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ABSTRACT

Minimax problems have achieved widely success in machine learning such as
adversarial training, robust optimization, reinforcement learning. Existing stud-
ies focus on minimax problems with specific algorithms in stochastic optimiza-
tion, with only a few work on generalization performance. Current generaliza-
tion bounds almost all depend on stability, which need case-by-case analyses for
specific algorithms. Additionally, recent work provides the O(1/d/n) general-
ization bound in expectation based on uniform convergence. In this paper, we
study the generalization bounds measured by the gradients of primal functions
using the uniform localized convergence. We relax the Lipschitz continuity as-
sumption and give a sharper high probability generalization bound for nonconvex-
strongly-concave (NC-SC) stochastic minimax problems considering the local-
ized information. Furthermore, we provide dimension-independent results under
Polyak-Lojasiewicz condition for the outer layer. Based on the uniform localized
convergence, we analyze some popular algorithms such as the empirical saddle
point (ESP), gradient descent ascent (GDA) and stochastic gradient descent as-
cent (SGDA) and improve the generalization bounds for primal functions. We
can even gain approximate O(1/n?) excess primal risk bounds with further as-
sumptions that the optimal population risks are small, which, to the best of our
knowledge, are the sharpest results in minimax problems.

1 INTRODUCTION

Modern machine learning settings such as reinforcement learning (Du et al.,[2017} |Dai et al.,|2018)),
adversarial learning (Goodfellow et al., 2016), robust optimization (Chen et al., 2017; Namkoong
& Duchi, [2017) often need to solve minimax problems, which divide the training process into two
groups: one for minimization and one for maximization. To solve the problems, various efficient
optimization algorithms such as gradient descent ascent (GDA), stochastic gradient descent ascent
(SGDA) have been proposed. Most of them were focused on the iteration complexity, which only
considered the optimization error. In contrast, the generalization performance analysis is less con-
sidered, which is an important measure to foresee their prediction behavior after training.

Recently, Zhang et al.| (2022) introduced an expectation generalization error for primal functions
in minimax problems using complexity. Naturally, we want to create a high-probability version,
preferably using local methods to introduce variance information and obtain a tighter upper bound.
A straightforward idea is that we can continue with the traditional localized approach and solve
the problem with covering numbers Bartlett et al.| (2002). However, these technologies require
additional bounded assumptions (Assumption [2), or need certain distributional assumptions for un-
bounded condition. For example, Mei et al.| (2018) introduced the “Hessian statistical noise” as-
sumption when using covering numbers. Fortunately, Xu & Zeevi (2020) developed a novel “uni-
form localized convergence” framework using generic chaining for the minimization problems and
Li & Liu/(2021b) extended it to analyze stochastic algorithms.

This novel framework can not only relax the bounded (or specific distribution) assumptions but
also impose fewer restrictions on the surrogate function for the localized method, enabling us to
design the measurement functional to achieve a sharper bound. Consequently, we introduce this
remarkable framework into minimax problems. Our generalization bound uses weaker assumptions
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comparing with [Zhang et al| (2022) and is sharper in some conditions due to our utilization of
variance information.

Introducing this new framework into minimax problems is not straightforward. [Zhang et al.| (2022)
indeed established a connection between inner and outer layers with the loss of primal functions, but
we need do this with a new generic chaining approach. Furthermore, while|[Zhang et al.|(2022) only
needed to bound the error caused by the connection between inner and outer layer with O(1/y/n).
We need to introduce the variance for a sharper bound, to bound the error involved by the two layers.

Next, we turn to applications. Firstly, for a sharper excess risk bound, we need to introduce the
PL-SC condition to establish a connection between excess risk and the gradient of primal functions,
leading to our results for ESP. Unfortunately, for GDA and SGDA algorithms, we found that all the
related optimization papers in minimax problems focused on the iteration complexity (or gradient
complexity). As a result, they only require E[||V®(x7)]|] for average of round 7" with an expected
outcome. We were compelled to derive the high probability empirical optimization bound ourselves
using classical optimization methods under SC-SC conditions.

Notice that even under SC-SC settings, achieving this for SGDA remains difficult. Drawing inspi-
ration from |Lei et al.[(2021)’s proof of Primal-Dual Risk optimization bound, we eventually derive
the optimization bound for primal risk. The proofs for excess risks in applications differ from mini-
mization problems Li & Liu|(2021b)) and pose challenges. These challenges stem from errors in the
inner and outer layers of minimax problems. Consequently, we can only achieve a result close to
O(1/n?). Our contributions are summarized as follows:

1. We introduce local uniform comvergence using new generic chaining techniques. Comparing
with traditional uniform convergence results in|Zhang et al.[(2022), we derive sharper generalization
bounds measured by the gradients of primal functions for NC-SC minimax problems. It provides
problem independent results that can be used in various minimax algorithms.

2. Under the Polyak-Lojasiewicz condition for the outer layer, we provide dimension-independent
results and remove the dimension of parameters d from our generalization bound when the sample
size n is large enough, which is, to our knowledge, the first result in minimax problems.

3. We extend our main theorems into various algorithms such as ESP, GDA, SGDA. We establish
faster O(1/n) order bounds for excess primal risk. We can even gain approximate O(1/n?) bounds
with further assumptions that the optimal population risk is small. To our best knowledge, it is the
first time to gain approximate O(1/n?) for NC-SC minimax problems in expectation and the first
result nearly to O(1/n?) high probability bound for SC-SC settings.

This paper is organized as follows. In Section [2| we review the related work. In Section [3} we
introduce the notations and assumptions about the problems. Section [ presents our main results.
Then we apply our main theorems into various algorithms and give the sharper bounds for different
settings in Section [5] Section [6] concludes our paper. All the proofs in our paper are given in
Appendix.

2 RELATED WORK

Minimax optimization. Minimax optimization analysis has been widely studied in different set-
tings. For example, one of the most popular SGDA algorithm and its variants have been analyzed
in several recent works including [Palaniappan & Bach| (2016); Hsieh et al.|(2019) for SC-SC cases,
Nedi¢ & Ozdaglar| (2009); Nemirovski et al.| (2009) for convex-concave (C-C) cases, [Lin et al.
(2020); Luo et al.|(2020);|Yan et al.|(2020); Rafique et al.[(2022)) for NC-SC problems, [Thekumpara-
mpil et al.| (2019);|Yan et al.[(2020) for nonconvex-concave (NC-C) cases and [Loizou et al.| (2020);
Liu et al.|(2021); [Yang et al.| (2020) for nonconvex-nonconcave (NC-NC) minimax optimization
problems. All these works focus on the iteration complexity (or the gradient complexity) of the
algorithms, which only proved the optimization error bounds for the sum of 7 iteration’s gradient
of primal empirical function in expectation. Recently [Li & Liu| (2021a)); [Lei et al.| (2021) gave op-
timization bounds with high probability for Primal-Dual risk. We notice that the optimization error
of the gradients of primal functions with high probability haven’t been studied yet.

Algorithmic stability. Algorithmic stability is a classical approach, which was presented by Rogers
& Wagner| (1978). It gives the generalization bound by analyzing the sensitivity of a particular
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learning algorithm when changing one data point in the dataset. Modern framework of stability
analysis was established by Bousquet & Elisseeff] (2002), where they present an important concept
called uniform stability. Since then, a lot of works based on uniform stability have emerged. On
the one hand, the generalization bound with algorithmic stability have been significantly improved
by Bousquet et al.| (2020); [Feldman & Vondrak| (2018; 2019); Klochkov & Zhivotovskiy| (2021)).
On the other hand, different algorithmic stability measures such as uniform argument stability (Liu
et al., 2017} Bassily et al. [2020), on average stability (Shalev-Shwartz et al., 2010; [Kuzborskij
& Lampert, 2018), collective stability (London et al., [2016) have been developed. For minimax
problems, many useful stability measures have also been extended, for example, weak stability (Lei
et al.| 2021)), argument stability (Lei et al.| 2021} [Li & Liu} [2021a)), and uniform stability (Lei et al.,
20215 L1 & Liu, 2021a;[Zhang et al., 2021} |[Farnia & Ozdaglar, [2021;|Ozdaglar et al., 2022). Most of
them focused on the expectation generalization bounds and only |Lei et al.| (2021)); L1 & Liu (2021a)
established some high probability bounds.

Uniform convergence. Uniform convergence is another popular approach in statistical learning
theory to study generalization bounds (Fisher, [1922; [Vapnikl, (1999} [Van der Vaart, 2000). The main
idea is to bound the generalization gap by its supremum over the whole (or a subset) of the hy-
pothesis space via some space complexity measures, such as VC dimension, covering number and
Rademacher complexity. For finite-dimensional problem, Kleywegt et al.| (2002) provided that the
generalization error is O(+/d/n) depended on the sample size n and the dimension of parameters d
in high probability. For nonconvex settings, Mei et al.[(2018)); Davis & Drusvyatskiy|(2022) showed
that the empirical of generalization error is O(y/d/n). Xu & Zeevi|(2020) developed a novel “uni-
form localized convergence” framework using generic chaining for the minimization problems and
Li & Liu|(2021b) extended it to analyze stochastic algorithms. In minimax problems, |[Zhang et al.
(2022) established the first uniform convergence and showed that the empirical generalization error

of the gradients for primal functions is O(y/d/n) under NC-SC settings.

3 PRELIMINARIES

Let X € R?and Y € R? be two nonempty closed convex parameters spaces. Let [P be a probability
measure defined on a sample space Z. We consider the following minimax optimization problem

)Igél;{l max F(x,y) = E,p[f(x,y;2)], Q)

where f: X x Y x Z — Ris contlnuously differentiable and Lipschitz smooth jointly in x and y
for any z. This above minimax objective called as the population minimax problem represents an
expectation of a cost function f(x,y;z) for minimization variable x, maximization variable y and
data variable z. In this paper, we focus on the NC-SC problem which means that f is nonconvex
in x and strongly concave in y. Obviously, our goal is to gain the optimal solution (x*,y*) to
. Since the distribution IP is unavailable, we can only gain a dataset S = {z1,...,2,} drawn n
times independently according to P. Therefore, we solve the following empirical minimax problem

instead
Z (X, ¥;2i). )

Next we introduce one of the common measures in minimax problems called primal functions.

Definition 1 (primal function (empirical/population)). The primal population function and the pri-
mal empirical function are given by

min max Fg(x,y)
xeX yey

3\’—‘

®(x) := max F(x, and Pg(x):=max Fs(x,y).
(x) = max F(x, y) s(x) := max Fs(x,y)
Since F' and Fs are nonconvex in X, it is difficult to find the global optimal solution in general. In
practice, we design an algorithm A that finds an e-stationary point
IVO(AL(9))] < 3)
where Ay (S) is the z-component of the output using any algorithm A(S) = (Ax(S), Ay(95))
for solving (). Then the optimization error for solve the population minimax problem (I)) can be
decomposed into two terms:

IVO(Ax () < [[VOs(Ax(S))I| + [VR(Ax(S)) = Vs (Ax(5))], )
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where the first term on the right-hand-side corresponds to the optimization error of solving the
empirical minimax problem (2)) and the second term corresponds to the generalization error of the
gradients of primal function. The above inequality satisfies from the triangle inequality.

Let || - || be the Euclidean norm for simplicity and B(xo, R) := {x € R? : |[x — x¢|| < R} denote a
ball with center x¢ € R? and radius R. For the closed convex set X', we assume that there is a radius
Ry such that X € B(x* Rl) Let A(S Ax( ) denote the output of an algorithm A
for solving the empmcal minimax problem 6 with dataset S and Vf = (Vxf, Vyf) denote the
gradient of a function f.

Definition 2 (Strongly convex function). Let 1y, > 0. A differentiable function g : W — R is called
p-strongly-convex in w if the following inequality holds for every w1, wa:

9(w1) = g(wa) 2 (Vg(wa), w1 = wa) + & [[wi — wa,

we say g is p-strongly-concave if —g is p-strongly-convex.

Definition 3 (Smooth function). Let 8 > 0. A function f : X x Y x Z — R is f-smooth in (x,y) if
the function is continuous differentiable and for any x1,x3 € X, y1,y2 € Yandz € Z, f(X,y;2)

satisfies

xf X1,¥1;%2 )7fo(x27YQv /B

yf X1,Y1:2 ) Vyf(Xz,Y% YZ
Assumption 1 (Nonconvex-strongly-concave minimax problem). In order to obtain meaningful
conclusions, we make the following assumptions:

» Let piy > 0. The function f(x,y;z) is py-strongly concave in'y € Y for any x € X and
z € Z.

* The function f(x,y;z) is S-smooth in (x,y) € X x ) for any z.

* X and Y are compact convex sets, which means that there exist constants Dx, Dy > 0
< Dy.

The first two assumptions in Assumption [I]are standard in NC-SC minimax problems (Zhang et al.l
2021} [Farnia & Ozdaglar, 2021} |Lei et al., [2021}; ILi & Liu} [2021a) and the last one in Assumption
is widely used in uniform convergence analysis (Kleywegt et al., [2002}; |Davis & Drusvyatskiy,
2022} Zhang et al.,|2022)).

Assumption 2 (Lipschitz continuity). Let L > 0, assume that for any x € X and anyy € Y
respectively for any z, the function f(x,y;z) satisfies

IVxf(x,y;2)| <L and [[Vy[f(x,y;2)] < L.

Lipschitz assmuption is also the standard assumption and widely used in literature such as Zhang
et al.| (2021); Farnia & Ozdaglar (2021); [Le1 et al.| (2021); [Li & Liu| (2021a). But we need to
emphasize that our main Theorem|I]and Theorem 3|do not require the Lipschitz assumption. Instead,
we introduce a weaker assumption called Bernstein condition in minimax problems.

Definition 4 (Bernstein condition). Given a random variable X with mean . = E[X] and variance
2 = E[X?] — u?, we say that Bernstein’s condition holds if there exists B > 0 such that for all
2<k<n,

E[(X — p)*]| < %k!oQB’“*Q. (5)

Remark 1. Bernstein condition has been widely used to obtain tail bounds that may be tighter than
the Hoeffding bounds. It is easy to verify that any bounded variable satisfies the Bernstein condition.
Moreover, the Bernstein condition is milder than the bounded assumption of random variables and
is also satisfied by various unbounded variables. For example, a random variable is sub-exponetial
if it satisfies the Bernstein condition (Wainwright, 2019). Please refer to \Wainwright (2019) for
more discussions. Next, we introduce a straightforward generalization of the Bernstein condition to
minimax problems. We formally state these extension in the following assumptions.
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Assumption 3. In minimax problems, the function f(X,y;z) satisfies Bernstein condition in x* for
y*: there exists By~ > 0 such that for all2 < k <mn,

1
E[[Vsf (x",y"52)|*] < SRE[[Vaf (", v 2) ] B ™. (6)

And the function f(x,y;z) satisfies Bernstein condition in y*(x) for any fixed x: there exists By >
0 such that forall2 < k < n,

E[[|Vy f(x,y"(x);2)|*] < %k!E[IIVyf(&y*(X);Z)IIQ]B’§?27 ()

where y*(x) := arg max, .y, F'(x,y).

Remark 2. We can easily obtain that Assumption [2] can derive Assumption For example, if
function f is L-Lipschitz continuous, then ||V f(x,y;2)|| < L. Thus foranyx € X,y € ) and
forall 2 < k < n, we have E[||Vy f(x,y;2)||F] < LKIE[|Vy f(x,y;2)||*]L*~2 which means
that the function f satisfies Bernstein condition for any x,y. Similarly, E[|V,f(x,y;2)|*] <
SB[V f(x,y:2)||*]L*~2 can be easily derived. Furthermore, Bernstein condition assumption
is pretty mild since By- only depends on gradients at (x,y*(x)) for any x € X and By~ only

depends on gradients at (x*,y™).

4 UNIFORM LOCALIZED CONVERGENCE AND GENERALIZATION BOUNDS

Uniform convergence of the gradients for the primal functions measures the deviation between the
gradients of the primal population function V®(x) and the gradients of the primal empirical function
V®g(x). In this section, we provide the sharper uniform convergence of the gradients for the primal
functions comparing with [Zhang et al.| (2022).

Theorem 1. Under Assumption (l|and|3| we have the following inequality that for any 6 € (0,1)
and for all x € X, with probability at least 1 — 6,

IV®(x) — Vdg(x)| < B 2E||Vy f(x,y*(x); z)[|2 log 4 N By-log 3
B ,uy n n
2E||V« £yt 2]pg 8 By~ 1 8 C 1
+\/ AL AL %85 4 Chliy +5) maX{X—x*v}
" " Hy n
\/d—l—logm’&(\?&"*” . d-l-logw
n n )

where C'is a absolute constant.

There is only one uniform convergence of gradients for primal functions in minimax problems given
in|{Zhang et al.| (2022). Here is their main theorem in NC-SC settings.

Theorem 2 (Theorem in (Zhang et al., [2022)). Under Assumption|l|and|2| we have

_ A Llpy +8) /d
E max IV (x) — V(I>5(X)||:| =0 (My\/;> ;

where O(-) hides logarithmic factors.

Remark 3. We now compare our uniform convergence of gradient for primal functions with|Zhang
et al.|(2022). Firstly, our result is the only one with high-probability format. Besides, we successfully
relax the assumptions. Theorem [2| requires the Lipschitz continuity assumption, while our result
only needs Bernstein condition assumption. Please refer to Remar Remark [2] for the detailed

comparison between these assumptions. Then, the factor in Theorem|2|is w, while our result
Yy

in Theoremis %ﬁ’fﬁ) max { lx —x*||, %} not involving the term L, which may be very large
and even infinite without Lipschitz continuity assumption. Finally, while|Zhang et al.|(2022) studied
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the worst-case upper bounds on the parameters, results based on generic chaining yield upper bound
related to the parameters. As shown Theorem we have the term max{|[x—x*||, L} before the term

O(+\/d/n), indicating that our results improve as the calculated parameters of algorithms approach

the optimal solution. In the optimal scenario, when ||x — x*|| < %, we can attain the best (sharper)
results.

Next, we privide a dimension-free uniform convergence of gradients for the primal functions when
the PL condition is satisfied. Firstly, we introduce the extension of the PL condition to the minimax
problem used in|Guo et al.|(2020); [Yang et al.[(2020).

Assumption 4 (x-side uy-Polyak-Lojasiewicz condition). For any'y € ), the function F(x,y)
satisfies the x-side x-Polyak-Lojasiewicz (PL) condition with parameter px > Qonall x € X if

. 1
F(Xa y) - l)l’(l/fF(X/,y) < ﬁ”vxF(Xv y)||2

Remark 4. Numerous studies have been conducted on deep learning to provide evidence for the
validity of the PL condition in risk minimization problems. This condition has been demonstrated to
hold either globally or locally in certain networks with specific structural, activation, or loss func-
tion characteristics (Hardt & Mal 2016} |Li & Yuan| 2017, |Zhou & Liang| 2017, \Li & Liangl 2018}
Arora et al.| 2018, |Charles & Papailiopoulos, 2018} |Du et al.| 2018} |Allen-Zhu et al.| |2019). For
instance, \Du et al.|(2018) has exhibited that if a two-layer neural network possesses a sufficiently
wide width, the PL condition is upheld within a ball centered at the initial solution, and the global
optimum is situated within this same ball. Additionally, |Allen-Zhu et al.|(2019) have further demon-
strated that in overparameterized deep neural networks utilizing ReLU activation, the PL condition
is applicable to a global optimum located in the vicinity of a random initial solution.

Theorem 3. Under Assumption |l| and 3| assume that the population risk F(x,y) satisfies As-

sumption 4| with parameter pix and let ¢ = max{16C?,1}. We have that for all x € X, when

> By +8)° (dtlog HEEBRIEL)

HEHZ

with probability at least 1 — §

2E(|Vxf(x*,y*;2)]* log §
n

IVO(x) = Ves(x)[| < [VEs(x)[| + 2\/

L 2Blogl g 25 [2EIVyFOxy (iz)Plog s By-logd
n no fy n n

Remark 5. The following inequality can be easily derived using the norm triangle inequality and
Cauchy—Bunyakovsky—Schwarz inequality.

< 8IVesx)I? n 165°E||Vy f(x,y* (x);2)[* log 3

P(x) — d(x*
() - 2(x) < F0 o

(®)

28 By« 2
16E| Va f " y's2)|Plog § 2 (2 log 3+ 2B log § + )
+ + ~ .
Hxm L

We can easily derive (8) from Theorem[3|to gain the excess primal risk bound, where |V ®s(x)|| is
the empirical optimization error of the primal function. In Theorem[3|and (§)), |V®s(x)|| can be
very tiny since most famous optimization algorithms such as GDA and SGDA, can optimize it small
enough. The term E||Vx f(x*,y*;z)||? and E||Vy f(x,y*(x); 2)||? can be also tiny since they only
depend on the the gradient of the optima x* w.r.t x and the gradient of the optima y*(x) w.r.t. y.
Thus, comparing with Theorem[2|in|Zhang et al’|(2022), this uniform localized convergence bound is
clearly tighter when relaxing Lipschitz continuity (Assumption2)) and considering PL condition (As-
sumption E]) We further analyze these two terms E||Vy f(x*,y*;z)||? and E||Vy f(x,y*(x); 2)||?
using “Self-bounding” property for smooth function (Srebro et all|[2010) and considering specific
algorithms in Section 5| which can derive to almost O(1/n*) bounds. Additionally, uniform con-
vergence often implies results with a square-root dependence on the dimension d such as Theorem
[1] and Zhang et al| (2022). Another distinctive improvement of Theorem 3| is that we remove the
dimension d when the population risk F(x,y) satisfies the x-side PL condition and the sample size
n is large enough.
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Remark 6. There are two mainly challenges in our work for minimax problems. On one hand,
comparing with uniform convergence in|Zhang et al.|(12022)), we use a novel uniform localized con-
vergence techniques (Xu & Zeevi, 2020)) to construct a functional w.rt. loss functions on mini-
max problems. This two layer structure involves difficulties. On the other hand, it is notewor-
thy that the optimal point y*(x) := argmaxyy, F(x,y) for a given x differs from y§(x) :=
arg maxycy, Fs(X,y), thus introducing an additional error term ||y*(x) — y§(x)||. Compared to
Zhang et al.|(2022)), they only need to bound this term with O(ﬁ) But we need to reach the upper

bound of order O(%) under certain assumptions.

5 APPLICATION

5.1 EMPIRICAL SADDLE POINT

Empirical saddle point (ESP) problem, which is also known as sample average approximation
(SAA) (Zhang et al., [2021) refers to . We denote (X*,y*) as one of the ESP solution to (2).
Then we can provide some important theorems in this subsection.

Theorem 4. Suppose the empirical saddle point (X*,y*) exists and Assumption |I|and|3| hold, for
any ¢ € (0,1), with probability at least 1 — 6, we have

. d + log teen
Ve =0 [/ E

Remark 7. When Assumption|[l|and 3| hold, TheoremH]gives that the population optimization error
1
(IV®(x*)|| is of order O (\/ ‘Hl% (log n is small and can be ignored typically). Note that this

result doesn’t require the Lipschitz continuity assumption (Assumption2). Although it may be hard
SF G *)

to find (x*,y*) in NC-SC minimax problems, it is still meaningful when assuming the ESP (X*,y
has been found.

Theorem 5. Suppose Assumption|l|and 3| hold. Assume that the population risk F(x,y) satisfies

Assumption || with parameter px. For any 6 € (0,1), with probability at least 1 — 6, when n >

¢8 (y +8)* (d-+log 1eE2VFIUNL)
A

D(x") — B(x")

, where c is an absolute constant, we have

- 12B%E||Vy f(X*, y* (X%); 2)||* log % N 12E|| Vi f(x*,y*;2)||? log 3

[xcizn [xTY
2
28By+
N 3 (% 1og% + 2By« log% + ux)
2pxn? '

cB? (ny +B)* (dtlog B1o82VZRntL) g8 |og 4
HIpZ D pxpd

Furthermore, if we let n > max { } and assume the func-

tion f(x,y;z) is non-negative and ®(x*) = O (%) we have
. . log” 3
(I)(X)_q)(x)_o ( _48,8310g%)
ni\n Hxp2

Remark 8. Theorem E] shows that when the population minimax risk F(x,y) satisfies x-side PL
condition, we can provide a sharper excess risk bound for primal function, which can be almost
O(1/n?). Note that the optimal population primal function ®(x*) = O (1/n) is a very common
assumption in many researches such as|Srebro et al.|(2010); |Zhang et al.|(2017); |Liu et al.| (2018);
Zhang & Zhou|(2019); |Lei & Ying|(2020), which is natural because F(x*,y*) is the minimal popu-
lation risk. Now we compare our results with recent related work (Li & Liu, 2021bl), which studied
the general machine learning settings for f(w) under PL condition. Their empirical risk mini-
mizer (ERM) excess risk bounds provided O (1 / n2) order rates. We analyze the excess risk with
primal functions which involve an additional error term. In consequence, our result for ESP just
approximate O (1 / nz) order rate.
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Algorithm 1 Two-timescale GDA for mini-

Algorithm 2 Two-timescale SGDA for minimax
max problem

problem
1: Input: (x1,y1) = (0,0), step sizes {nx, }+ >
0,{ny, }+ > 0 and dataset S = {z1,...,2,}
2: fort=1,...,T do
update X¢1 = X¢ — 1x, Vi f (Xt, y1t1 2, )
update yi 11 =yt + 1y, Vy f (X1, y15 24,)

1: Input: (x1,y1), step sizes x > 0,7y >
0 and dataset S = {z1,...,2z,}

2: fort=1,...,Tdo

3: update Xt4+1 = Xt — 'f]xvxFS(Xt,yt)

s

4:  update yi41 = yi + 0y Vy Fs (X, y¢)

5.2 GRADIENT DESCENT ASCENT

Gradient descent ascent (GDA) presented in Algorithm I]is one of the most popular algorithms and
has been widely used in minimax problems. In this subsection, we provide the generalization and
excess risk bounds of primal functions with the two-timescale GDA Algorithm which is harder to
analyze compared to GDMax and multistep GDA (Lin et al., [2020).

Theorem 6. Suppose Assumption and hold. Let {x;}+ be the sequence produced by Algorithm

I|with the step sizes chosen as nx = T and ny = % forany § € (0,1), with probability at
m

least 1 — 0, we have

T 16log, (V2Rin+1)
1 1 d + log =82V =it

n
t=1

Furthermore, when T =< O (\/’g), we have

T logn
1 d + log =8~
— Vox)|IP <o ——92— ).
T;:l [V (x:)[|” < ( — )

Remark 9. Theorem|6|reveals that we need to balance the optimization error and the generalization
error for GDA. According to the results, the iterative complexity of Algorithm[I| should be chosen as
T=0 (\/g), which achieves the optimal population optimization error of primal function.

In comparison to Theorem[| Theorem|[6|derives into population optimization error w.r.t SGD, which
is much more difficult. To establish population optimization error, we need to bound the empirical
optimization error, an area where no research has been conducted in NC-SC settings with high
probability. One possible approach is to construct the martingale difference sequence of step 'T' for
primal functions, yet this constitutes a separate topic warranting further exploration. Theorem []
aims to directly apply Theorem[l|to SGD. Comparing with Theorem[3| Theorem [6|only necessitates
smooth and Lipschitz conditions (Assumption[I|and [2) and doesn’t require PL conditions. In fact,
Theorem[/| constitutes a further extension of Theorem 3}

Next, we provide the excess risk of primal functions ®(xy) — ®(x*) for Algorithm (I} where

Xr = 7 Zle x¢. We need to know the empirical optimization error ||V®g(Xr)||. Unfortunately,
although the generalization bounds we proved are in NC-SC settings, we require the SC-SC as-
sumptions to derive the empirical optimization error bound of primal functions, to gain the high
probability bound. We relax this SC-SC assumption in Appendix [E] using existing optimization
error bound with expectation format.

Definition 5. A function g : X x Y — R is pix-strongly-convex-qiy-strongly-concave if g(-,y) is
x-strongly-convex for any y € Y and g(x,-) is pu,-strongly-concave for any x € X

Assumption 5 (Strongly-convex-strongly-concave minimax problem). Assume Assumption|[l|holds
and let pix > 0,y > 0. The function f(x,y;z) is ux-strongly-convex-p -strongly-concave in
y€E€Yforanyx € Xandz € Z.

Remark 10. Assumption 5| is commonly used in SC-SC problems (Zhang et al.| 2021} |Li & Liu,
2021a). We require this assumption to derive the empirical optimization error bound of primal
functions. The detailed proofs of the optimization error bound ||V ®g(X1)|| are given in Section
for GDA and in Section[D.3|for SGDA.
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Theorem 7. Suppose Assumptionand hold. Let {x}+ be the sequence produced by Algorithm

- 1 T , . o 1 1
and X1 = 7 ) _,_q X¢ with the step sizes chosen as 1y = (4078 and 1y = 3, forany é € (0,1),

B2 (y+B)> (d+log S1os2 V2Rint1 )
HIUE

with probability at least 1 — 5, when T' < n and n >
absolute constant, we have

E|Vyf(x*,y*;2)|Plog 3 = E|Vyf(Xr,y*(X1);2)|*log 5 log” 3
@(XT)_q)(x*):O( IV fioc v i)l log} | BNV Gor.y” (erym)P o, Lot )

, where c is an

B (jiy+B)2 (d+log BloE2 V2RInFL) 195838 150 4
HIHE T

Furthermore, Let T = n? and n > max{ } Assume

the function f(x,y;z) is non-negative and ®(x*) = O (%), we have

log? %

128433 log 4
n n_ﬁifts
Hx py

Remark 11. Theorem [/ shows that the excess risk for primal functions can be bound almost to
0] (1/n2) comparing with the optimal result O(1/n) given in|Li & Liu| (2021a) when n is large
enough. Note that we require the SC-SC assumption to derive the empirical optimization error. If
we give this bound in expectation, we can relax the SC-SC assumption with x-side PL-strongly-
concave assumption instead.

B(x7) — B(x*) = O

5.3 STOCHASTIC GRADIENT DESCENT ASCENT

We now analyze the excess risk bound of primal functions for stochastic gradient descent ascent
(SGDA). The algorithmic scheme that we study is two-timescale SGDA (1« # 1) with variable
stepsizes, presented in Algorithm [2] which is more nature in the real problems.

Theorem 8. Suppose Assumption [Z] and E] hold, let {x;}+ be the sequence produced by Algorithm
1 _ 1
e and 1y, = My(t+t0),f0r any

¢8” (y +)* (d +log H1eE2 VN
HIHZ

_ T . .
and X7 = % > i1 Xt with the step sizes chosen as 1y, =

§ € (0, 1), with probability at least 1 — 6, when T < n? and n >

where c is an absolute constant, we have

s

n n n?

81 V2Rqn+1
B2 (1uy+8)* (d+log g2 V2EInELy 19853 155 §
] b pxpl

Furthermore, let T < n* and n > max{ } Assume the

1

function f(x,y;z) is non-negative and ®(x*) = O (), we have

log”

12833 log &
n(nf &)

Pk

B(x7) — B(x*) = O

Remark 12. Theorem|8|reveals that under the SC-SC settings, the excess risk bound can be approx-
imate O(1/n?) comparing with the optimal result O(1/n) given in (Li & Liu, 2021d)). Similarly,
since the SC-SC assumption is required to derive the empirical optimization bound, we can relax the
assumptions when we only need expectation bounds instead of high probability bounds.

6 CONCLUSION

In this paper, we provide the improved generalization bounds for minimax problems with uniform
localized convergence. We firstly provide a sharper bound measured by the gradients of primal
functions with weaker assumptions. Then we provide dimension-independent results under PL con-
dition. Finally we extend our main theorems into various algorithms to reach the optimal excess
primal risk bounds. We notice that most optimization works focused on the gradient complexity
with expectation results. It would be interesting to give the optimization error of X7 or even Xp
with high probability under weaker conditions. Combining with our generalization work, we can
get a tighter excess primal risk bound with weaker conditions.
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A ADDITIONAL DEFINITIONS AND LEMMATA

Lemma 1 (Bernstein’s inequality (Dirksen, 2015)). Let X1, ..., X, be real-valued, independent,
mean-zero random variables and suppose that for some constants o, B > 0,

fZIE\XVC K 2 pi- 2 k=23,...

Then, V§ € (0, 1), with probability at least 1 — §

Z x| < 202 1og 5 B log 2 ' ©)
\/ n

Lemma 2 (A variant of the “uniform localized convergence” argument (Xu & Zeevi, 2020)). Let
P be a probability measure defined on a sample space Z and P,, be the corresponding empirical
probability measure. For a function class H = {hy : f € F} and functional T : F — [0, R],
assume there is a function ¥ (r; ) (possibly depending on the samples), which is non-decreasing
with respect to r and satisfies that V6 € (0,1), Vr € [0, R], with probability at least 1 — 0,

sup (P —Pp)hy <9(r;0).
FEFT(f)<r

Then, given any § € (0,1) and ro € (0, R], with probability at least 1 — 4, forall f € F,

(P - HDn)hf < (2T(f) V ro; Css) )

where C,., = 2log, 28 e

Definition 6 (Orlicz,, norm (Dirksen, 2015)). For every a € (0,400) we define the Orlicz, norm
of a random u:

1wl orticz, = Inf{K > 0 : Eexp((|u|/K)%) < 2}.
A random variable (or vector) X € R? is K-sub-Gaussian if YA € R?, we have
INT X [[orticz, = K [IA]2-
A random variable (or vector) X € R is K -sub-exponential if VA € R?, we have
INT X llorticzy = KAz

Definition 7 (Orlicz,, processes (Dirksen, 2015)). Let {X f} teF be asequence of random variables.
{X¢}ter is called an Orlicz,, process for a metric metr(-,-) on F if

| X — Xp, llonticzo, < metr(f1, f2), Vfi,f2 € F.

Typically, the Orliczo process is called “process with sub-Gaussian increments” and the Orliczy
process is called “process with sub-exponential increments”.

Definition 8 (Mixed sub-Gaussian-sub-exponential increments (Dirksen| [2015)). We say a pro-
cess (Xp)oco has mixed sub-Gaussian-sub-exponential increments with respect to the pair
(metry, metry) if for all 61,02 € ©,

ID’I“Ob(”AXg1 — X92H > \/a metr2(01,92) +u- metr1(91,92)) < 2@7“,Vu >0,

where “Prob” means probability.

Definition 9 (Talagrand’s ~y,-functional (Dirksen, 2015)). A sequence F' = (F,)n>0 of subsets of
F is called admissible if |Fo| = 1 and |F,| < 2% foralln > 1. Forany 0 < a < oo, the
Ya-functional of (F, metr) is defined by

Yo (F,d) = mf sup ZQ& metr(f, Frn),
f€.7:n —0

where the infimum is taken over all admissible sequences and we write metr(f,F,) =
infsecxz, metr(f,s).

14
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Lemma 3 (Bernstein’s inequality for sub-exponential random variables (Wainwright, 2019)). If
X1, ... X, are sub-exponential random variables, the Bernstein’s inequality in Lemmal|l| holds with
1 n
02 = EZHX'L-H%I‘HC‘Zl? B=
i=1
Lemma 4 (Vector Bernstein’s inequality (Pinelis| [1994; Smale & Zhou, [2007; Xu & Zeevil, 2020)).
Let {X,;}!" | be a sequence of i.i.d. random variables taking values in a real separable Hilbert
space. Assume that E[X;] = p, E[||X; — pll?] = 0%, V1 < i < n, we say that vector Bernstein’s
condition with parameter B holds if forall 1 < i < n,

||Xi||0rliczl~

ax
1<i<n

1
E[|X; - u|*] < gklo®B* 2, v2<k <n. (10)

If this condition holds, then for all 6 € (0, 1), with probability at least 1 — 0 we have

1 n
E;Xi*li

Definition 10 (Covering number (Wainwright, 2019)). Assume (M, metr) is a metric space and
F C M. Forany e > 0, a set F. is called an e-conver of F if for any f € F we have an element
g € F. such that metr(f,g) < e. We denote N(F, metr,€) the covering number as the cardinality
of the minimal e-cover of F:

N(F, metr, €) = min{|F.| : Fis an e-cover of F}.

Lemma 5 (Dudley’s integral bound for ~,, functional (Talagrand, [1996)). There exist a constant C,,
depending only on o such that

2 2
< 202 log(5) N Blogg'

(1)

n n

“+o0
Yo (F, metr) < C’a/ (log N (F, metr, €)= de
0

Lemma 6 (Generic chaining for a process with mixed tail increments in (Dirksen, 2015)).
If (X¢)ser has mixed sub-Gaussian-sub-exponential increments with respect to the pair
(metrq, metry), there are absolute constants ¢, C > 0 such that for V6 € (0,1), with probabil-
ity at least 1 — §

sup || Xy — Xy, || < C(v2(F, metry) + 41 (F, metry) )+
9O

1 1
c|1/log=+ sup [metra(f1, f2)] +log= sup [metri(f1,f2)]].
0 f1.f2€F 4 f1,f2€F

Lemma 7 (“Self-bounding” property for smooth function (Srebro et al.l |2010)). For a S-smooth
and non-negative function f : w — R, for all w € W:

V(W) < V48 f(w)

B SOME BASIC LEMMATA IN MINIMAX PROBLEMS

Lemma 8 (Smoothness for primal function (Nouiehed et al., 2019)). Suppose Assumption|l|holds,
2
then the function ®(x) and g (x) is § + %-smooth.

Lemma 9 (PL condition for primal function (Yang et al.| 2020)). For NC-SC setting, suppose As-
sumption 1| holds. Assume that the population risk F(x,y) satisfies Assumption d| with parameter
I, then function ®(x) satisfies the PL condition with iy, which means that for all x € X

B(x) — B(x7) < im(x)n?.

For SC-SC setting, suppose Assumption holds, then function ®(x) and ®g(x) satisfy the PL con-
dition with uy, which means that for all x € X

Bx) ~ (") < TV and B(x) ~ Bs(x) < 5 Vs ()
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Definition 11. For a given x, the empirical optimal point y*(x) and the population optimal point
v5(x) are given as follows,

y*(x) := argmax F(x,y) and y§5(x):=argmax Fs(x,y).

yey yey

Remark 13. According to the definition, we can easily derive the following equations that
y* = y'(x*) = argmaxyy, F(x*,y) if (x*,y") is the solution to and y* = yL(x*) =
argmaxycy, Fs(X*,y) if (X*,¥") is the solution to .
Lemma 10 (Concentration of y* (Zhang et al., 2022)). For y*(x) and y§(x) defined in Defini-
tion[I1} with Assumption[I] we have Vx € X,

ly* () —ys()[ < Mly IVy F(x,y7(x)) = Vy Fs(x, 5" (x))] -

Lemma 11. Suppose Assumption[Ijand[3|hold, For any x € X, With probability at least 1 — § we
have the following inequalities

v 60— ya0al < L \/2E[||Vyf(x,y*(X);Z)l|2] log?  By-log}

Iy n n

Proof of Lemmal([1} From Bernstein’s inequality for vectors (Lemma [)), applying Lemma [I0] For
any x € X, With probability at least 1 — J we have the following inequalities

ly* (%) — y5(0)] < ; IVy F(x, y*(x)) — Vy Fs(x, 7" ()]

1 Wﬁ[nvyﬂx?y*(x);z)n?] log3 By log 3

Ly n n

Notice that Bernstein inequality for vectors (Lemma [4)) under Assumption [3| can be used here be-
cause for all x € X, y*(z) and Fg(-) are independent.

Next, we need to point out that we only need pointwise convergence for any fixed x instead of
unifrom convergence on X. We take the standard minimization problem as an example. For pop-
ulation risk R(0) = E.{(6, z), empirical risk r(6) = 1 37" | £(6, z;) and fixed 6, we can directly
apply concentration inequality. But we can’t apply them to Oggr) as it is a function of the dataset.
We need to establish the sup that R(6grm) — 7(0rrM) < Supy,,, [R(Osup) — 7(Osup)], where
Osup = argming R(#) — r(0). Yet, as the dataset changes, the parameters 6, change accordingly.
Thus, we require uniform convergence for function R — r. In Lemma [TT] of our proof, for any x,
when the dataset changes, x and y*(x) remain unchanged, and V Fs(x, y*(x)) are the only altered
random variables/vectors. Consequently, we can directly apply the Bernstein inequality, thus we
only need pointwise convergence for the function y*(x) — y§(z) w.r.t. =, which suffices.

O

Lemma 12 (Zhang et al.| (2021)). For y™* and y§ defined in Deﬁnition with Assumption then
fOFVXl,Xg S X,

" g
y"(x1) =y (x2)l| < — [Ix1 — x2f|.
Hy
Lemma 13. Suppose a function f : X x Y x Z — R is S-smooth in (x,y) and the func-
tion f is p-strongly concave in'y € )Y for any x € X and z € Z. Then we have

T (Voo f (x1,5" (%1)52) = Vo f (%2, ™ (x2)57)) Buy+8)
[l —x2| uy In2

unit vector u € B(0,1) and x1,x2 € X,

isa -sub-exponential random vector. That is for any

[T (Vi f (x1,y"(x1); 2) = Vi f (X2, (x2);2))|

Buy+8

) <2.
py In2 ||X1 - X2||

E < exp
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Proof of LemmalI3| According to Definition 3] for any sample z € Z and x;,x3 € X, we have

IV f(x1,y"(%1);2) = Vi f (x2, ¥ (x2); 2|

<Bx1 = xa|| + Blly* (x1) — ¥y (x2)]|
,82
<Bllx1 = x2|| + —|]x1 — x2]

y
_ B (Ny + )
y
where the first inequality uses the smoothness and the second inequality applies Lemma

1 = 2,

Then, for any unit vector u € B(0, 1), we have
[t (Ve f (x1,y"(x1); 2) = Vi f (X2, (x2); 2))|
<[V f (1, ¥ (x1)52) — Vacf (52,3 (x2); 2)]
<5(Ny +B)

[[x1 — xal|,
Yy

which implies

[uT (Vi f (x1, ¥ (x1);2) — Vi f (x2,y" (x2); 2))|

<1.
ﬁ(u:;rﬂ) %1 — x2|
Then we get
E{ ox |UT(fo(X1,y*(X1)%Z) - fo(xg,y*(XQ);z))| <9
p ﬁ(#y+ﬁ)||x — 3| -
fy In2 1 2
The proof is complete. O

Lemma 14. Suppose Assumption[I| holds, we have the following inequality that for all x € X and
forany 6 € (0, 1), with probability at lest 1 — 6,

[(VxF(x, 5" (%)) = Vi Fs(x,y" (%)) = (VxF(X",57) = Vi Fs (x", y7) )|

1 d 1 4log2(\/§R1n+1) d 1 4log2(\/§R1n+1)
<Cﬂ(.uy+ﬂ) Inax{||xx*||,}>< \/ + Og 5 + + Og )
n n n

y

where C'is an absolute constant.

Proof of Lemma[l4 We define V = {v € R? : [|v|| < max{Ry,}}. Forall (x,v) € X x V,

let gxv) (2) = (Vaf(X,¥"(x);2) = Vs f(x*,¥y*52)) " v. Then for any (x1,v1) and (x3,vs) €
X x V, we define the following norm on the product space X x V

1
1Ge1, vi) = (%2, v2) ey = (k1 = x2]|* + [[va — va[?)?

Then we define a ball on the product space X x V that B(y/7) = {(x,v) € X x V : ||x — x*|* +
| v||? < r}. Given any (x1,v1) and (X2, Vva) € B(y/7), we have the following decomposition

Iix1,v1)(Z) = G(xz,v2) (2)
= (Vaf (x1,¥"(x1);2) — Vi f(x",y"12)) " V1
— (Vaef (X2, 5" (x2); 2) = Vo [ (X", ¥":2)) " V2
= (Vaf(x1,¥"(x1); 2) — Vx f(X*’y*'Z)) (Vvi— v2)
+ (Vxf(x1,y"(x1)12) — Vi f(x",¥"12)) " V2
= (Vxf(x2, y"(x2); )— of (X" y"52)) " v
= (Vaf (x1, 7" (x1);2) — Vo f(x",y":2)) " (vi — v2)
+ (VS (x1, 5" (%1):2) — Vief (32, 5" (x2);2)) " v

H

17
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Since (x1,v1) and (x2,v2) € B(y/r), we have

%1 — x*[[[lvi — va|l < Vrllvi — va|| < Vr|[(x1,v1) — (X2, Va) [l xxv- (12)

Next, from Assumption m and Lemma , we know that Y=y (x1)i2)=Vuef (x2.y" (x2)i2) g 5

Bluy +5) el
My +
fy In2

-sub-exponential random vector for all x;,xs € X, which means that

(Vaf (x1,5"(x1);:2) — Va f(x*, y* (x7);2)) T (vi — v2)
Eqexp By 1)
fy In2

<2. (13)

%1 = x*[[[[vi = val|

We combine (I2) and (I3), according to Definition [6] we can easily deduce that
(Vaf (x1,y*(x1);2) — Vi f(x*,y*2)) " (Vi — va) is %H(m,w) — (%2, va) || x x-sub-
exponential. Similarly, we can derive that

[[x1 — xa|[[[vall < Vrllx1 — %ol < Vrll(x1,v1) — (X2, Va)|laxv-

Also, there holds that

E{ exp (Vxf(x1,y*(x1);2) — Vi f(x2,y*(x2);2)) T (v2) <9
POt D) |xy — o va -

Thus, we have that (V. f(x1,y*(x1); 2)— Vx f (X2, y*(x2); 2)) T (v2) is also %H (x1,v1)—

(x2, v2)|| x xy-sub-exponential. Now for any (x1, vy) and (x2,v2) € B(y/r), we know

9(x1,v1) (Z) — 9(x2,v2) (Z)

E < exp
D) | (31, v1) — (%2, v2) [l xv
1 Vi f(x1,¥*(x1);2) — Vi f (x*,y%:2)) T (vy — v
<E{ e ( f<ﬁ1¢g(#<+;>)> f(x*,y":2)) T (vi — va) 1
e (%1, v1) = (X2, va) ey
1 (Vs (%1, 5" (x1);2) — Vi f (X2, " (x2);2)) T (v2)
TE g oxp ENGIED) =2

iyt a1, Vi) = (2, vl xw

where the first inequality follows from Jensen’s inequality. implies that g(x, v,)(2) = G(x,v»)(2)

isa W |(x1,Vv1) — (X2, va)]|| x xv-sub-exponential random variable, for which we have
Yy

2Bﬁ(ﬂy + 5)

1y In 2 l|(x1,v1) = (%2, V)l xv- (15)
Yy

Hg(x1,V1)(Z) - g(xz,Vz)(Z)HOTHCh <

From Bernstein inequality for sub-exponential variables (Lemma [3)), for any fixed v < 0 and
(x1.v1), (x2,v2) € X x V, we have

Py <|<1P>— Bl 00@) ~ G @)= D s, 1) (vl 2

fy In2

2uBV/r(py + B)

* Njly In 2

[(x1,v1) = (x2,v2) ||X><V) <2
(16)
According to Deﬁnition we know that (P—P),)g(x,v)(z) is a mixed sub-Gaussian-sub-exponential

increments w.r.t. the metrics (%H Nlaxv, %H || axy) from .

18
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Then from the generic chaining for a process with mixed tail increments in Lemma 6} we have the
following inequality that for all § € (0, 1), with probability at least 1 — §

sup |(P = Pr)g(x,v)(2)]

llx1—x* |2+ v]|><r

SC(VQ (B(ﬁ% 2B 0. m> o (BO/m, A s )

" rB(uy + B) log% + rB(py + B) log 3 5
fy In2 n fy In2 n
Next we use the Dudley’s integral (Lemma[5)) to bound the ~; and 7, functional. So there exists an
absolute constant C' such that for any § € (0, 1), with probability at least 1 — &

rCB(uy + 5 d+logt d+logi
sup |(P = Pp)g(x,v)(z)] < (“ly 5 ) \/ LR sl an
llx1—x*[I2+]Iv][2<r My 11 n n

Then, the next step is to apply Lemma [2]to (17). We denote T'(f) = [|x — x*||? + ||v||%, ¥(r; ) =
rCB(py+8) ( /d-HZg% + d-Hog%). Since HX _ X*HQ + ”VH2 < RQ + R2 + %7 we set R2 =

fy In2

2R? + 2 and rg = 5. According to Lemma [2[ we have the following inequality that for any
0 € (0, ) with probablhty atleast 1 — 0, forall x € X and v € V),

(]P - Pn)g(x,v)( )
=(P = Po)[(Vx/(x,¥"(x);2) — Vxf(x*,y";2)) "]

2 )
<y (max{llx—x 17+, } 2log<Rn2))

C 9 d+1lo 210g2(Rn ) d+10 210g2(Rn )
SMHl&X{||X—X*||2+|VH2,nQ} « \/ g g

| n n

(18)

Finally, we choose v = max {|x = "|l, 4 } qp=pv=/ c y0omm) = Furye ] - 1 i clear that

|v]| = max{|x — x*||, 1} < max{R;, 1}, which belongs to the space V. Plugging this v into
(18), we have the following inequality that for any ¢ € (0, 1), with probability at least 1 — 4, for all
xe X,

[P = Pn) (Vi f (%, 57 ()5 2) — Va f (x7, y752))|

) d + log 2oa(fn?) Ll log, (Rn?)
<Wmax{||x_x*||,}x \/+0g s

fy In2 n n
C 1 d+1 4log,(V2Rin+1) d+1 4log, (V2Rin+1)
_CBluy +5) max{”x—x*”, } x \/ 08 5 LIreeT s
fly In2 n n n
19)

Finally we have
(V< E(%,y" (%)) = VxFs(x,¥"(x))) = (VxF (X", ¥7) = VxFs (3", y7))|
=[P =Ppn)(Vacf (x, 57 (x); 2) = Vi f (X7, y " (x7); 2)) |

1 d1 4log,(V2Rin+1) d a1 4log,(v/2Rin+1)
<CB(#Y+/B)HI3,X{HX—X*H,}X \/ + Og 5 + + Og 4

- n n

y
where C is an absolute constant.

The proof is complete. ]
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Lemma 15. Suppose Assumption|l|holds, we have the following inequality that for all x € X and
Sorany § € (0,1), with probability at lest 1 — 6,

2]E||fo(x*,y*(x*);z)||21og% N By+ log%

[VxF(x,y7(x)) = Ve Fs(x, 5" (%)) || < \/

n n
+ OB +B) e L, L ¢d+bg&%”?“””+d+k%“&“?%””
y ‘n n n

Proof of LemmalI3] According to Lemma we have the following inequality that for any § €
(0, 1), with probability at least 1 — §

[VxF (%, 57 (%) = Vi Fs (%, y" (%) < [V F(x",y") = Vs (X", y7) |

+ 705('%' +5) maX{HX —x"| 1} X \/d *los 810%2(\/?Rm+1) + d+ log 810%2(\/?%1”“)
Hy n

n n

(20)
where this inequality applies norm triangle inequality. Then we need to bound ||V, F(x*,y*) —
ViFs(x*,y")].

According to Lemma with probability at least 1 — %

2E[||V« * yr 2]1 4 By 1 4
VxF(X*7y*)_vxFS(X*7y*)”S\/ [V (e, y752) [P log § nogd'

- 2D
Combining and (21)), for any & € (0, 1), with probability at least 1 — &, we have
) . 2E[||Vxf(x*,y*;2)||*]log 5 Bx-log 3
wwmy®>vwmw@wg¢ : 5 1 D 083
1 d1 8log, (V2Rin+1) d+1 8log, (V2Rin+1)
+Cﬁ(ﬂy+ﬁ) max{||xx*||,}>< \/ + Og 5 + + Og 1)
Ly n n n
The proof is complete. ]

20



Under review as a conference paper at ICLR 2024

C PROOFS IN SECTION [4]

Proof of Theorem([l] Firstly, for all x € X, we divide || V®(x) — V®g(x)|| into two terms
IV®(x) — Ves(x)||

= ||EL Vs f (%, ¥ (%) —vaxfxysU i)
= |E, Vi f(x,y*(x ——vafxy z;)
+%Zv i, y*(x ——vaf )
=1 (22)
< B, Vi f(x, " (x f—zvxfxy zi)
vafx y _*vaf )
E. Vs f(x,5*( - fZfo (x,y"(x);20) || + Blly*(x) — ys(x)|

=[IVxF(x,y* (%) =V Fs(X Yy G+ Bly* () —ys&)I,

where the first inequality satisfies from the triangle inequality, the second inequality holds by the
smoothness of f. Next we need to upper bound these two terms respectively.

Firstly we need to upper bound ||V« F(x,y*(x)) — VxFs(x,y*(x))||. According to Lemma [15]
for all x € X and for any § € (0, 1), with probability at least 1 — é , we have

2E[||Vx f(x*,y*;:2)||?] log 3 L B log 8

[V F(x,y"(x)) = VxFs(x,y" (x))[| < \/

n n
C 1 d+lo 16 log, (vV2R1n+1) d+lo 16 log, (VZRin+1)
+ ﬂ(ﬂy"’ﬂ) maX{HX—X*H,}X \/ g B 4 g 5
Iy n n n

(23)

Next we will bound |ly*(x) — y§(x)||. According to Lemma with probability at least 1 — 3 we
have the following inequalities

ly*(x) —ys(x)|| < — (24)

1 WEHIVyf(x,y*(x);Z)IP] log 4 By log}
Hy

n n

Finally, we plug (23) and (24) into (22), we obtain the result that for any § € (0, 1), with probability
atleast 1 — 4,

8 \/2E[||Vyf(x7y*(><);2)l2] log | By log 4

IVO®(x) — VOg(x)| < ” -

y

2E[||Vx LY ?]log § By~ 1 5
+\/ v ysmllons | Bl | O =) 1y, 11

n n Hy
\/d + log 16log2(\{sﬁR1n+1) . d+ log 16log2(\{S§R1n+1)
n n
The proof is complete. ]
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Proof of Theorem[5] Firstly, for all x € X, we divide | V®(x) — V®g(x)|| into two terms which is
the same as

[V&(x) = VOs(x)[| < [[VxF(x,¥"(x)) = VaFs(x,y" () + Blly" (%) —ys(x)[l. (25

Firstly, we start to bound ||V« F'(x, y*(x)) — Vx Fs(x,y* (x))|. According to Lemmal[l5] applying
norm triangle inequality, for any § € (0, 1), with probability at least 1 — g, we have

2B[|Vxf(x*,y*;2)|*log 5 Bx-log 5

V< E(x,y" ()| = [VxFs (%, y" (%)l < \/ - -

1 d-+1 16 log, (V2Rin+1) d+1 16 log, (V2Rin+1)
+Cﬂ(ﬂy+5) max{”xx*”,}x \/ + Og 5 + + Og )
v n n n

(26)

Since the population risk F'(x,y) satisfies Assumption E] with parameter pix, according to Lemma
@ d(x) satisfies the PL condition with py, there holds the error bound property (refer to Theorem 2
in (Karimi et al., 2016))

px| P = X7 < [[R(X)[| = [V (%, y" (x))]]- @7

Thus, combing (26) and we have
pclx = X7 < [ Vo F (3, ™ (%)

d+1 16 log, (vV2R1n+1) d+1 16 log, (vV2R1n+1)
<Oﬁ(uy+6)max{ 1}X \/ L e S D" R—

[lx =", ~
n n n

y

2E[| VxS (x*, 5% 2)[*]l0g 5 Bx-log§
n n

+ [V Fs (%, y* (%)l + \/
(28)

On the other hand, according to Lemma@with Assumption the function ®(x) is 8 + fji-smooth
Y

inx € X. According to (Nesterov, [2003), ®(x) holds the following property
1
—— IVeE)|I* < &(x) - (x").
28+ £)
We know that ®(x) satisfies the PL condition with x. Thus, we have
1

Z)

oo 1 )
2+ 5 VR0l < 260) — 26 < VRGO

which means that ﬂ(‘;’;‘:{ﬂ) < 1. Then let ¢ = max{16C?, 1}, when

Byt B)%(d 4 log P

My M

)

we have

CBly + ) \/d+1ogmg2<{w+d+1ogww

< 9
Ly n n 2

: Hx by
with the fact that By 1B <1.

Next, plugging into (28)), we obtain that

2E[|| Vo f(x*,y*:2)[?]log 3 By-logd
+ 4+ =
n n 2n

* 2 *
[x —x7 < ™ [VxFs(x,y*(x))] +\/

X
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Then plugging (B0) into (26), we derive that for all x € X, when n >
¢8” 1y +)? (d+log L2 YRMNEL)

s , with probability at least 1 — Ly
HZpZ

Vi F(x,y"(x)) = Vi Fs (%, " (x)) || < [V Fs(x, 57 (x))]]

- 8 8 30
+2\/2E[||fo(x i)} | 2B log}  p GO

n n n

Next, we need to bound ||Vx Fs(x, y*(x))|. We make the following decomposition

IV Fs (%, y"(x))]
=[[VxFs(x,y"(x)) = VxFs (%, y5(%)) + Vi Fis (%, y5(%))| 31)
SV Fs(x,y" (%)) = Ve Fs (%, ys (X)) + [V Fs (x, y5(x)) |
<Bly*(x) = ys(®) + [Ves)],

where the first inequality holds with the norm triangle inequality and the second inequality holds
with the fact that f is S-smooth.

According to Lemma for any x € X, With probability at least 1 — % we have the following
inequalities

(32)

* (<) 4 4
Iy () = ¥5(9l < - ¢ e

Iy n n

Combing , , and (32)), we have that for all x € X, let ¢ = max{16C?, 1}, when
08”1y +)* (d+log R YNEL)

n > Ty , with probability at least 1 — §
yHx
2E[||Vy f(x*, y*(x*); 2)||2] log &
[V (x) = Vs ()] < [ V50| +2\/ Veeroct v o)) o8
L 2Blogd e 28 \/21E[|Vyf(x,y*(X);Z)||2] log§ By log }
n no py n n
The proof is complete. O

Proof of Remark[5] Here we briefly prove the results given in Remark Since ®(x) satisfies the
PL condition with p«, we have we have

_ Ve

B(x) - B(x") < (33)

2%
Therefore, we need to bound ||[V®(x)||?. According to Theorem [3} for any § € (0, 1), when n >

cB2 (y +B)* (d+log HeE2 V2 nt1)
K3

, with probability at least 1 — 4,

2E(|| Vi f(x*, y*;2)[|] log §
n

Vo) < 2[Vesx)| + 2\/

(34)
8 * . 4 4
L 2B logd g 20 \/2E[||Vyf(x7y ()| log§ | Bylog )

n n Ly n n
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Then, substituting (34) into (33), we have

d(x) — (x")
_Ivewl?
e
(x): 7 1 og 4
L {2vq>s<x>||+ 2 \/m[nvyf(x,yn( il d | By log

2
o \/QE[IIfo(X*,y*;Z)IIQ] log§ | 2By log} u}
n n n

BIVes)|? L 166%E[||Vy f(x, ¥ (x); 2)|]*] log 5
- Iix [xpiam

28B 2
+ 16E[‘|fo(x*’y*;z)”2] logg 4 ’ (le log% + 2By~ log% + MX)

Hx T fixn?

)

where the second inequality holds with Cauchy—Bunyakovsky—Schwarz inequality.

The proof is complete. O

D APPLICATION

D.1 EMPIRICAL SADDLE POINT

Proof of Theorem] Plugging x* into Theorem([l] for any § € (0, 1), with probability at least 1 — 4,
we have

2E[||Vy f(x*, y*(%*);2)[|2] log 2  By-log%
o - [vBs)] < 2 \/ IV, £y (5)i2) |2 log | By-log 4
Iy n n

2E[||Vx * yr 2] loc & By 1 8 1
+\/ [” f(X y Z)H ] Og(S + Og5 +Cﬂ(ﬂy+ﬁ) max{”xx*”,}
n n Ly n

) \/d+logwh>g2<{mvw+1>+d+logwwg2<{mm

n n

Since x* is the solution of (2), there holds that || V®g(x*)|| = 0. Thus, we can derive that

n n

v < 2 \/2E[||vyf<f<*,y*<>z*>;z>|21log§ | By log

y

. \/ 2BV oy o) Pon , Belonf, Coly +) (1)

n n iy
\/d+log161°g2(*§23””r1) dHng
x +
n n
-0 %
n
The proof is complete. 0
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Proof of Theorem ] According to Lemma[9] ®(x) satisfies the PL condition with 15, we have

_ VeGP

o) - o) < D5

(33)
Therefore, we need to bound ||V®(x*)||?. Plugging x* into Theorem [3| for any € (0, 1), when

> B (py +8)° (d+log Bloss vaRinzl \/lenJrl)
n = 3,2
HIpZ

, with probability at least 1 — §

2E[||Vx f(x*,y*;2)||2] log &

Ve <2[Ves (x| + 2\/

n
8 o . 4 4 (36)
N 2By~ log § N 26 \/2E[||Vyf(x*,y*(x*);z)2] log 5 N By log 5 -
n no iy n n
Since VP®g(x*) = Vi Fs(x*,5*) = 0, we have ||[V®g(x*)|| = [|[VxFs(x*,3%)]| = 0. By
plugging (36) into (33)), we have
P(x") — ¢(x7)
_IveGe)?
=
1 [o8 [ [EIVysGe v sy mFlon | By logd
T 2ux | py n n

2
2E[||V * yr 2] log & 2By~ 1 8 «
+2¢ IVxf Gy )| log s | 2Balo} | pux
n n n

_L2B%E(|[Vy f (X", y* (%7); 2)|*]log 5 L 2BV S 7, 3 z)|*|log §

[x 13T PxT
2
28By~
. 3 (ﬁuiyy log% + 2By+ 1og§ + Mx)
2152 ’

where the second inequality holds with Cauchy—Bunyakovsky—Schwarz inequality.

Next, if we further assume ®(x*) = O (), according to Lemmal[7} we have E[| V. f (x*, y*; 2)||* <
APE[f(x*,y*;2)] and E[|Vy f(X*, y*(X*); 2)[|* < 4BE[f (X", y*(X"); 2)]. Then we have

- 483%E[f (%, y* (X*); z)] log 3 N 48BE[f(x*,y*;z)]log &

B(x*) — B(x")

P g m fixn
3 (2’3%; log 4 +2B,-log & + ux>2
+ 2502
28By« 4 3 2
_ 85°0(x)log§  480(x")log§ 3 (Ty’ log 5 + 2Bx- log 5 + Nx)
[ 2 n LT 2pxn? ’

which implies that

(1 B 4833 log%
NXIQ%TL

) @) - 2x)

28 B+ 4 8 2
_ 480 (x") log & N 483%®(x*) log 4 N 3 <Tyy log 5 + 2By log 5 + ux) |
B iy fixc 1y T 241
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.32 2(dalog Blo82 VZRIn41y  40pg3 1, 4
WhenanaX{c’@ (ny +8)”(d+log 3 ), p”log 3 , we have

uZu2 M2
A* ) P(x*)log § log? 3
(I)(X ) _(I)(X )=0 _ 48B3log § T ( _ 486310g%)
P W2 n\n P 2
The proof is complete. O

D.2 GRADIENT DESCENT ASCENT

Firstly, we introduce the optimization error bound for GDA given in (Lin et al.,[2020).

Lemma 16 iOptimization error bound for NC-SC minimax problems (Lin et al., 2020)). under
1

Assumption |I} and letting the step sizes be chosen as nx = m and 1, = é, then the
m
optimization error bound of Algorithmlcan be bounded by

)

—Z\\V@s x)||? < 1285 A‘I’ | 5Dy
pryT

where Ag = Pg(x0) — miny <I>s( ).
Proof of Theorem 6] Firstly, we have

1 T
2 Ve <
t=1

T
va(p x;) — Vy®Ps(x,)||? + Z V@ s (x¢)]|?

'ﬂ \

2
Jmax V() — chbs(Xt)H2+TZHVX‘I’S(XQHQ @7

t=1

IA
Nl
MH 1

~
I
-

256(33As  1082Dy
max Vo(x;) — Vi ®s(x,)|* + ,
e, [0~ Vst + et + B

IA
Nl
MH

Thus, with probability at leas 1 — 4, we have

;t_zlnvwxmz <o(7)+ ( masx [Wmax{nxt—x*n,;}

Ky

(38)
(\/dﬂoglﬁlogz({fmw dHnglogg({mnH))
x +

n n

2)
Next, we need to bound ||x; —x*||. Since we assume that x; = 0, and x;41 = X; —1x V< Fs(X¢, ¥1t),
we have X1 = —1)x 2221 VxFs(x¢,y:). then we have

where the inequality holds according to Theorem

Ixet1 — x| < [|xeqa ]l + [|x"]|

t
* (39)
< [ S TP,y | + 17 = O (e t).
k=1
Then plugging (39) into (38)), with probability at least 1 — §
og, (V2R n+1)
1 1 d + log 1010galv2luntl)
= ) 2<0|( = J T
T;nv (x| O(T)+O< .
Let T =< O (/%) we can derive that
T 1 -1 logn
1 d2 +d 2 log &~
— Vo(x)||> <O - 9 .
P> Ivett <o (T
The proof is complete. ]
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Proof of Theorem[7} According to Lemma|9} ®(x) satisfies the PL assumption with parameter /i,
we have

|vee0))>

Bx) - Bx) < 5 “0)
To bound ®(X7) — ®(x*), we firstly need to bound the term ||V ®(Xr)||?. There holds that
IVe(&r)|* < 2|VO(Rr) — VOs(%1)[* + 2| Vs (X7)|*. (41)

From Theorem 3] under Assumption[3|and[5] plugging X7 into Theorem[3] for any & € (0, 1), when

0B iy +B)° (d-+log HeE2YUNEL)
HIHE

n > , with probability at least 1 — §

2E[]| Vi f (x*, y* (x*); 2) ||*] log §
n

IV&(x7) = VOs(xXr)| < [[VPs(x7)[ + 2\/

(42)

L 2Bx log § L 28 \/2E[|Vyf(XT7y*(XT)§Z)2] log § L By log §
n no py n n

Next, we need to bound the optimization error ||V®g(x7)||. According to Lemma[9] ® 5 (x) satisfies
the PL assumption with parameter /i, then using Lemma[T6| we have

6453 Ao 563Dy
P ) < .
Z S Xt TZHV S || x,U/i,T +2MxMyT

From the convexity of Fs(-,y), we get

1 ZT: o . 64B%As  58°Dy

bg(x7) — — Pg(x .
(xr) o) < S

According to (Nesterov, 2003)) and Lemma there holds the following property for 5+ 5—2 function
dg(x), we have

_
ﬁQ
2(8+2)
Plugging #3) into (@2), according to Cauchy—Bunyakovsky—Schwarz inequality, we can derive that

326°E[||Vy f (X7, y" (%7); 2)|*] log §
Hyn

6483A¢ 583Dy

Vs (xr)|? < Ps(xr) — Ps(x*) < :
) ( tcpiz T 2puxcpiy T

(43)

IVo(xr) - Ves(xo)lP <0 (7 ) +

2BB, 4 5 2 44)
BV s, ys) Plog § 4 (P lom d + 2B log § + o)
+ + 2 .
" n
Then substituting @4), @3) into (41), we derive that
_ 1 64[32E \V4 f X7, y*(Xr);2 2 logé
IVo(xr)|? <O (T) [IVyf(x e y*(%r);2)|"]log 5
" 2 45)
®By Jog 4 + 2B, log 8
+ G4R[| Vi f (x*, ¥ 2)[|*] log § + 8( = log § + 2DBx- log 5 +Mx)

n n?

Finally, we plug (45) into (40) and choose T" =< O (n), with probability at least 1 — &

B(xr) — B(x*) = O<1E[fo(X*,y*;Z)ll2] log 3  EllVy/(xr,y"(xr);z)|*]log 5 , log” 3

n n n
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Next, if we further assume ®(x*) = O(L), According to Lemma [1| we
have E[Vif(x*,y*;2)|*> < 4BE[f(x",y*z)] and E[Vyf(xr,y*(x7r);2)[* <
40E[f (X7, y*(X7); 2)]. Plugging into (40), we have
P(x7) — B(x")
Vo)
= o
1\ 1288E[f(%*,y*(%*);2)]log 2  128BE[f(x*,y*;2)] log &
§0(>+ BE[f( yz( Jiz)llogs | 1280E[f(x",y";z)]log 5
Hxc iy HxT
2
4 (zﬁﬁy* log 3 + 2By~ log 3 + ux)
+ 2
[ixT
38 (% 4 s 4251004 4 2B, log & + ’
1 12833®(%*)log 2 1283®(x*)log § iy 1085+ 2Dx-log 5+ fix
=0 (=) + - + + . :
T Poxc f1y 10 Ty Pt
which implies that
1283° log % - .
(1- 25 ) (0(xr) - 2(x)
fixfi2n
* 8 3 * 4 4 QﬁBy*IO é—|—2B*10 §—|— ?
1 12880 (x*)log 5 1283°®(x*)log 5 iy 0835 x* 108 § + fx
=0( )+ + - + . :
T HxT Hx i HxT
8logy VZRin+1 : X
When n > max { cﬂg(”y+ﬂ)2(d+12°g2 —— ), 12867 lfjg’% }, and T = n? we have
HZpZ Hx i
_ . P(x*)log log? 3
P(x7) = 2(x") = O 1283 log + ( 12833 log%)
n————s- n\n————s*-
Hx 2 [Ty
The proof is complete. O

D.3 STOCHASTIC GRADIENT DESCENT ASCENT

In this subsection, we present empirical optimization error bounds of primal functions for SGDA,
which are motivated by (Lei et al.| 20215 Li & Liu,[2021a)). The proofs are standard in the literature
(Nedi¢ & Ozdaglar, 2009; Nemirovski et al., 2009) and we give the optimization error bounds with
high probability. Firstly, we introduce two concentration inequalities for martingales.

Lemma 17 ((Boucheron et al.l2013)). Let z1, ..., 2, be a sequence of random variables such that
z,, may depend the previous variables z1,...,zx—1 forall k = 1,... ,n. Consider a sequence of
functionals & (z1,...,2k),k = 1,...,n. Assume |&, — E,, [€x]| < by, for each k. Let 6 € (0,1).
With probability at least 1 — §

n n

S-S E. 4] < (2;bﬁlog;> .

k=1 k=1

Lemma 18 ((Tarres & Yaol [2014)). Let {¢x}ren be a martingale difference sequence in RY. Sup-

pose that almost surely ||&;|| < D and 22:1 E[|&k)1%(1s - - -, Ek—1] < 0F. Then, forany § € (0, 1),
the following inequality holds with probability at least 1 — §

4 D 2
ka §2<+Ut) log —.
— 3 )

The following lemma shows the optimization error bounds of primal function for SGDA.

max
1<j<t
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Lemma 19. Suppose Assumption |5| and 2| hold and let the stepsizes be chosen as 1y, = m

and 1y, = T , for any 6 € (0,1), with probability at least 1 — 6, then the optimization error
of Algorlthmi 2] can be bounded by

_ . to(pxDx + tiy D L2log(eT 1 1
Dg(xp) — Dg(x*) < oy QTMy Y)-i- (;gT(e )<M+/~L>
X Yy

9L(/D D) (2T log &) *

(F;@(z)) 2L\f>10g5+ (x/?h/?)( Oga)'

Proof of Lemma This proof mainly follows from (Lei et al.|[2021}; |[Li & Liu, [2021a)). Firstly, we
have
i1 = x[1? = [|xe — 11, Ve f (X0, ¥5 24,) — x|
=[x — x|1* + 02, [V f (%6, 65 26, [|” + 20, (X — X4, Ve f (X1, 43 23,))
< xe = x| + 1%, L2 + 20, (x = %, Vief (X2, 43 2,) — ViFs(x2,50))
+ 215, (X — X4, Vi Fis (X4, Y1)

where the first inequality holds because of Assumption [2| According to the strong convexity of
Fs(-,y¢), we have

2, (Fs (X, yt) — Fs(x,¥1)) < (1= mx, i) [Ixe = x|1* = [ %041 — x| + n3, L?
+2nxt <X — X¢, fo(xhyt; Zit) - VXFS(Xt7yt)>‘

Let 1jx, = =)+ We further get
L (Fs(xiye) - Fs(xo1)) < (1 : ) I 1”1 [
() Xt - X, > - X; — X||° — ||x - x
L (t + to) 51Xt ¥t S\ i t+to t 41

L 2 2
" <.UX(t + to)) * s (t+ o) (x = x4, Ve f (%4, Y4320, ) = VcFis (X1, ¥1))-

Multiplying both sides by ¢ + ¢y, we have

2
= (Fs(x4,y) = Fs(x,y1)) < (t+1to — 1) Jx¢ — x[|* = (¢ + to) [xe1 — x|

X

L? 2
YR o - 7vx s Yty Ziy ) — VxF 5 .
Jrui(t—&—to) + e (x —x f(Xe,ye:24,) s(X¢,¥1))

Since x; = 0 and Zthl t~! < log (eT'), by taking a summation of the above inequality from ¢ = 1
to 1", we have

T

% L?1 T
Z(Fs(xm}’t) — Fs(x,y:)) < %tODX + ;)i(e)

~+

[~ "
)~

+ <X» fo(xt,Yﬁ Zz‘t) - VxFS(Xt7Yt)> + <Xt7 VxFS(Xth) - vxf(xtvyt; Zit)>~

t=1

\*
Il
_

Since y5(x) = argmax,cy, Fs(x,y), for any x € X, we obtain that F5(x,y:) < Fs(x,y5(x)).
Then we have
L?log (eT)

T
D_(Fs(xt,v0) = Fs(x,y5(x))) < FotoD + =5
t=1 x

[M]=

T
+ Z X, V[ (Xt,¥t:2i,) — VxFs(Xt, 1)) + (xt, VxFs(xt,yt) = Vi f (X, 45 24,))-
t=1

t=1
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Since this inequality holds for any x, we get

T

. . x L?log (eT
S (Fs(iry) — inf, Py, y5(0) < 2t + L1
pary x€X 2 2pix
T T
+ Z Su}:\){ X, fo(Xt,Yt, Zzt) VxFS(Xt7yt)> + Z<Xt7 VXFS(Xt7yt> - vxf(xhyt; zit)>7
t=17¢ t=1

which implies that

T

S x L?1og (eT

E (Fs(x¢,y¢) — Ps(x7)) < “’—tODX + L7 log (eT)

t=1 2 qu
d T

+ E sug(x,vxf(xuyze;zn) — VxFs(x¢,y1)) + E (x¢, VaFs (x4, ¥1) — Vo f (X¢, V5 24,)).-
t=1%¢ pot

By Schwarz’s inequality, we have

T

Z(FS(XtaYt) —®g5(x%)) < %tODX +
t=1

L?log (eT)
21
T

Z xf Xtaytazlf) \Y% FS(XuYt

T
Z Xtav FS(xt7Yt) xf(xt ytaZZt)>

Denote that § = (x4, VxFs(Xt,yt) — Vaf(Xe,%¢524,)).  Since Eq, [(x¢, Vi Fs(Xt,yt) —
Vxf(Xt,¥t2i,))] = 0, so §t|t = 1,...,T} is a martingale difference sequence. By Schwarz’s
inequality and Assumption [2| we know that |(x;, Vy Fs(X¢,y:) — Vaf (Xt, ¥t 2i,))| < 2L/Dx.
Then according to Lemma , we have the following inequality with probability at least 1 — %

T 1
6 2
Z(vasz(XtQ’t) - fo(Xth;Zit» <2L\/Dx <2T10g 5)

t=1

Define & = Vi f (%¢,yt;2:,) — VxFs(x¢,y+). Then we get ||¢;]| < 2L and

T
STElEIPLE - &) < ATL2.
t=1

Applying Lemma|[18§]to the martingale difference sequence {£;}, we have the following inequality

with probability at least 1 — %

§2<+2Lf>log

This implies that with probability at least 1 — g

T
Z xf Xn}’nZH) Vsz(Xth))

2L
<2 (3 + 2L\/T) log g

Com?ined with the above results, we finally have the following inequality with probability at least
1-2
2

T 2
- pxtoDx | L%log (eT)
; Fs(x¢,y:) — ®s(x")) < 5T + 21T

(40)

+2F <3+2Lf> QLF(;TIO‘%‘S)E.
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Similarly, we can bound ®(Xr) — & 3>, Fs(x,y:). Firstly, we have

[yesr = Y12 = lye + 0y, Vy f(xt,y152,) — ¥
= llye = yI? + 15 IVy f (%0, 7252 )12 + 20, (vt — ¥, Vy f(Xe, y13 2i,))
<llye—ylIIP+ 5, L* + 20y, (ye — ¥, Vy f(xe, yt:2i,) — Vy Fs(X¢, y1))
+ 20y, (yt — ¥, VxFs(Xt,¥1))s

where the first inequality holds because of Assumption 2] According to the strong concavity of
Fs(x¢,-), we have

2y, (Fs(x¢,y) — Fs(xt,y¢)) < (L =y, uy)lye — yI* = llyesr —ylI* + 05, L?
+277yf, <Yt -y, Vyf(XuYt;Zz'f,) - vaS(XtaYt»'

Let nyt = m, we further get
iy e y) — Fsloye) < (1= = Yy vl - | I
— X — X - _ _ _
11y (t + to) S(Xt, Y S\Xt,¥Yt)) = P Vi —YyY Yit1—y

L 2 2
+ + - ’v ty YtsZi —VF £ Yt))-
(Ny<t+t0)> ,uy(t—l-to)<yt Y, Vyf (%, yt:2i,) yEs(xt,yt))

Multiplying both sides by ¢ + ¢y, we have

2
,LT(FS(Xt’y) — Fs(x¢,y0) < (t+to— 1) [lye — yII> = ¢+ to)lyes1 — yI°
y

L2 2
5+ — (¥t — ¥, Vy f (X, ¥1:2i,) — VyFs(x¢,51))-
2 (t + to) uy< v/ Y )

Since y; = 0 and Zthl t~! < log (eT'), by taking a summation of the above inequality from ¢ = 1
to T, we have

L?log (eT)

Z Fs(xe,y) = Fs(xe,y0)) < "X toDy +
t=1 2 2ity

(y, VyFs(xt,yt) — Vy f(Xt,¥t524,))-

] =

T
+Z Yt, yf Xthtvzlt) vaS(Xtayt)>+
t=1

ﬂ
I
-

From the convexity of Fs(-,y), we get

T
_ L?log (eT
S (Fs(r.y) — Fs(xe,ye) < 1Dy + L8
t=1 ty

B

T
+ Z<Yt7 Vy f(xe,y152i,) — VyFs(xe,y¢)) +

t=1
Since this inequality holds for any y, we get
T

L% log (eT
(sup Fy(xr,y) — Fs(xe,ye)) < “toDy + L2108 (1)
=1 YEY 2 2:“)’

<y’ VyFS(Xt»yt) - Vyf(xt;}’ﬁ Zit)>-

-
Il
—

T T
+ Z<Yt7 vyf(xta}% Zit) - vaS(Xt7yt)> + Z Sup<y7 VyFS(Xtayt> - vyf(xtayt; Zi¢)>a

t=1 t=1 yey
which implies that

T
~ L?log (eT
Z(‘I)S(XT) — Fs(xt,y:)) < /LytODy + L log (eT)
t=1 2 2y
T T
+Z Y, yf Xtayhzzt) \Y% FS(Xt7Yt +ZSU.£ y7V FS(Xtayt) yf(xtayt;zit)>~
t=1 t=1Y€
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By Schwarz’s inequality, we have

L?log (eT)

T
Z Pg(x7) — Fs(x4,yt)) < &toDJJ +
t=1 2 21ty

T
+Z ¥, Vy f(xe,¥1:2i,) = VyFs(xe,y1))
t=1

T
Z v FS Xu}’t yf(xfmyt;zit))H .

Denote that & = (Y, Vy f(xe,%4325,) — VyFs(xe,y1)). Since E;, [(ye, Vy f(xe,%¢;2:,) —
VyFs(xi,y4))] = 0, s0 {&|t = 1,...,T} is a martingale difference sequence. By Schwarz’s

inequality and Assumption [2| we know that |(y, Vy f(x¢, X¢;2i,) — VyFs(xt,¥4))| < 2Ly/Dy.
Then according to Lemma|l7|we have the following inequality with probability at least 1 — g

T 1
6 2
D e, Vyf (%, %02:,) — Vy Fs(x1,y1)) < 2L+/Dy (2T log 5) :
t=1

Define & = VyFs(x4,yt) — Vy f(X¢t,yt; 2, ). Then we get |€/]] < 2L and
T ~ ~ ~
STEEIPIE, ... & 4] <ATL2.
=1

Applying Lemma to the martingale difference sequence {£}, we have the following inequality
with probability at least 1 — %

<2 (2; +2Lﬁ> logg.

This implies that with probability at least 1 — g

T

Z (VyFs(xt,yt) — Vy f(Xt,y1:2i,))

t=1

5

2L
<2 <3 + 2L\/T> 1og§

Com(lsnined with the above results, we finally have the following inequality with probability at least
1—-2
2

T
1 toD L21log (eT
E (Ps(x7) — Fs(x¢,y¢)) < Py 02y | 8 (eT)

T~ 2T 2uyT 1 )
2\/D 2L\/D 271 2
Y ( 2L\F> log Y (T o8 5) .

Combing and (@7) together, with probability at least 1 — ¢ we get the following inequality
to(pxDx + pyDy) | L?log(eT) (: N 1)

Pg(x7) — Ps(x") <

2T 2T Ly
, 2/Dx +VDy) L(vDx +VDy) (2Tlog §)*
= y<3 2Lf>1og5+ Ty i

O

Proof of Theorem 8] According to Lemma@], ®(x) satisfies the PL assumption with parameter fix,
we have

2
d(x) — o(x*) < vg)'u(j)' (48)

To bound ®(X7) — ®(x*), we need to bound the term || V®(x7)||?. There holds that
IVe(&r)|? < 2|VO(%r) — Vs (%7)[* + 2| Vs (%7)|*. (49)
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From Theorem 3] under Assumption [3|and[5] Plugging %7 into Theorem[3] for any § € (0, 1), when

B2 (juy+B)? (d+log W)
HEHZ

n > , with probability at least 1 — g

2E[[| Vi f (x*, y* (x*); 2)[|?] log
n

VO (xr) = VOs(Xr)|| < [VOs(Xr)|| + 2\/

L 2Belog® e 25 (2B, f(kry (xe)im)|Pllogd | By-log$
n no fy n n

Next, we need to bound the optimization error bound ||V ®g(x7)||. Firstly, according to Lemmal[I9)

with probability at least 1 — 0, we have

Bs(sr) — Bs(x) = O (ljjf) .

According to (Nesterov, 2003)) and Lemma there holds the following property for 3+ % function

Do (x), we have
1

2(ﬁ+§)

(st < @otir) —astx) = 0 (53,

Plugging (51) into (50), according to Cauchy—Bunyakovsky—Schwarz inequality, we can derive that

1 2 e *(5 \. 2 8
V(%) — Vds(%r)|> < O (log 6) | 2P RNy f(&r.y” (%r): 2)[[ 7 log 5

VT pgn

(50)

(D

26By+ 1 8 16 2 2
SE[f (v 2) o Y | (5 Tor + 2B log F + )
+ + - :
n n
Then substituting (52)), (51)) into (49), we derive that
log 5\ = 648%E[||Vy f (X1, y* (X1);:2)|?] log
s <0 25k 4 SEToS ey o))
VT pyn
2B8Byx 8 16 2 (53)
GBSOy s log 2 | 8 (M lon§ + 2B lon 4 )
- + - :
n n
Finally, we plug into and choose T' < O (n?), with probability at least 1 — &
E[|Vxf(x*,y*:2)[*log 3  E[|Vyf(Xr,y*(%r);2)[]*|log$  log” }
¢<XT>_@<X*>:0< VS s 21w} BNy Sr,y Ger)ea) Flon | tos?
n n n
Next, if we further assume ®&(x*) = O(%), According to Lemma , we
<

have E[|Vif(x*,y"2)|® < 45E[f£<*»y*;Z)] and  E[|Vy f(xr,y" (x1); 2)]|

), then we have

ABE[f (%7, y* (%r); 2)]. Plugging (3) into (48]
(%) — (x7)

_ VoGP
- 21
1 Sk k(5% . 8 * *. 16
0 <log6)  DPEISG Y ()calllon} | I28EIT G v o
VT VAL i
2
. 4 (7255;,* log & + 2By~ log 1& + ux)

[ixcTt?

).

2
) 28B, -
, <1og(15) L 12880 log § 12880 (x) log }f 4 (Tyy log § + 2By log 4 + Mx)

VT

Hx iy pixTt [
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Reference | Algorithm Assumption Measure Bounds
SGDA C-SC, Lip, S (E.) ®(x1) — D(x) O(1/v/n)
Lei C-SC, Lip, S (HP) ®(x7) — ®(x*) | O(logn/vn)
AGDA PL-SC, Lip, S (E.) ®(x7) — ®(x*) O(n~7s1)
ESP SC-SC, Lip, S, LN (HP) &(x*) — &(x*) O(logn/n)
Li GDA SC-SC, Lip, S, LN (HP) ®(x7) — ®(x*) O(logn/n)
SGDA | SC-SC, Lip,S,LN | (HP) ®(x7) — ®(x") O(logn/n)
Zhang Convergence NC-SC, Lip, S (E) |VP(x) — VPg(x)]| O(\/d/n)
Convergence NC-SC, B, S (HP) |[VO(x) — VOs(x)| | O(/d/n)
ESP PL-SC, B, S, A (HP) &(x*) — ®(x*) | app. O(1/n?)
GDA PL-SC. B, S, A (E) ®(X1) — ®(x*) app. O(1/n?)
This work SC-SC, B, S, A (HP) ®(x7) — ®(x*) app. O(1/n?)
PL-SC, B, S, A (E.) ®(x7) — ®(x¥) app. O(1/n?)
SGDA - =
SC-SC, Lip, S, A (HP) ®(x7) — ®(x*) app. O(1/n?)
AGDA PL-SC, B, S, A (E) ®(X1) — ®(x*) app. O(1/n?)

Table 1: Summary of the results. Lei means |Lei et al.|(2021), Li means [Li1 & Liu (2021a), Zhang
means |Zhang et al.|(2022), The bounds are established by choosing optimal iterate number 7.

which implies that

) 12833 log &
P e

) (@(xr) - B(x"))

2
2By~
—0 <log(1$) N 1283®(x*) log 18 N 12833®(x*) log & 4 ( Iy log § + 2Bx- log if + /“Lx)
CO\WVT i1 [ 12 m x> '

cB? (iy +5)* (d+log 21282 VZRInTL) 19843 1o 8

When n > max { }, and T = n* we have

HIpZ b pxpE
* 1 21
B(xr) — B(x7) = O d(x*)log 5 log” 5
12833 log & ( 12833 log & )
n———z  n\n—-——5
Hx Ly Hx by

The proof is complete.

E SOME IMPROVED BOUNDS WITH EXPECTATION FORMATS

Table|l| gives the summary of the existing results. Convergence means the uniform (localized) con-
vergence results. AGDA is alternating gradient descent ascent algorithm proposed in [Yang et al.
(2020). Lip means Lipschitz continuity. S means smoothness. B means Bernstein condition. A
means that we assume ®(x*) is of order O (%) LN means low noise condition. PL-SC means
x-side PL condition strongly concave settings. E. means expectation results. HP. means high prob-
ability results and app. O(1/n?) means the result is approximate O(1/n?) when n is large enough.
Since most of the existing work on optimization error is the expectation format, and our high prob-
ability results of generalization error can be transformed into the expectation results. so we give the
proofs of the expectation result to relax some assumptions such as SC-SC condition in this section.

Firstly, we translate our high probability result of Theorem [3]into an expectation result.

Theorem 9. Under Assumption |I| and |3| assume that the population risk F(x,y) satisfies As-
sumption 4| with parameter iy and let ¢ = max{16C?,1}. We have that for all x € X, when
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8logy V2Ryn+1
S

n> B (1y+8)* (d+log

Tz , the excess risks of primal functions can be bounded by

E[d(x) — ()| < BV +O<]E[|fo(x*,y*;z)||2]

B Hx HxT

BRIV Sy 0 2)[7 1),

2 2
x iy m n

Proof of Theorem[9} According to Theorem we have that for all x € X, when n >
o8 (uiy+8)* (d+log HE2VRRNTL)
K3
IV | 166%BI Ty fbx,y ()52 P log 4

- Iix [x iy m

with probability at least 1 — §

P(x) — ¢(x7)

B 2
23 y* 4 8
16E[||fo(x*, v Z)H2] log % 2 ( Ty log 3 + 2By~ log 3 + ux>

HxT [ixT?

Thus, with probability at least 1 — §, we have

_8IVes)l® _ 165°E[|Vy f(x,y* (x):2)||*] log 5

Pd(x) — d(x*
() — (') P [x g m

2
2B By 4
IGE[| Vo f (" v 2)2 log 8 2 (P log § + 2Bx- log § + )
+ + 3 .
UxT HxT
According to the standard statistical analysis, Let X be a random variable, if for some v,c >

0.P{X > vt 4 ct?} < e* forevery t > 0. Then we can easily derive that E[X] = [ P{X >
x}dx = v + 2¢. Thus, we have the expectation result

< SE(Ves)I?] O(Envxﬂx*,y*;zw
Hx Mx T

E[®(x) — (x|

BRIV Sy 0 2)[7 1),

x g m n?
The proof is complete. O

Next, we give the proofs of the expectation result to relax the SC-SC assumptions given in Table[T]
The proofs are similar with high probability format since we use the existing results for optimization
error bounds with expectation format under NC-SC assumptions.

E.1 GDA

Lemma 20 (Optimization error bound for GDA in NC-SC minimax problems (Lin et al., 2020)).
Under Assumption|l| and letting the step sizes be chosen as 1x = m and ny = é then the
optimization error bound of Algorithm[I|can be bounded by

B3Ae 53173})

+
M%T pyT

E[V®s(x2)|2 = O (

where Ag = Pg(x0) — miny Pg(x).

Using above optimization error bound, we can obtain the following theorem.
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Theorem 10. Suppose Assumption and hold. Assume that the population risk F(x,y) satisfies

Assumptionwith parameter ix. Let the step sizes choose as Nx = m and ny = % When
m

cB2 (jiy +B)° (d-+1log S1os2 2L )
e
risk for primal functions of Algorithm|[I|can be bounded by
(IVxf <y )] | ElIVy f(xr v (xr)i2)|P] | 1
n n n? |’

T =<nandn >

, where c is an absolute constant, then the excess

Mﬂmﬁ—ﬂfﬂ—O<E

2 2(dal 8logo V2Rjn+1 3
Furthermore, Let T =< n? and n > max By +8) ( —;2052 3 ),@ (uﬁ;ﬁ) . Assume
y = xMy

the function f(x,y;z) is non-negative and ®(x*) = O (+), we have
1
E[®(x1) — ®(x")] = O (712> .

E.2 SGDA

For SGDA settings, we introduce a weaker assumption comparing with Assumption 2]
Assumption 6. Assume the existence of o > 0 satisfies
E[Vf(xa Yy Z) - VFS(Xa y)] = Oa
E[|Vf(x,y;2) — VFs(x,y)[I’] < 0.
Lemma 21 (Optimization error bound for SGDA in NC-SC minimax problems (Lin et al., 2020)).
. . . _ 1 1
Under Assumption |l|and 6| and letting the step sizes be chosen as nx = [CEEn and 1y, = 5
then the optimization error bound of Algorithm|[I|can be bounded by

2 5 /86
E|V®s(x7)|* = O < M§T2> '

Using above optimization error bound, we can obtain the following theorem.

Theorem 11. Suppose Assumption E]and @hOld. Assume that the population risk F(x,y) satisfies

Assumptionwith parameter |ix. Let the step sizes choose as nx = m and 1, = % When
m

. 2 2 8logy V2Rin+1
T =< n2 andn > o8y +5) (dzlzoiz 2 )
risk for primal functions of Algorithm 2] can be bounded by
E[|Vyf(x*,y*:2)||? E[|Vy f(x7,y*(x1);2) || 1
E@@ﬂ—@@w:0<[” Syl myﬂTs<T>nu+nJ.

, where c is an absolute constant, then the excess

2 2(dtlog Blos2 VIR ntl 3
Furthermore, Let T = n® and n > max By +8) 12052 o ),9 (uﬁuz) . Assume
yx *xPy

the function f(x,y;z) is non-negative and ®(x*) = O (1), we have
1
E[®(x1) — ®(x")] = O (n2> .

E.3 AGDA

Alternating gradient descent ascent presented in Algorithm [3] was proposed recently to optimize
nonconvex-nonconcave problems (Yang et al.| 2020).

Algorithm 3 Two-timescale AGDA for minimax problem
L: Input: (x1,y1) = (0,0), step sizes {nx, }+ > 0, {ny, }+ > 0 and dataset S = {z1,...,2,}
2: fort=1,...,T do
3:  update X1 = X¢ — x, Vo f (X4, 15 2i,)
4 update yiy1 =yt + 0y, Vy f(Xet1, Y45 24,)
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Lemma 22 (Optimization error bound for AGDA in PL-SC minimax problems (Yang et al., 2020;
Lei et al} [2021)). Under Assumption|l|and assume that the population risk F(x,y) satisfies As-
sumptionwith parameter [ix. Let {x¢,y}+ be the sequence produced by Algorithmwith the step
sizes chosen as nx, < i and 1y, = then the optimization error bound of Algorithm E| can

be bounded by

Haxp2t’

1
BlIVester)] =0 (o ).
[ 1y
Theorem 12. Suppose Assumption and @ hold. Assume that the population risk F(x,y)
satisfies Assumption W| with parameter px. Let {x¢,y:}: be the sequence produced by Algorithm
with the step sizes chosen as 1y, < - and Ny, = L. When T =< nand n >

pxt Hxp3t
B2 (y+8)° (dtlog o2 VZRIntl )
2

e , Where c is an absolute constant, then the excess risk for primal
yHx
functions of Algorithm[3|can be bounded by

EWWJ&ﬂWm)ﬂ+EWWJ&mW@ﬂﬂMﬂ+1>.

n n n?

E[®(xr) — (x")] = 0<

8logy V2Ryn+1
B’ (ny+8)* (d+log B2 2LnE ) oL Assume
JTEATE] ) pxpy ) (°

Furthermore, Let T < n? and n > max{

the function f(x,y;z) is non-negative and ®(x*) = O (1), we have

n

EBfver) o) ~ 0 (1 ).

n?
Proof of Theorem[I2] Since the proofs of Theorem [T0} [IT] and [T2] are similar, we only prove Theo-

rem[12]as an example.

From Theorem [9] under Assumption [3] and [} when we plug x7 into Theorem [9 when n >
o8 1y +)? (d+log 2 YRNEL)

> , we have
HZ
SE[||V®s(x7)]? E[||Vf(x*,y*;2)|?
E[0(xr) — 9| < ZEU aTm1+O<[ fe<,y732)?)
Hx Hx TV
(54
BPE[|Vy f(x7,y* (x7);2)[*] | 1
+ 2 +72 :
[isc i3m0 n
According to Lemma[22] we have
1
o N—0(—o).
BVl = O (i (55)

Plugging into and choose T' < O (n), with probability at least 1 — §

EWfobf,yﬂZN2]+6%HVnyQunXT%ZN2]+1)
2 2 |
HxcTt Ptz m n

E[®(xr) — &(x*)] = 0(

Next, if we further assume ®(x*) = O (%), According to Lemma , we
have E[Vif(x"y%2)® < 4BE[f(x*,y";z)] and E|Vyf(xr,y*(xr)iz)[® <
4PE|f (x7, y*(xT); 2)], then substituting into (54)) and choosing T' =< n?, we have

ﬁm@wﬂ—¢@m+ﬁ%@@w+ﬁMﬂﬁn+l>

[ixchizn [ty [ixT0 n?

Mﬂmﬁ—ﬂfﬂ=0<
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. . . a2 2 8logo \/?RInJrl 3
which implies that When n > max { cB”(ny+5) (d-;12052 2 ) ,0 (uﬁzﬁ ) }, we have
y = xPy

The proof is complete.
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