Φ(zan,ξ),k}1≤zan≤Zan,1≤ξ≤Ξ in an
increasing order to get Φ(1),k ≤ Φ(2),k ≤ . . . ≤ Φ(Zpo),k. The 25-percentile and 75-
percentile are respectively Φ(b0.25×Zpoc),k,Φ(b0.75×Zpoc),k.

5To avoid clutter, we omit the upper-script for the algorithm.
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B.2 DETAILS ABOUT THE ALGORITHMS

In the experiment performed, we ran a total of 4 different algorithms, the Online-ReOpt algorithm,
the Offline-ReOpt algorithm with a random point family, the Offline-ReOpt algorithm with an im-
itation based family, the Meta Algorithm by Zahavy et al. (2021), and lastly a Longer Queue First
heuristic, for a total of T = 100000 time steps per trajectory.

B.2.1 ONLINE-REOPT

This algorithm was run exactly as described in 1, with a double Deep Q Network (Double DQN) as
its optimization oracle Λ.

B.2.2 OFFLINE-REOPT (RANDOM POINT FAMILY)

The policy family Π used for this algorithm was generated using Algorithm 3, whereby N = 2000,
and ε = 0.0001.

The algorithm was then run exactly as described in Algorithm 2.

B.2.3 OFFLINE-REOPT (IMITATION BASED FAMILY)

The policy family Π used for this algorithm was generated using Algorithm 4, whereby N = 5.

The algorithm was then run exactly as described in Algorithm 2.

B.2.4 META ALGORITHM BY ZAHAVY ET AL. (2021)

This algorithm was run exactly as described in the paper by Zahavy et al. (2021), with the policy
player set as the same optimization oracle λ used across all the algorithms that we have run, and the
cost player set as the MWU scalarization shown in 5.

The algorithm is run for a total of K = 2000 iterations, generating a policy bag with the same
number of policies. At the start of each trajectory, one policy is random sampled from this policy
bag and then used for the entirety of the trajectory (for T time steps).

B.2.5 LONGER QUEUE FIRST HEURISTIC

This algorithm (or more simply a stationary policy) is based on a simple heuristic that makes the
agent select, at any time step, the longer queue at each queue to be served. For example, at a certain
time step if Server 1 has two queues of length 5 and 9 respectively, the agent would select the action
to serve the queue of length 9. Should both queues be of the same queue length, a random action
will be taken to serve either of these queues.

Note that there is no ’learning’ process involved in this heuristic.

B.3 DETAILS ABOUT THE OPTIMIZATION ORACLE Λ

All of the algorithms described above use the same optimization oracle Λ. For our experiments
with the queuing network, we have employed a double deep Q-learning network (Double DQN)
algorithm by Hasselt et al. (2016).

The architecture used is a simple fully-connected neural net consisting of 2 hidden layers, with
16 and 32 units respectively, and ReLU activation functions. The neural net learning rate is set at
0.00475. Updates to the primary net occurs every 5 steps with batch sizes of 128 from a replay
buffer of size 10000 and synchronization across both nets occur every 100 steps.

A decaying epsilon-greedy method of exploration is used, with εstart = 0.9 and εend = 0.2 decaying
across 200 intervals. 50 trajectories of 300 steps each are run for each call to the optimization oracle.
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C GENERALIZATION TO CONCAVE g

In this Appendix section, we consider the Reinforcement Learning with Concave Rewards (RL-CR)
problem, which is a generalization of the RL-MMF problem. We first explain the model and goal
of RL-CR. Then, we provide the Online-ReOpt algorithm for RL-CR, as displayed in the forth-
coming Algorithm 5. After that, we state and prove a regret bound of the Online-ReOpt algorithm.
Along the way, we highlight how the model and algorithm can be specialized to recover the model
and algorithm we developed for RL-MMF in the main text. In addition, Theorem 1 is proved by
specializing the analysis of Algorithm 5 to the case of RL-MMF.

C.1 MODEL OF RL-CR

An instance of the RL-CR problem is specified by the tuple (S, s1,A, T,O, g). The first five quan-
tities are defined in the same way as in the Set-up as the RL-MMF problem in Section 3. The last
quantity g : [−1, 1]K → R is a concave function, which is L-Lipschitz continuous with respect to
the norm ‖ · ‖ over [−1, 1]K . That is, for all u, v ∈ [−1, 1]K it holds that

|g(u)− g(v)| ≤ L‖u− v‖.
The RL-CR problem has the same Dynamics as that the RL-CR problem, while the RL-CR prob-
lem’s Objective is a generalization of the RL-MMF’s. In the RL-CR problem, the agent’s over-
arching goal is to design a policy π that maximizes6 E[g(V̄ π1:T )]. Evidently, RL-MMF is a special
case of RL-CR, by specializing g = gmin, which is 1-Lipschitz continuous w.r.t. ‖ · ‖∞.
Similar to the case of RL-MMF, we set our goal as to design a policy π such that

Reg(π, T ) = opt(P(g))− E[g(V̄ π1:T )] ≤ D

T γ
(9)

holds for all initial state s1 ∈ S and all T ∈ N, with parameters D, γ > 0 independent of T . The
benchmark opt(P(g)) is defined in Section 3.1 as the optimal value of the concave maximization
problem P(g). Similar to the case of RL-MMF, we assume the access to an optimization oracle Λ,
which satisfies (4) for all initial state s1 ∈ S and all T ∈ N, with parameters Dmin, β independent of
T .

C.2 ONLINE-REOPT FOR RL-CR

The Online-ReOpt Algorithm for RL-CR is shown in Algorithm 5. Apart from Lines 1, 4, 5, Al-
gorithm 5 is identical to Algorithm 1. Thus, we focus our discussion on Lines 1, 4, 5 in Algorithm
5.

Algorithm 5 Online-ReOpt for concave g
1: Inputs: Scalarization oracle Θ, regularizer F , optimization oracle Λ.
2: Set τ(m) = bm3/2c for m ∈ N.
3: for Episode m = 1, 2, . . . ,M do
4: Set θτ(m) ← Θ({Vj(sj , aj)}τ(m)−1

j=1 , g, F ).
5: Set ϑτ(m) = −θτ(m).
6: Compute policy πm ← Λ(ϑτ(m)).
7: for Time t = τ(m), . . . , τ(m+ 1)− 1 do
8: Choose action at = πm(st).
9: Observe the outcomes Vt(st, at) and the next state st+1.

10: if t = T then
11: Break the For loops and terminate the algorithm.
12: end if
13: end for
14: end for

In Line 1, the Online-ReOpt algorithm requires the input of a scalarization oracle Θ and a regular-
izer F , in addition to the optimization oracle Λ that is also assumed in the case of RL-MMF. The

6In the remaining of the Appendix section, we omit the superscript on the policy π for brevity.
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inputs Θ, F are used to produce the scalarization ϑτ(m) at each episode m in Lines 4, 5, hinging
on the vectorial rewards {Vj(sj , aj)}τ(m)−1

j=1 received and the reward function g. The choice of
the regularizer F crucially depends on g, and we elaborate on F in the forthcoming section. The
scalarization oracle Θ is constructed based on the Follow-The-Regularized-Leader (FTRL) algo-
rithm Shalev-Shwartz (2012) with time varying learning rates (see Chapter 7 in Orabona (2019)).
We first describe the scalarization oracle Θ in details in Section C.2.1, then we explain how Algo-
rithm 5 specializes to Algorithm 1 in Section C.2.2.

C.2.1 SCALARIZATION ORACLE Θ

In a nutshell, the scalarization oracle Θ produces the scalarizations by imitating the mechanism of
FTRL. We start off the description of Θ by recalling relevant basic concepts in convex optimization.

Convex optimization basics. For a norm ‖·‖ over RK , we denoteB‖·‖(L) = {v ∈ RK : ‖v‖ ≤ L}.
The dual norm ‖ · ‖∗ of ‖ · ‖ is defined as ‖θ‖∗ = maxv∈B‖·‖(1){θ>v}. It is well known that
‖ · ‖∗∗ = ‖ · ‖.
The Fenchel dual (−g)∗ : RK → R for −g, which is convex and L-Lipschitz continuous over
[−1, 1]K , is defined as

(−g)∗(θ) = max
x∈[−1,1]K

{
x>θ + g(x)

}
.

Clearly, the function (−g)∗ is convex over the domain RK , and the function (−g)∗ is ‖1K‖-
Lipschitz continuous over the domain B‖·‖∗(L). The following Theorem sheds light on why we
are interested in considering the Fenchel dual.

Theorem 2 Suppose that g : [−1, 1]K → R is concave and L-Lipschitz continuous w.r.t. norm ‖ · ‖
over the domain [−1, 1]K . For any v ∈ [−1, 1]K , it holds that

g(v) = min
θ∈B‖·‖∗ (L)

{(−g)∗(θ)− θ>v}.

In our discussions with the regularizer F , it is convenient to work with an extended function H :
B → R ∪ {∞}, and we denote dom(H) = {θ ∈ B : H(θ) ∈ R}.
Finally, we recall the notion of sub-gradient. Consider a convex function f : B‖·‖∗(L) → R, and
let θ ∈ B‖·‖∗(L). We say that w is a sub-gradient of f at θ, if for all θ′ ∈ B‖·‖∗(L) it holds that
f(θ′) ≥ f(θ) + w>(θ′ − θ). We denote the set of sub-gradients of f at θ as ∂f(θ), which is non-
empty by the assumption of convexity. In addition, if f is L′-Lipschitz continuous w.r.t. to ‖ · ‖∗,
then it holds that ‖w‖ ≤ L′ for all w ∈ ∂f(θ).

Description of Θ. We start with the description of the regularizer F , which is an extended function
F : B‖·‖∗(L) → (−∞,∞]. Given that g is L-Lipschitz continuous over [−1, 1]K with respect to
‖ · ‖, we require F to be 1-strongly convex with respect to the norm ‖ · ‖∗ over B‖·‖∗(L), that is,

∀ θ, θ′ ∈ dom(F ), ∀ w ∈ ∂F (θ′), F (θ) ≥ F (θ′) + w>(θ − θ′) +
1

2
‖θ − θ′‖2∗.

We display the execution of the scalarization at a time step t, namely θt ←
Θ({Vq(sq, aq)}t−1

q=1, g, F ), in Algorithm 6. We also inductively assume that the scalarizations
θ1, . . . , θt−1 have been computed. While for Online-ReOpt we only need to apply Θ at time steps
{τ(m)}Mm=1, we display Θ for general t since the generality is needed for our analysis.

While Line 5 could appear onerous, in actual implementation the sub-gradients w1, . . . , wT are
cached so that it only requires the computation of 1 sub-gradient per time step. In equation (11) in
Line 7, the argmax is achieved by a unique θt, due to the strong convexity of F . In the argmax, we
focus on the domain dom(F ) without loss of generality, since the argument is equal to −∞ at any
θ outside of dom(F ). The dynamic learning rate follows the approach for FTRL (see Chapter 7 in
Orabona (2019) for example). Similar to the case of RL-MMF, the exponent involved in the learning
rate is 2/3 instead of the conventional 1/2. The chosen value of the exponent turns out to optimize
the performance guarantee order bound in our analysis.

To relate Θ to FTRL, it is useful to think about an online convex optimization where convex func-
tions f1, . . . , fT arrive sequentially. At time step t, firstly the online agent has already observed
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Algorithm 6 Scalarization Oracle Θ

1: Input: vectorial rewards {Vq(sq, aq)}t−1
q=1, reward function g.

2: Input: regularizer F : B‖·‖∗(L)→ (−∞,∞]. . 1-strongly convex w.r.t. ‖ · ‖∗.
3: Input: previous scalarizations {θq}t−1

q=1.
4: for q = 1, 2, . . . , t− 1 do
5: Extracts a sub-gradient wq ∈ ∂fq(θq), where we define

fq(θ) = (−g)∗(θ)− θ>Vq(sq, aq). (10)

6: end for
7: Compute θt as follows:

θt = argmaxθ∈dom(F )

{
−ηt−1 · θ>

[
t−1∑
q=1

wq

]
− F (θ)

}
. (11)

The dynamic learning rate ηt−1 is defined as

ηt−1 =
R

‖1K‖ ·max{(t− 1)2/3, 1}
, where R =

√
max

θ∈dom(F )
F (θ)− min

θ∈dom(F )
F (θ). (12)

8: Return θt.

convex functions f1, . . . , ft−1. Secondly, the online agent determines θt according to Algorithm 6,
contingent upon f1, . . . , ft−1. Finally, the online agent receives ft as the feedback. Note that the
learning rates are non-increasing. In addition, and each ft is 2‖1K‖-Lipschitz continuous with re-
spect to ‖ · ‖∗ over B‖·‖∗(L). Consequently, we can invoke the classical results on FTRL to achieve
the following inequality, which is crucial for our analysis. We adopt Corollary 7.9 in Orabona (2019)
for the following statement:

Proposition 1 (Orabona, 2019) Consider the sequence of convex functions {ft}Tt=1 defined in (10),
and the sequence {θt}Tt=1 (see 11) generated by applying the scalarization oracle Θ at each t. The
following inequalities hold:

min
θ∈B‖·‖∗ (L)

{
T∑
t=1

ft(θ)

}
≥

T∑
t=1

ft(θt)−

[
R2

ηt−1
+ 2‖1K‖2

T∑
t=1

ηt−1

]

≥
T∑
t=1

ft(θt)− 7R‖1K‖ · T 2/3. (13)

The last bound in (13) is by applying the definition of ηt in (12).

C.2.2 SPECIALIZATION TO g = gMIN : FROM FTRL TO MULTIPLICATIVE WEIGHT UPDATES

We assert that we can recover Algorithm 1, the Online-ReOpt algorithm for gmin, by specializing
that for the scalarization oracle Θ the inputs:

g = gmin and F (θ) =

K∑
k=1

(−θk) log(−θk) + I−∆K (θ), (14)

where I−∆K (θ) = 0 if θ ∈ −∆K = {θ′ ∈ [−1, 0]K :
∑K
k=1 θ

′
k = −1}, and I∆K (θ) = ∞

if θ 6∈ −∆K . The set −∆K is the negation of the probability simplex, in the sense that for any
θ ∈ −∆K , the negation −θ is a probability distribution over the K coordinates.

We justify our assertion by showing that under the inputs in (14), the scalarization θt = {θt,k}Kk=1
returned by Θ is

θt,k = −
exp

[
−ηt−1

∑t−1
j=1 Vj,k(sj , aj)

]
∑K
κ=1 exp

[
−ηt−1

∑t−1
j=1 Vj,κ(sj , aj)

] , (15)
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where ηt−1 =
√

logK
max{(t−1)2/3,1} . Consequently, we have ϑτ(m) = −θτ(m) as dictated in Line 5, which

is in agreement with the scalarization defined in Algorithm 1.

We demonstrate (15) by walking through Algorithm 6. Firstly, we claim that wq = 1K −
Vq(sq, aq) ∈ ∂fq(θq) for each q. Indeed, it can be checked that 1K ∈ ∂(−gmin)∗(θ) for any
θ ∈ ∆K . Consequently, the optimization problem in (11) specializes to

argmaxθ∈−∆K

{
−ηt−1θ

>

[
t−1∑
q=1

1K − Vq(sq, aq)

]
−

K∑
k=1

(−θk) log(−θk)

}

=argmaxθ∈−∆K

{
(−θ)>

[
−ηt−1

t−1∑
q=1

Vq(sq, aq)

]
−

K∑
k=1

(−θk) log(−θk)

}

=− argminθ∈∆K

{
θ>

[
−ηt−1

t−1∑
q=1

Vq(sq, aq)

]
−

K∑
k=1

θk log θk

}
, (16)

where we denote ∆K = {θ′ ∈ [0, 1]K :
∑K
k=1 θ

′
k = 1}, and

ηt−1 =
R

‖1K‖∞ ·max{(t− 1)2/3, 1}
=

√
logK

max{(t− 1)2/3, 1}
.

The latter equality is due to the fact that maxθ∈dom(F ) F (θ) = 0 and minθ∈dom(F ) F (θ) = − logK.
Finally, an application of the Lagranage multiplier shows us that θt defined in (15) is indeed equal
to (16).

C.3 PERFORMANCE GUARANTEES AND ANALYSIS OF ONLINE-REOPT FOR CONCAVE g

We provide the following performance guarantee for the Online-ReOpt on Lipchitz continuous and
concave g:

Theorem 3 Consider the RL-CR problem. Online-ReOpt, displayed in Algorithm 5, satisfies the
regret bound:

Reg(π, T ) ≤ 114‖1K‖R
T 1/3

+
144Dlin

T β/3
,

where Dlin, β are parameters pertaining to the optimization oracle.

Theorem 3 is a generalization result, in the sense that it assumes an optimization oracle that solves
scalar reward MDPs to near-optimality (in the sense of regret diminishing with a growing T ), and
provides an algorithmic framework that solves the RL-CR problem to near-optimality. Theorem 3
specializes to Theorem 1 for the RL-MMF problem. Indeed, under the specialization in (14), we
have shown that Algorithm 5 specializes to Algorithm 1, as shown in Section C.2.2. In addition, for
gmin the underlying norm is ‖ · ‖∞, meaning that ‖1K‖ = 1, and the choice of regularizer in (14)
implies that R =

√
logK. Consequently, Theorem 3 specializes to Theorem 1.

In the following, we provide a proof to Theorem 3, which also proves the specialization Theorem 1.
The proof of Theorem 3 first involves developing two terms (†, ‡) that constitute a lower bound to
the expected reward E[g(V̄1:T )]. Then, we bound each of the terms (†, ‡) from below respectively
according to (20, 21). These lower bounds are justified in Sections C.3.1, C.3.2 respectively, which
finishes the proof.

Proof of Theorem 3. We first bound E[g(V̄1:T )] from below as follows:

E[g(V̄1:T )] = E
[

min
θ∈B‖·‖∗ (L)

{(−g)∗(θ)− θ>V̄1:T }
]

(17)

= E

[
min

θ∈B‖·‖∗ (L)

{
1

T

T∑
t=1

(−g)∗(θ)− θ>Vt(st, at)

}]

≥ E

[
1

T

T∑
t=1

(−g)∗(θt)− θ>t Vt(st, at)

]
− 7‖1‖KR

T 1/3
. (18)
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Step (18) is by the bound (13) in Proposition 1. Recall the notation that ft(θ) = (−g)∗(θ) −
θ>Vt(st, at). We decompose the first term in (18) as follows:

E

[
1

T

T∑
t=1

ft(θt)

]
= E

 1

T

M∑
m=1

τ(m+1)−1∑
t=τ(m)

(
ft(θt)− ft(θτ(m))

)
︸ ︷︷ ︸

(†)

+E

 1

T

M∑
m=1

τ(m+1)−1∑
t=τ(m)

ft(θτ(m))


︸ ︷︷ ︸

(‡)

.

(19)
We claim that

(†) ≥ −107‖1K‖R
T 1/3

, (20)

(‡) ≥ opt(P(g))− 144Dlin

T β/3
, (21)

where the parameters Dlin, β are parameters involved in the assumption of the optimization oracle.

C.3.1 PROVING (20), WHICH BOUNDS (†) FROM BELOW

To proceed, we first bound each summand from below as

ft(θt)− ft(θτ(m)) ≥ −2‖1K‖ · ‖θt − θτ(m)‖∗,

by the (2‖1K‖)-Lipschitz continuity of ft with respect to ‖ · ‖∗. We then focus on upper bounding
the difference ‖θt−θτ(m)‖∗, which implies a lower bound on the summand. We first make a crucial
observation about θt.

θt = argmaxθ∈dom(F )

{
−ηt−1 · θ>

[
t−1∑
q=1

wq

]
− F (θ)

}

= ∇F ∗
(
−ηt−1

t−1∑
q=1

wq

)
, (22)

where F ∗ is the Fenchel dual of F , exactly same as the way (−g)∗ is the Fenchel dual of −g:

F ∗(w) = maxθ∈dom(F )

{
θ>w − F (θ)

}
.

The connection between θt and∇F∗ is in fact well established when the research community makes
connection between FTRL and online mirror descent algorithms. To proceed, we use the following
result in convex optimization, which can be found in Lemma 15 item 3 in Shalev-Shwartz (2007)
for example.

Proposition 2 (Shalev-Shwartz, 2007) Let F be 1-strongly convex over B‖·‖∗(L) with respect to
‖ · ‖∗. Then its Fenchel dual is 1-smooth with respect to ‖ · ‖, in the sense that for any w, u ∈ RK ,
it holds that

‖∇F ∗(w)−∇F ∗(u)‖∗ ≤ ‖w − u‖.

Combining (22) and Proposition 2, we arrive at

‖θt − θτ(m)‖∗ ≤

∥∥∥∥∥∥−ηt−1

t−1∑
q=1

wq + ητ(m)−1

τ(m)−1∑
q=1

wq

∥∥∥∥∥∥ .
Subsequenty, we have∥∥∥∥∥∥−ηt−1

t−1∑
q=1

wq + ητ(m)−1

τ(m)−1∑
q=1

wq

∥∥∥∥∥∥
≤

t−2∑
j=τ(m)−1

∥∥∥∥∥−ηj+1

j+1∑
q=1

wq + ηj

j∑
q=1

wq

∥∥∥∥∥ (23)
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≤
t−2∑

j=τ(m)−1

ηj+1‖wj+1‖+ (ηj − ηj+1)

∥∥∥∥∥
j∑
q=1

wq

∥∥∥∥∥ (24)

≤2‖1K‖
t−2∑

j=τ(m)−1

[ηj+1 + j(ηj − ηj+1)] (25)

≤10R

3

t−2∑
j=max{τ(m)−1,1}

1

j2/3
≤ 10R

3
· t− τ(m)

max{(τ(m)− 1)2/3, 1}
. (26)

Steps (23, 24) is by the triangle inequality. Step (25) is by the fact that ‖wq‖ ≤ 2‖1K‖, since
wq ∈ ∂fq(θq), and fq is 2‖1K‖-Lipschitz continuous. Step (26) is by applying the definition of ηt.

Altogether, we have

ft(θt)− ft(θτ(m)) ≥ −
20‖1K‖R

3
· t− τ(m)

max{(τ(m)− 1)2/3, 1}
,

and the bound on (†) is proved by summing over m, t:

1

T

M∑
m=1

τ(m+1)−1∑
t=τ(m)

(
ft(θt)− ft(θτ(m))

)

≥− 20‖1K‖R
3

· 1

T

M∑
m=1

τ(m+1)−1∑
t=τ(m)

t− τ(m)

max{(τ(m)− 1)2/3, 1}

=− 20‖1K‖R
3

· 1

T

1 +

M∑
m=2

τ(m+1)−1∑
t=τ(m)

t− τ(m)

(τ(m)− 1)2/3


≥− 10‖1K‖R

3
· 1

T

[
2 +

M∑
m=2

(τ(m+ 1)− τ(m))2

(τ(m)− 1)2/3

]
. (27)

Now, for m ≥ 2, it is routine to check that τ(m + 1) − τ(m) ≤ 3
√
m+ 1, and (τ(m) − 1)2/3 =

(bm3/2c − 1)2/3 ≥ (m3/2/4)2/3 ≥ m/3, so we can continue to bound (27) from below:

(27) ≥ −10‖1K‖R
3

· 1

T

[
2 +

M∑
m=2

9(m+ 1)

m

]

≥ −10‖1K‖R
3

· 1

T
[2 + 15M ]

≥ −107‖1K‖R
T 1/3

, (28)

where (28) is because M satisfies bM3/2c ≤ T ≤ b(M + 1)3/2c implies that M ≤ 2T 2/3. Alto-
gether, the bound for (†) is shown.

C.3.2 PROVING (21), WHICH BOUNDS (‡) FROM BELOW

We bound (‡) by invoking the property of the optimization oracle. Now,

(‡) =E

 1

T

M∑
m=1

τ(m+1)−1∑
t=τ(m)

ft(θτ(m))


=E

 1

T

M∑
m=1

τ(m+1)−1∑
t=τ(m)

(−g)∗(θτ(m))− θ>τ(m)Vt(st, at)

 (29)

=E

 1

T

M∑
m=1

τ(m+1)−1∑
t=τ(m)

(−g)∗(θτ(m))− θ>τ(m)v(st, at)

 . (30)
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Step (29) is by recalling that ft(θ) = (−g)∗(θ) − θ>Vt(st, at) from (10). To this end, recall that
the actions in the trajectory {st, at)}τ(m+1)−1

t=τ(m) are chosen under policy πm, which is the output of
Λ(ϑτ(m)) and ϑτ(m) = −θτ(m). By our assumption of the optimization oracle (see equation (4)),
we know that

1

τ(m+ 1)− τ(m)
E

(−θτ(m))
>
τ(m+1)−1∑
t=τ(m)

v(st, at)

 ≥ opt(P(g−θτ(m)
))− Dlin

[τ(m+ 1)− τ(m)]β
,

(31)

where g−θτ(m)
(w) = −θ>τ(m)w. Combining (30, 31) yields the lower bound

(‡) ≥ E

 1

T

M∑
m=1

τ(m+1)−1∑
t=τ(m)

(−g)∗(θτ(m)) + opt(P(g−θτ(m)
))

− 1

T

M∑
m=1

Dlin[τ(m+1)−τ(m)]1−β .

(32)
We first lower bound the second term in (32), which follows routine calculations:

− 1

T

M∑
m=1

Dlin[τ(m+ 1)− τ(m)]1−β ≥ −Dlin

T

b2T 2/3c∑
m=1

[3(m+ 1)]
1−β
2 ≥ −144Dlin

T β/3
.

finally, we lower bound the first term in (32). We claim that

1

T

M∑
m=1

τ(m+1)−1∑
t=τ(m)

(−g)∗(θτ(m))− opt(P(g−θτ(m)
)) ≥ opt(P(g))

with certainty, by showing that, for any θ ∈ B‖·‖∗(L), it holds that

(−g)∗(θ) + opt(P(g−θ)) ≥ opt(P(g)). (33)

To show (33), let’s define y∗θ = {y∗θ(s, a)}s∈S,a∈As as an optimal solution to P(g−θ), and x∗ =
{x∗(s, a)}s∈S,a∈As as an optimal solution to P(g). Crucially, note that the optimization problems
P(g−θ), P(g) have the same feasible region. Since y∗θ is optimal for the linear program P(g−θ), we
have the following crucial inequality:∑

s∈S

∑
a∈As

(−θ)>v(s, a)y∗θ(s, a) ≥
∑
s∈S

∑
a∈As

(−θ)>v(s, a)x∗(s, a). (34)

Consequently, for any θ ∈ B‖·‖∗(L),

(−g)∗(θ) + opt(P(g−θ))

=(−g)∗(θ) +
∑
s∈S

∑
a∈As

(−θ)>v(s, a)y∗θ(s, a)

≥(−g)∗(θ) +
∑
s∈S

∑
a∈As

(−θ)>v(s, a)x∗(s, a)

≥ min
θ′∈B‖·‖∗ (L)

{
(−g)∗(θ′) +

∑
s∈S

∑
a∈As

(−θ′)>v(s, a)x∗(s, a)

}
=opt(P(g)).

Thus, the bound for (‡) is established, and Theorem 3 is proved.
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