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A ADDITIONAL RESULTS
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Figure 10: Additional results with and without token merging for aligning fine-grain features.
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Figure 11: Additional Results for N > 2 characters.

B IMPLEMENTATION DETAILS

In this section, we provide further details for the implementation of our approach as well as other
baselines (Ruiz et al., 2022; Zhou et al., 2024) used while reporting results in the main paper (Sec. 5).

Model Details. Similar to (Zhou et al., 2024; Tewel et al., 2024), we use the official SDXL model
Podell et al. (2023) as the underlying pretrained text-to-image generation model while reporting
results with all methods (Zhou et al., 2024; Ruiz et al., 2022; Gal et al., 2022; Ye et al., 2023)
(including storybooth as proposed in the main paper). Results with BLIP-Diffusion (Li et al., 2024a)
and Storygen (Liu et al., 2024) are reported directly using pretrained models obtained from paper-

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

authors. Similar to (Tewel et al., 2024), Dreambooth (Ruiz et al., 2022) training is done using
low-rank (LoRA) finetuning (Hu et al., 2021) with rank of 4.

All results are reported at 1024→ 1024 resolution while using 50 inference steps during the reverse
diffusion process. Unless otherwise specified, a fixed classifier-free guidance scale (Ho & Salimans,
2022) ωcfg = 5.0 is used for all experiments. A LLaMA3-8B model AI@Meta (2024) is used as the
underlying large language model for generating storyboard layouts from the storyboard prompt P .

Region-Based Storyboard Generation. A key idea behind our approach is to use region-based
planning and generation Yang et al. (2024a) in order to apriori localize the placement of different
characters across the storyboard. This helps us accurately apply cross-frame self-attention bounding
(refer Sec. 4) in order to allow tokens for each subject to pay attention to only tokens from the same
subject. However, this requires the generated images to align with the initially predicted character
layouts across the storyboard. While several region-based solutions for the same are feasible (Dahary
et al., 2024; Li et al., 2023), for simplicity we use the region-based cross-attention masking from
(Yang et al., 2024a) for ensuring adherence to the input prompt. Equal distribution of weights (Yang
et al., 2024a) are used for all character level εk

i
and overall-frame level storyboard prompts Ti.

Bounded Cross-frame Self-Attention. We apply bounded self-attention (refer Sec. 4) both within
the same frame as well as across different frames in order to reduce inter-character leakage. The
self-attention bounding is applied predominantly on the up-blocks of the SDXL UNet (Podell et al.,
2023) and is used between timesteps t ↑ [1000, 200]. More importantly, we observe that the naive
use of self-attention bounding alone can reduce output image quality. We therefore utilize a dropout
ϑd = 0.5 which allows reduces intercharacter leakage while still preserving output image quaility.

Token Merging. In order to better align the fine-grain features of different subjects we use token
merging (refer Sec. 4.3) in order to place a hard-constraint on the appearance of the character features
across different frames. We use a positive ω = 0.4 for token merging from timesteps t ↑ [950, 600].
Furthermore, we also use early negative token unmerging (refer Sec. 4.4) with ω = ↓0.5 from
timesteps t ↑ [1000, 950] in order to encourage pose-variance (refer Fig. 6).

C EVALUATION AND USER STUDY

Datasets. Given the training-free nature of our proposed approach, we do not rely on the use of any
public datasets. For evaluation purposes, we utilize the storyboard-prompt dataset from (Tewel et al.,
2024) which consists of 100 storyboard generation prompts with a single main subject across diverse
settings. For multi-subject evaluation, we construct an analogoes multi-subject prompt dataset using
LLaMA3-8B (AI@Meta, 2024), where given a set of potential subjects (e.g., cat, dog, hedgehog,
owl, bear, duck etc.) and the possible scene locations (e.g., mountains, park, beach etc.), we prompt
the language model M to generate a dataset of storyboard prompts D = {P1,P2, . . .PM}, (where
M = 100) placing two randomly selected subjects in different settings.

Evaluation Metrics. We also evaluate the performance of the proposed approach quantitatively, by
evaluating the text-to-image alignment and output character consistency across different storyboard
frames (refer Sec. 5 of main paper). In particular, we use the recently proposed VQAScore (Lin
et al., 2024) for evaluating text-to-image alignment, as it has been observed to show significantly
higher-correlation with the human preferences over traditionally used CLIP-Score (Hessel et al.,
2021) especially when scaling to multiple characters (Lin et al., 2024). Also, similar to Tewel et al.
(2024), Dreamsim (Fu et al., 2023) cosine similarity is used for evaluating character consistency, as
it is observed to show higher correlation with human-evaluation for image-to-image similarity as
opposed to traditionally used CLIP-I (Radford et al., 2021) and DINO (Oquab et al., 2023) scores.

Human-user Study. In addition to quantitative evaluation (refer Table 1), we also perform an
anonymous human user study wherein the T2I alignment (Lin et al., 2024) and character-consistency
(Fu et al., 2023) are evaluated by actual human users (refer Tab. 2 for results). In particular, given a
storyboard prompt P and image-level prompts {T1, T2, . . . TN}, the participants are shown a pair of
storyboard outputs comparing our method with prior works. The user study consists of two separate
tasks 1) Evaluating T2I Alignment and 2) Evaluating character consistency.

For evaluating text-to-image alignment, the participants are shown a pair of output images and the
input prompt, and asked to select the image with the best alignment between the output image and
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input text prompt. Similarly for evaluating character-consistency, given a set of desired storyboard
characters, the participants are shown a pair of storyboard outputs and asked to select the one with
the better consistency for all storyboard characters. Empirically we found that unlike single-character
consistency, judging cross-frame consistency for multiple characters is significantly harder even for
human annotators when using N > 2 frames. We therefore use N = 2 frames when evaluating multi-
subject consistency using human evaluation in order to get better quality annotations. Additionally,
in order to remove data noise, we use a repeated comparison (control seed) for each user. Responses
of users who answer differently to this repeated seed are discarded while reporting the final results.
Please refer Fig. 18 for a screenshot of the quantitative human user-study setup for both tasks.

D DISCUSSION AND LIMITATIONS

While the proposed approach helps improve both text-to-image alignment as well as character-
consistency when scaling to multiple characters, it still has some limitations. First, the proposed
cross-frame self-attention bounding approach relies on the use of cross-attention masking drive
region-based generation Yang et al. (2024a). Thus, weaknesses of underlying region-based generation
approach can sometimes become our weaknesses. Recall that region-based storyboard generation
helps apriori localize the placements of different characters and is used for reducing inter-character
leakage (refer Sec. 4). While the use of self-attention bounding further helps improve the layout
consistency in the storyboard frames (refer Fig. 3 from main paper), it may still struggle in scenarios
where the underlying cross-attention driven region-based generation shows poor performance. In
future, the use of more advanced or off-the-shelf pretrained region-based generation models (Li et al.,
2023; Dahary et al., 2024) can help consistensy with the predicted storyboard layouts.

Second, we note that while negative token unmerging helps increase pose-variance, the output results
may sometimes exhibit similar poses in the lack of defining action phrases in the input prompt (e.g.
running, sitting, standing etc.). Nevertheless, we note that explicitly prompting the large-language
model M to describe the character activity in each frame can help alleviate this problem.

Finally, as noted in Tab. 1 of the main paper, while the proposed approach helps achieve better T2I
alignment and character-consistency over prior works, the prompt-alignment performance decreases
when scaling to multiple characters. In particular, we observe a decline in T2I alignment score for our
approach from 0.78 to 0.63 when scaling to multiple characters (prior training-free state-of-the-art
storydiffusion Zhou et al. (2024) declines to 0.407). This, leaves much room for improvement of
consistent multi-character storyboard generation and storytelling. Combining the proposed training-
free approach (Sec. 4) with selective fine-tuning the cross-frame self-attention (Guo et al., 2024)
using multi-character data presents as interesting direction for future work. However, the same is out
of scope of this paper, and we leave it here as direction for future research.
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Figure 12: Additional Comparisons: comparing our approach with prior works (refer Sec. 5)
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Figure 13: Additional Comparisons: comparing our approach with prior works (refer Sec. 5)
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Figure 14: Additional results for multi-character storyboard generation.
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a) w/o early negative token unmerging: 

“a photo of a cat and dog [in a park, in a living room] ”

b) with early negative token unmerging: 

c) with early negative token unmerging: d) with early negative token unmerging: 

Figure 15: Visualizing pose-variation with negative-token merging coefficient. In order to visualize
the effect of ω < 0 for early negative token merging we generate a storyboard with a a cat and dog in
discrete settings (park, living room) without specifying the action (e.g., sitting, standing etc.). We
then increase the negative-token merging coefficient ω < 0. We observe that without negative token
unmerging the pose of both cat and dog is very similar. As the value of ω is gradually varied the pose
variance between the subjects increase with the dog appearing to gradually turn to a standing position,
while still maintaining consistency for both storyboard characters (cat and dog).
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Figure 16: Role of dropout in preserving image quality after self-attention bounding. We observe
that bounded cross-attention (BCA) computation (Yang et al., 2024a) itself can often be insufficient
for removing inter-character leakage within the same frame. The bounded self-attention (BSA) as
proposed in the paper (Sec. 4) can help reduce inter-character leakage but its naive application can
result in reduction of image quality (Col-3). Therefore, despite its simplicity dropout pays a critical
role in the proposed bounded self-attention (BSA) approach, and helps maintain output image quality
while still reducing inter-character leakage. Note: Please note that bounded self-attention (BSA) as
proposed in the paper (Sec. 4) also helps cross-frame inter-character leakage, however, reduction
in cross-frame leakage is often not feasible unless inter-character leakage within the same frame is
minimized first. Thus, the proposed approach helps address both problems in a joint formulation.
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a) StoryDiffusion ( characters: cat and dog )

c) Visualizing inter-character self-attention leakage across frames (source token is marked as green)

b) Cross-attention leakage (subject: dog)

Figure 17: Visualizing cross-frame self-attention leakage. We observe that sharing self-attention
across different frames (Zhou et al., 2024) exacerbates inter-character leakage with tokens of one
subject (dog) paying attention to tokens of the other subject (cat) and vice-versa, across different
frames. Moreover, addressing this leakage using cross-attention masking (Tewel et al., 2024) is
also not feasible due to the correspondingly increased cross-attention leakage (b) between output
characters.
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(a) Setup for user-study evaluating multi-character consistency (refer Sec. 5)

(b) Setup for user-study evaluating multi-character consistency (refer Sec. 5).

Figure 18: Setup for user-study comparing our method with prior works (refer Sec. 5)
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