
A Additional Experiments219

Does it also work for ViTs? In Table 2, we evaluate our distillation method on ViTs. As is220

the case for ResNets, the inclusion of the distillation term boosts ensemble performance without221

compromising connectivity.222

β = 1.0 β = 0.2

q̄joint Mean Acc Ens. Acc q̄joint Mean Acc Ens. Acc

CIFAR10 ResNet20 −0.14±0.07 93.15±0.03 94.17±0.05 −0.64±0.11 93.67±0.12 94.46±0.20

ViT −1.37±0.41 82.60±0.02 84.28±0.23 −1.49±0.25 83.14±0.13 84.55±0.40

CIFAR100 ResNet20 0.86±0.18 73.53±0.23 75.92±0.20 0.39±0.11 75.33±0.12 77.56±0.18

ViT −0.14±0.08 54.90±0.26 57.81±0.29 −0.29±0.33 56.12±0.10 58.70±0.15

Tiny ImageNet ResNet20 0.75±0.10 55.80±0.19 59.83±0.13 −1.35±0.48 58.69±0.17 62.61±0.43

ViT 1.76±0.12 35.36±0.30 39.50±0.21 1.57±0.18 38.46±0.07 42.31±0.09

Table 2: Comparison of joint connectivity and ensemble performance for constrained (β = 1.0) and
distilled ensembles (β = 0.2). Averaged over 3 seeds.

Deep Ens. PCD Multi-PCD

CIFAR10 −71.74±2.38 −25.84±4.20 −14.64±3.66

CIFAR100 −68.16±1.72 −44.89±0.91 −41.02±1.55

Tiny ImageNet −53.78±0.85 −46.30±2.08 −44.54±2.65

Table 3: Joint connectivity q̄joint of deep ensembles
and permuted ensembles optimizing for pairwise
(PCD) and joint alignment (Multi-PCD). Averaged
over 3 seeds.

Jointly permuted ensembles. We now eval-223

uate whether the lack of joint connectivity ob-224

served for permuted ensembles (see Table 1) can225

be diminished by extending the optimization226

objective used in PCD. More specifically, we227

change the objective function used in Ainsworth228

et al. (2023) to account for the joint alignment229

with respect to all other models and not just the230

reference model. Thus, when optimizing πi(θi)231

we account for the alignment with respect to all232

other models πj(θj) with j ̸= i in the ensemble.233

Using this modified objective and wrapping the pairwise procedure with another layer iterating over234

ensemble members, we obtain an algorithm that optimizes for joint alignment and to which we refer235

to as Multi-PCD. While joint connectivity does improve, the resulting ensemble is still far from being236

connected as measured by q̄joint in Table 3. We thus conclude that permutations can not be leveraged237

to re-discover an ordinary multi-basin ensemble in a single loss basin.238

Diversity-Connectivity trade-off. In Fig. 3, we plot two measures of predictive diversity used239

in Abe et al. (2023) and connectivity as a function of t for a grid of β values. In Fig. 3a, we show240

the one-vs-all Jensen-Shannon divergence of predictions and in Fig. 3b we show the variance of the241

ensemble members’ true-class predictions. For more detailed information, we refer to Abe et al.242

(2023). Notably, we observe a diversity-connectivity trade-off, as diversity decreases with higher243

connectivity.244

Regularizing effect of distillation. As described in the main text, we also consider a baseline of245

deep ensembles trained with an additional distillation loss. We report the results in Table 4 and note246

that we do not observe any significant improvements through the inclusion of a distillation objective,247

corroborating the findings from the main text.

Deep Ens. Deep Ens. + β = 0.2

q̄joint Mean Acc Ens. Acc q̄joint Mean Acc Ens. Acc

CIFAR10 ResNet20 −71.74±2.38 93.01±0.08 94.43±0.12 −71.30±3.01 93.54±0.04 94.45±0.02

ViT −55.81±1.99 82.43±0.33 85.10±0.27 −55.70±1.71 82.97±0.22 84.87±0.31

CIFAR100 ResNet20 −68.16±1.72 73.44±0.12 78.15±0.10 −69.03±2.19 75.20±0.15 78.42±0.20

ViT −47.28±0.19 54.91±0.10 59.88±0.12 −48.32±0.15 56.20±0.08 59.92±0.26

Tiny ImageNet ResNet20 −53.78±0.85 55.36±0.33 62.85±0.20 −56.54±0.70 58.65±0.23 63.29±0.33

ViT −33.04±0.70 35.57±0.38 44.05±0.19 −35.79±0.77 38.37±0.31 44.29±0.21

Table 4: Isolating the additional regularizing effect of distillation. Averaged over 3 seeds.
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Figure 3: Predictive variance, Jensen-Shannon divergence, and joint connectivity as a function of
time parameter t for ResNet20 ensembles on CIFAR100. The dashed vertical lines mark the t used in
Table 1.

B Related Works248

Ensembling techniques. There is a plethora of previous work that studies novel ensembling249

techniques, often with a focus on reduced cost or better weight averaging properties. Fast Geometric250

Ensembling (FGE) from Garipov et al. (2018) and Snapshot Ensembles (SSE) from Huang et al. (2017)251

both adapt a similar strategy as the SWE approach but use a cyclical learning rate to intentionally252

break connectivity and produce more efficient ensembles. Instead of ensembling models, Izmailov253

et al. (2018) average weights along the SGD trajectory using a cyclical or constant learning rate.254

Wortsman et al. (2021) on the other hand directly learn lines and curves whose endpoints they leverage255

for ensembling. They also report improved performance when using the midpoint as a summary of256

the ensemble. Another related line of work studies fusion of several independent models. Singh and257

Jaggi (2020) leverage optimal transport to align the weights of multiple models and produce a fused258

endpoint. Ainsworth et al. (2023) take a similar approach and fuse different networks by finding259

fitting permutations to maximize similarity.260

Combining SSE, FGE, and SWA. We decided to use a procedure that combines elements from261

SSE, FGE, and SWA as a baseline. We argue that this approach is most effective at training an262

ensemble while ensuring linear mode connectivity and computational comparability, at training263

and inference time, with deep ensembles. As outlined in the main text, we refer to this method as264

Stochastic Weight Ensembling (SWE). More specifically, SWE is ensembling models in function265

space, acquiring them using a sequential procedure. We first decay the learning rate to a level that266

enables exploration of the basin without leaving it, and keep the learning rate constant thereafter. We267

sample a model every T epochs where T is on the order of epochs required to train a single model.268

The difference to SSE is that we specifically do not encourage exploration of different basins and269

thus refrain from cyclically increasing the learning rate. The procedure is also different from SWA,270

as we do not average in weight space, but in function space. Lastly, it is also different from FGE, as271

the cycle length is comparable to that of SSE, ruling out the fast in FGE.272

Mode Connectivity. An intellectual ancestor to linear mode connectivity can be seen in the work273

of (Goodfellow et al., 2015). They consider the 1D subspace spanned by the initial and fully trained274

parameter vectors and find that the loss is monotonically decreasing the closer we get to the final275

parameter vector. (Lucas et al., 2021) confirmed these results and coined the phenomenon monotonic276

linear interpolation. In the context of our work, we interpret this monotonic linear interpolation277

phenomenon as a descent into a loss basin whose functional diversity we aim to explore. Frankle278

et al. (2020) demonstrated that there is a point in training θ(t) after which SGD runs sharing θ(t)279

as initialization remain linearly mode connected. Neyshabur et al. (2020) observed linear mode280

connectivity in a transfer learning setup, where models pre-trained on a source task remain linearly281

mode connected after training on the downstream task. Juneja et al. (2023) provide counterexamples282

to mode connectivity outside of image classification tasks. Draxler et al. (2018); Garipov et al. (2018)283

found non-linear paths of low loss between independently trained models, questioning the idea that284

the loss landscape is composed of isolated minima.285
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Diversity. As mentioned in the introduction, it is commonly believed that encouraging predictive286

diversity is a prerequisite for improving ensemble performance. This belief is derived from classical287

results in statistics on bagging and boosting weak learners (Freund et al., 1999; Breiman, 1996).288

While it is true that disagreement among members is a necessary condition for an ensemble to289

outperform any single member, recent work has shown that encouraging predictive diversity can be290

detrimental to the performance of deep ensembles with high-capacity members (Abe et al., 2023). In291

other words, the intuition from those classical results might not be applicable. The counter-intuitive292

observation of Abe et al. (2023) is explained by the fact that diversity encouraging penalties affect293

all predictions irrespective of their correctness. As a result, these penalties can adversely affect the294

performance of individual members, which in turn can undermine the performance of the ensemble.295

C Implementation Details296

Computational Cost If not stated otherwise, we consider ensembles of size M = 5. The table297

below illustrates the computational cost on a per model basis.298

Deep Ens. SWE Distilled Ens. Constrained Ens.

T T β T t Dist. Epochs β T t Dist. Epochs

CIFAR10 ResNet20 110 110 0.2 110 10 100 1.0 110 10 100
ViT 165 —- 0.2 165 15 150 1.0 165 15 150

CIFAR100 ResNet20 190 190 0.2 190 40 150 1.0 190 40 150
ViT 165 —- 0.2 165 15 150 1.0 165 15 150

Tiny ImageNet ResNet20 130 130 0.2 130 30 100 1.0 130 30 100
ViT 140 —- 0.2 140 15 125 1.0 140 15 125

Table 5: Comparison of computational cost for different experiments in the main text. For deep
ensembles T refers to the number of epochs per sample. Similarly, for SWE, T is the cycle length
in-between taking a sample. For constrained and distilled ensembles, t is the epoch after which we
split the runs and starting distilling for Dist. Epochs.

Optimizers With the exception of experiments conducted with ViTs, we use SGD as an optimizer299

with a peak learning rate of 0.1. We use a cosine decay schedule with linear warmup for the first300

10% of training. Momentum is set to 0.9. For ViTs, we use Adam (Kingma and Ba, 2015) with301

β1 = 0.9 and β2 = 0.999. The batch size is at 128 and we set the temperature in the distillation302

experiments to τ = 3. For SWE, we apply the same linear warmup cosine decay schedule as for the303

other ensemble methods, but stop decaying the learning rate at 0.01 and hold it constant thereafter to304

enable exploration of the basin.305

Datasets We experiment with the classic image classification baselines CIFAR (Krizhevsky, 2009)306

and Tiny ImageNet (Le and Yang, 2015). For all experiments, we make use of data augmentation.307

More specifically, we use horizontal flips, random crops, and color jittering.308

Architectures We use the ResNet20 implementation from Ainsworth et al. (2023) with three309

blocks of 64, 128, and 256 channels, respectively. We note that this implementation uses LayerNorm310

(Ba et al., 2016) instead of BatchNorm (Ioffe and Szegedy, 2015), as it eliminates the burden of311

recalibrating the BatchNorm statistics when interpolating between networks. Our Vision Transformer312

implementation is based on Lippe (2022) and composed of six attention layers with eight heads, latent313

vector size of 256 and hidden dimensionality of 512. We apply it to flattened 4× 4 image patches.314

Permuted Ensembles We use the PERMUTATIONCOORDINATEDESCENT implementation from315

Ainsworth et al. (2023) to bring deep ensemble models into alignment. The implementation of316

the PERMUTATIONCOORDINATEDESCENT algorithm can be found at https://github.com/317

samuela/git-re-basin.318

Joint Connectivity As mentioned in the main text, we draw samples λ1, . . . ,λN ∼ Dir(1) to319

approximately assess the joint connectivity of ensemble members. For each seed, we evaluate N = 50320

samples and compute q̄joint =
1
N

∑N
i=1 qjoint(λi)321
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Hardware We ran experiments on a cluster with NVIDIA GeForce RTX 2080 Ti and NVIDIA322

GeForce RTX 3090 GPUs.323
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