
Under review as a conference paper at ICLR 2024

APPENDIX OF PAPER “FLEXIBLE DIFFUSION FOR GRAPH NEURAL NETWORKS”

APPENDIX

A ADDITIONAL DESCRIPTION OF FLEXI-DC

Message Passing Neural Networks, typically called spatial graph neural networks, consider only their
direct neighbors at each layer of aggregation, and the processing ability for global features is relatively
weak. On the other hand, spectral-based graph neural networks do not just rely on first-hop neighbors
and capture more complex graph properties, which can learn the global features of the graph in the
spectral domain. However, these methods are usually outperformed by MPNN on graph-related
tasks (Veličković et al., 2017; Xu et al., 2018a), and cannot be generalized to previously unseen
graphs because of the computational complexity. Therefore, we improve the learning of global and
local features by combining the spectral and spatial domains to promote the applicability of the model.
Source code is available at https://anonymous.4open.science/r/Flexi-DC-4965/.

Degree-based Neighborhood. By normalizing the degree, we scale the data values to a fixed range
and assign larger local structures to nodes with higher degrees and vice versa. We propose the
following computation method for assigning the neighborhood range based on the degree of each
node:

Ki = Kmin + (Kmax −Kmin)
log(degreemax + 1)− log(degreevi + 1)

log(degreemax + 1)− log(degreemin + 1)
, (8)

where Kmin and Kmax respectively denote the minimal and maximal neighborhood structures in
terms of allocation, while degreemax and degreemin represent the maximum and minimum degrees
of nodes in the dataset. This process satisfies the aforementioned requirement: nodes with larger
degrees are allocated relatively fewer neighbors. By assigning different local structures to nodes
based on their degrees, we can meet the information demands of each node and achieve optimal
vector representations.

Diffusion Kernel. The heat kernel is a fundamental concept in mathematics and physics, particularly
in the study of partial differential equations and stochastic processes. It is a solution to the heat
equation, which describes how heat diffuses over time. The heat kernel describes the probability
distribution of the locations of particles undergoing Brownian motion or other diffusive processes. It
is also closely related to the concept of Laplace operator, which is a fundamental operator used in the
study of geometry and topology. The feature propagation speed between two nodes is proportional to
the difference between their features. Formally, this prior knowledge can be described as:

dxi(t)

dt
= −

∑
vj∈Ni

Ãij (xi(t)− xj(t)) (9)

This differential equation can be solved as:

X(t) = HtX(0) (10)

where X(t) is the feature matrix after diffusion time t and Ht is diffusion or heat kernel with
expression e−(I−T)t. In graph neural networks, diffusion kernel can be defined by an exponential
function of the Laplacian matrix to describe the similarity and distance between nodes. First, we use
the Taylor expansion to obtain an explicit k-order polynomial approximation for the diffusion kernel,
that is,

e−(I−T)t =

∞∑
k=0

e(−t) t
k

k!
Tk

B ADDITIONAL EXPERIMENTS

B.1 EXPERIMENTAL ENVIRONMENT

Many existing works on graph modeling have an underlying assumption of network homophily,
which limits their ability to address network heterophily/discrepancy, where connections tend to exist

14

https://anonymous.4open.science/r/Flexi-DC-4965/

Under review as a conference paper at ICLR 2024

Table 2: Benchmark dataset statistics.

Dataset #Nodes #Edges #Features #Classes #Homophily

Cora 2708 5278 1433 7 0.825
Citeseer 3327 4552 3703 6 0.718
Pubmed 19717 44324 500 3 0.792
Amazon Computers 13752 245861 767 10 0.802
Amazon Photo 7650 119081 745 8 0.849
Coauthor CS 18333 81894 6805 15 0.832
Cornell 183 295 1703 5 0.301
Texas 183 309 1703 5 0.057
Wisconsin 251 499 1703 5 0.213

between different types of nodes. In contrast, we want to improve the applicability of the model in
both homophilous and heterophilous networks through flexible diffusion convolution.

Homophily. Homophily reflects the preference of nodes to select neighbors. For a strongly Ho-
mophilous graph, nodes tend to form connections with nodes that have the same label. The homophily
ratio h measures the level of overall homophily in the graph. Several homophily metrics have been
proposed with different focuses (Lim et al., 2021; Pei et al., 2020). We adopt edge homophily as
defined in (Zhu et al., 2020), which is expressed as:

h =

∣∣{(vi, vj) : (vi, vj) ∈ E ∧ Yvi = Yvj}
∣∣

|E|

It is evident that when h is large (h → 1), the graph has high homophily, and when h is small
(h→ 0), the graph has high heterophily (low homophily).

Datasets. Cora, Citeseer, and Pubmed (Sen et al., 2008) are standard citation graphs where nodes
denote papers while the bag-of-words of papers are used as node features. The edges of the graph
represent citations between papers, and the labels of the nodes refer to the research topic. Moreover,
the three datasets are homophilous graphs. Amazon Computers and Amazon Photo are fragments of
the Amazon co-purchase graph (McAuley et al., 2015), where nodes represent products and edges
indicate frequent co-purchase of two products. Node features are bag-of-words encoded product
reviews, and class labels are given by the product category. Coauthor CS is a co-authorship graph
based on the Microsoft Academic Graph for the 2016 KDD Cup Challenge1. Here, nodes represent
authors and are connected by an edge if they co-authored a paper. Node features represent the paper
keywords for each author, while class labels indicate the most active research field for each author.
WebKB2 is a web dataset collected from computer science departments of various universities. In
this dataset, nodes represent web pages, and edges represent hyperlinks between web pages. Node
features are represented by the bag-of-words for each web page. Specifically, Texas, Cornell, and
Wisconsin are selected as benchmark experiments. The web pages in the dataset are divided into five
categories: students, projects, courses, staff, and faculty. Table 2 summarizes their statistics.

B.2 ADDITIONAL RESULT ANALYSIS

In this experiment, we recorded the experimental results by running the experiments 100 times. To
better illustrate the robustness of the proposed framework, we plotted the results as box plots. They
are useful in providing a summary of the distribution of the data, including the median, quartiles, and
outliers. The box in the plot represents the interquartile range (IQR), which spans from the first to the
third quartile. The median is indicated by a horizontal line within the box. The whiskers extend from
the box to the minimum and maximum values within 1.5 times the IQR. Any data points that fall
outside of the whiskers are considered outliers and are plotted as individual points.

In Figure 5, we observe that the proposed framework achieves a relatively stable data distribution
across all vanilla GNNs on which it is based, with higher maximum accuracy obtained compared to

1https://kddcup2016.azurewebsites.net/.
2http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/.

15

Under review as a conference paper at ICLR 2024

Figure 5: Distribution of results for different methods run 100 times on different datasets.

the baseline versions and very few outliers. Moreover, we find that the distribution of the compared
competing algorithms varies significantly across different datasets, with some datasets having a
more uniform distribution while others having a highly imbalanced distribution with many outliers,
demonstrating the instability of these algorithms. Our proposed framework effectively avoids such
situations and significantly reduces the frequency of outliers, resulting in less variability in the results.

The experimental results on different datasets are also presented in Table 3, where our framework
achieves relatively outstanding performance. In particular, in the heterogeneous matching network,
the overall performance improves by 20.56 vs. ADC (GCN), 33.75 vs. GDC (GCN), 25.24 vs. ADC
(JKNet), 37.93 vs. GDV (JKNet), and 21.63 vs. ADC (ARMA), 40.24 vs. GDC (ARMA). Although
the desired results are not obtained in some large-scale data, the GPU time consumption is greatly
reduced, as will be presented in Appendix B.3.

B.3 RUNNING TIME

We compare the running time of each method based on different vanilla GNNs on all the datasets. We
use the early stopping strategy of 300 epochs. Figure 6 to 8 show the running time of all the methods.
From Figure 6, we can observe that versions Flexi-DC and ADC based on GCN have similar GPU
running times on small-scale datasets. The reason why our method does not have an advantage is
that the small dataset size required us to generate rich hidden feature information through flexible
diffusion so that the node representations could be improved and downstream task prediction accuracy
could be promoted. However, in large-scale graphs, our proposed method significantly reduces time
consumption due to the enhanced technique, which reduces the node aggregation time consumption.
From a global perspective, our model has a much lower average time on all datasets compared to the

16

Under review as a conference paper at ICLR 2024

Table 3: The classification accuracy (%) across all methods on nine datasets: “average accuracy ±
95% confidence intervals calculated via bootstrapping”. The error (±) represents the 95% confidence
intervals calculated via bootstrapping of the results obtained for each method run for 100 tests. We
highlight the optimal results (average accuracy) for different vanilla GNNs on each data set.

Datasets Flexi-DC ADC GDC
GCN JKNet ARMA GCN JKNet ARMA GCN JKNet ARMA

Cora 85.56±0.28 84.62±0.29 85.74±0.26 84.42±0.29 83.39±0.29 84.58±0.36 83.19±0.22 83.31±0.22 83.61±0.22
Cite. 75.75±0.33 74.18±0.41 75.28±0.35 73.48±0.38 72.86±0.40 73.71±0.32 71.17±0.30 72.21±0.31 73.05±0.28

Pubm. 82.39±0.34 83.05±0.42 83.28±0.41 82.33±0.38 82.80±0.34 78.68±0.40 78.10±0.39 77.73±0.62 78.66±1.06
Comp. 84.31±0.29 81.72±0.27 80.26±0.92 79.20±0.81 84.82±0.29 80.49±0.61 79.91±0.21 80.26±0.28 78.27±0.35
Phot. 92.52±0.23 92.19±0.23 91.13±0.30 91.38±0.45 92.79±0.30 91.45±0.45 87.47±0.38 87.10±0.36 87.17±0.45
CS 92.83±0.07 92.73±0.08 92.35±0.07 92.88±0.12 92.52±0.07 91.43±0.28 89.29±0.06 90.71±0.07 91.87±0.06

Corn. 74.51±1.60 77.59±1.22 76.76±1.27 64.33±2.33 65.71±2.30 66.03±1.52 55.68±2.38 59.00±2.38 55.62±2.65
Texas 72.25±1.73 79.83±1.03 73.84±1.62 66.40±0.97 67.22±1.65 67.62±0.87 59.00±1.10 62.08±2.84 58.56±1.63
Wisc. 78.68±1.25 80.90±1.01 80.78±1.28 56.27±1.86 57.36±2.67 56.58±2.22 48.98±1.68 51.70±2.15 50.81±1.68

Figure 6: Comparison of the running time of GCN-based methods.

comparative models. This phenomenon is also observed in the JKNet- and ARMA-based models, as
shown in Figures 7 and 8, respectively.

B.4 ADDITIONAL APPLICABILITY ANALYSIS

This part supplements Section 4.3, with the experimental settings kept consistent. We add experimen-
tal results to the WISCONSIN dataset. As shown in Figure 9, our proposed framework achieves the
best performance across different vanilla GNNs and an overall average performance improvement of
41.21% over the second-best method (ADC).

The experimental results demonstrate that our proposed flexible diffusion convolution and label
smoothing can effectively improve the adaptability of the model. This is mainly attributed to our
continuous aggregation operation of the target node in a small local range, which considers the hidden
information within the local structural range and avoids the noise introduced by larger structures.
Previous works have neglected the hidden information of nodes in graph data and only aggregated
the explicit information of nodes, leading to performance limitations.

17

Under review as a conference paper at ICLR 2024

Figure 7: Comparison of the running time of JKNet-based methods.

Figure 8: Comparison of the running time of ARMA-based methods.

B.5 PERFORMANCE DEFICIENCY ANALYSIS

In large-scale graph data, the size and density of the graph can be enormous. Aggregating neighboring
nodes using the graph structure throughout the entire graph already provides much neighborhood
information. However, considering the hidden information of nodes through diffusion convolution
may lead to over-smoothing issues, which can result in poor performance, as shown in Section 4.2.

We conducted sensitivity experiments on our proposed framework on large-scale datasets to verify
the explanation of over-smoothing mentioned above. Consider the order of Taylor expansion, i.e., the
amount of information about the aggregated neighbors of the target node considered. As shown in
Figure 10, it can be seen that as the order of expansion increases, the performance of the framework

18

Under review as a conference paper at ICLR 2024

Figure 9: Algorithmic comparison of node classification accuracy on Cornell dataset, where JK refers
to JKNet.

Figure 10: The influence of the Taylor expansion order (local neighborhood structure) on the
performance of Flexi-DC. In most cases of homophilous graphs, increasing the expansion order helps
to improve accuracy, while the opposite is true for heterophilous graphs.

initially improves but then basically remains unchanged and even begins to decrease. In addition, in
Section 4.5, we also verified through ablation experiments that the diffusion module is less effective
than the label smoothing module for large-scale datasets, which also proves that considering hidden
information may lead to over-smoothing of the framework. This will be the main direction of our
future research, exploring how to effectively combine the explicit and hidden information of nodes to
improve their optimal vector representation on large-scale datasets while avoiding over-smoothing.

C IMPLEMENT DETAILS

We further implemented flexible diffusion convolution and smooth labels on each backbone model.
For flexible diffusion convolution, we set k to be consistent with the number of Taylor expansion
steps, enhancing the learning of hidden features of nodes within the neighborhood range. As for
the smoothing strength, we set α to 0.8, which retains self-features while considering the features
of neighboring nodes. We first aggregate information within the neighborhood range through node
aggregation, followed by the diffusion and fully connected layer to obtain the predictive structure.

19

Under review as a conference paper at ICLR 2024

Table 4: The range of values for the hyperparameters.

Symbols Definitions

dropout 0.5
Hidden size 64
K_min 1
K_max {2, 3, 4, 5, 8, 10, 15}
weight_decay 0.01
early_stopping 100
development {1500, 5000, 120, 170}
optimizer Adam
λ_init 1
σ Relu

Finally, the smooth labels module corrects the predictions. Our architecture is designed with two
layers. Similar to ADC and GDC, we only use their largest connected components. The data is split
into a development and test set. Flexi-DC is a flexible component that can be directly integrated
into existing GNN models, allowing them to flexibly learn hidden information of nodes within the
neighborhood range and avoid over-confidence.

Compute. All the experiments are implemented with PyTorch, and tested on a machine with 32
Intel(R) Xeon(R) Platinum 8338C CPU @ 2.60GHz processors, one GPU of GeForce RTX 3090
with 24 GB memory size and fixed hyperparameter settings, which are described in the following.

Hyperparameters. For all experiments, the number of runs is set to 100, and the results of the
runs are averaged with 95% confidence intervals via bootstrapping. The smoothing coefficient α is 1.
The learning rate of t is set to 0.01. The early stopping is set to patience of 100 epochs. Detailed
hyperparameters can be found in Table 4

Computational Complexity. In Flexi-DC, the complexity of neighbor feature aggregation enhance-
ment based on the degree of nodes is O(NfNmax +Nf

∑Ni

k=1 Nk), where Nmax is the maximum
neighbor structure hops, and Ni is the number of neighbor hops assigned by node i. After that,
the model performs diffusion convolution, and the complexity is O(Nf2c + NKmaxc), where
Kmax is here the diffusion step size, and c is the channel. Finally, label smoothing is performed by
degree-based neighbor assignment, and the complexity is O(NNmax+N

∑Ni

k=1 Nk). Therefore, the
computational complexity of Flexi-DC proposed in this paper is O(N((f +1)(Nmax+

∑Ni

k=1 Nk)+
f2c+Kmaxc)).

20

	Introduction
	Preliminaries
	Flexible Graph Diffusion Convolution
	Flexible Diffusion
	Continuity Training
	Label Smoothing

	Experiments
	Experimental Setup
	Result and Analysis
	Applicability Analysis
	Sensitivity Analysis
	Ablation Study

	Related Work
	Conclusion
	Additional Description of Flexi-DC
	Additional Experiments
	Experimental Environment
	Additional Result Analysis
	Running Time
	Additional Applicability Analysis
	Performance Deficiency Analysis

	Implement Details

