429  Appendix

A More Observation Plots

430

A.1 Repetitive Attention Pattern

431

but from a different transformer layer on the same
. A repetitive pattern and attention sparsity can be

We provide the attention map similar to Figure
as3  text in Figure[6, Figure[7, Figure[8 and Figure

432

observed across layers.

434

(a) Attention map at position 178

(b) Attention map at position 228

(c) Attention map at position 278

Figure 6: Attention Map at Layer 5

(a) Attention map at position 178

(b) Attention map at position 228

(c) Attention map at position 278

Figure 7: Attention Map at Layer 10
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(a) Attention map at position 178

(b) Attention map at position 228

(c) Attention map at position 278

Figure 8: Attention Map at Layer 15

(a) Attention map at position 178

(b) Attention map at position 228

(c) Attention map at position 278

Figure 9: Attention Map at Layer 20

ilarity

1mi

A.2 Cross Layer Cosine S

435

ass  In Section[3.3] our analysis assumes a large cosine similarity between the input and output of 7. Here,
437 we provide empirical evidence to support such an assumption in Figure [I0} Because of the residual

connection in F and the domination of x, the cosine similarity between x and F(z) is extremely

high.

438
439
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Figure 10: x and F(z) is high in cosine similarity

B Proofs

B.1 Proof of Theorem 3.1]

We consider the token generation process of a simplified model: a single-layer transformer model
with single-head attention.

x¢+1 = F (at) , where a; = softmax (1/t . :z:tWQWI—(rXtT_l) Xi AWy Wo (5)

¢y € R1¥4 is a row vector. X;_; € R(E=Dxd denotes the aggregation of z1,...,2zs_1, where
the jth row is z;. Wo, Wi, Wy € R4*P and Wy € RP*4 are the attention weights. Lastly,
F : R4 — R1¥9 denotes the MLP block following attention block, a two-layer MLP with skip
connections, given by

F(x) = x + Waorelu(W;z) (6)
We are interested in the attention scores oy = softmax(1/t- 2, Wo WL X, ;). Notice that o ; scales
with 2, WoW x| . We first re-state the Theorem [3.1|below.

Theorem B.1. Let A = Wy, Wy I/VQI/VI—(r and let Aic, A\g, A\v, Ao denote the largest singular values
of Wi, Wo, Wy, Wo, respectively. Consider the transformer in () with normalized inputs |||, =
2

1forallt. Let c,e > 0 be constants. Assume that a;x y > (1 — ) [|ay||, with § < (m) .
Then for all x; satisfying :L‘zA:C; > cand xpAzy > ¢! maxX;e (], j-¢ xij;'—, it holds that

xoAx] xpAx,)
£ (a0 — 3€) < xt+1WQW;aro < £ (cu,e + 3¢) @)
llael, llacll,
As a preparation of the proof, we first show two lemmas.
Lemma B.1. Let x1,20 € RY™™ satisfies ||21]l, = |22ll, = 1 and z125 > 1 — & for some

§ € (0,1). Then for all y € R*™ we have
|21y — @y | < V25 ||y,
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47 Proof Letay =zl + x4 where

T 1
xg =21Ty - T1; Ty = T —x|2‘
ss8 Then it is easy to see that z3 ¥ = 0. By the Pythagorean Theorem, we have
2
12 _ 2 1]
ol = llaal3 = |24, = 52— )

459 Therefore, we have

2 Il 12
lor = s = || (o — ) 3|
= | = maf) e —az ),

= (1= m1a])" + ||z
=26

460 Thus, the Cauchy-Schwarz inequality implies

lz1y" — 2oy | < oy — wally - lyll, = V26 [lyll,
461 O

a2 Lemma B.2. Let ¢ € [t] be given. Suppose that ngx; > et |xjA:v2—|for all j # L. Then we have

(S(t)e —€)x) axy < 2] WiWoar < (S(t)e + €) x/ axy

463 Proof. Notice that

t—1
ay — OétXt_1WVWO = E Qi T4 vao
j=1
464 Thus, we have
t—1 t—1
T.T T.T T
aWoWgx, = E agjzj | WyWoWoWg, :E oy 2 AT,
Jj=1 j=1
465 Therefore
t—1
T.T T T
aWoWrx — aypzpAz) | = g oy x5 Az,
J=1,57¢
t—1
T
< g Qg j |:chz€ |
J=1.j#
t—1
-
< exyAz, E Oy j
J=1,57#0
-
< exAzx,

465 where in the second inequality we use ¢! ’:Uijﬂ < ngng and in the third inequality we use
t—1 t—1 . . .
67 > 1 g S > j=1 t,; = 1. This implies that

(a0 —€) :ng:rér < atV[/};)VVIIa:@T < (age+e€) ng:ch

468 O

15



469
470

471
472

473

474

475

476

477

478

479

480
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482

484
485

486
487

Now we proceed to the main body of the proof. Assume that ||z,||, = 1 for all £. Using Lemma
(B.1), if azz, > (1 — &) ||at||,, then we have

‘HatHQ—l aWoWex, — xH_lWQW;x;‘ < V24 ||WQW;zZ||2

Recall that Ag, Ak are the maximum singular values of Wg and Wi, respectively. Then it holds
that ||[WoWgz] ||, < AgAk l|lzell,. Using [[z¢]l, = 1, we have

ladlls " aWoWita! — o WoWial | < VZAAK

Notice that

t—1
laell, = || [ D avjz; | WyWo
=1

t—1

< oAy Z QT

j=1 9

t—1

<XoAv Yo,
j=1

= A oAy

2
T CE
Then since § < ( m) , we have

[laclly " aWoWika] - aiWoWial| <

Since by Lemma (B.Z), we have

aWoWprx, —aypziAz] | < ex] axy
QYW KLy , 4 4

It must hold that
T.T -1 T € T 2ce
T WoWrx, — |lally” apreAay | < ——x, axp + ——
llatll l|atll
Since x, ax; > ¢, it holds that
2ce 2e :c;a:vg
Tarl, = Tarll
which implies that
_ 3e
xt+1WQWI—<ra:Z — a5 ! Ott’gil’gAl’; < Tl x;—aazg
til2
Therefore
xoAx] xo Az
S (g — 3€) < wea WoWea, < SE— (o + 3¢)
[zl ||l

B.2 Proof of Theorem 4.1]

Let {#;}]_, denote the tokens generated by the transformer with budget KV cache as in Algorithm
withm = 1:
Zy41 = F (a¢), where a; = softmax (1/t : ftWQIC;r) VtTWo

Notice that when m = 1, i.e., in each iteration, we drop one token with the lowest score, the cache
will always maintain B tokens. If the ranking of the attention scores does not change in each iteration,
Algorithm 2 will always drop tokens with the smallest attention scores.

For reference purposes, let {z;}7_, denote the tokens generated by a vanilla transformer defined in
. We re-state Theorem [4.1|below, which bounds the difference ||z, — Z¢||,.
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504

Theorem B.2. Let A\, \o denote the largest singular values of W1 and Wy in (@) Let
8 exp (1/t . :itWQW;:%;'—)

Y S exp (e B WQWgE])
and assume that each B j = cvy j, where v, ; are sampled from a power-law distribution with pdf
f(z) = c(z + b)~k. Suppose that \y Ao(1 + A A2)(1 + AoAk) < % Let Tyin and Tyay denote
the starting and maximum sequence lengths, respectively, and let B < T,.x denote the budget as
in Algorithmlz Iffor all t € [Twin, Tmax), St contains only tokes with at most the largest B values

of Bt,j, that is, |S¢| = B and minjeg, B,; > max s Br,j. then for all € € (0, 1), with probability
at least 1 — Tyax €Xp (—m%) — Thax €Xp (— 2(Tmin7(11)(_15:/me)2 ) the following error

bound must hold for all t € [Tnin, Tmax]

_ e L/(k — 1)
E o - auly) < 21— (k -1 (7—=) )

Define my, ; = I{j € S;}. With the definition of my, ;, G; can be written as

=t = TAT
R o ~ my j exp (Y- BWoW ez )
= | Y E | WvWos  anj = 3 —— T ®
j=1 >oic M exp (Ve 2 WoWEa[)
Our first lemma shows the Lipschitzness of the attention module.
Lemma B.3. Consider two sequences of tokens {x;}!_, and {y; }i_, where ||x;||, = ||yi|l, = 1 for

all i € [t]. Define X;_1,Y;_1 € RE=D*4 45 the matrices whose ith row are x; and y;, respectively.
Let Ay = ||zy — y¢||5. Then we have

vi—1
t

<2
2

Aok A

1 1
softmaz <txtWQWI—|<—X;r_1> — softmaz <tthQW1—(rYtt1>

2

Proof. We can decompose the difference as

1 1
softmax (txtWQW;X;J — softmax (tthQW;YtTl)

2

<

1 1
softmax (txtWQW;(—Xt—H) — softmax (txtWQW;YtTl)

2

+

1 1
softmax (tItWQW;Y,l1) — softmax <tthQWI—<rY£1>

2
By the Lipschitzness of softmax, we have

1 1
softmax (txtWQW;XtT_1> — softmax (ta:tWQW;Y;1>

2

A

1
S Ry

IN

1
ARV el [[Xe—1 — Yeeallo
1

Since [l#1ll, = 1and | X1 Yiall, = (S2] lley — wsl,)* < V= 1Ay, we have
VEi—T1

t

Hsoftmax (thQW;Xll) — softmax (:thQWI—'(—Yt—El) H2 < AQAK Ay

Similarly,

1 1
softmax (txtWQWl—(rYtTJ — softmax (tthQW;(—}QTl)

2

IN

1
n (e — o) WoWr Y, 14|,

IN

1
72K Yl llze = welly
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Since ||z — ¢l = A¢ and [|Y;—1 ||, = v/t — 1, we have

1 1 Vvt—1
softmax (tathQW;Y;1> — softmax (tthQW;Y£1> < ; AQAK Ay
2
Combining the two bounds gives
1 1 vi—1
softmax (xtWQW;XtT_1> — softmax (thQW}(rYtil) <2 AQAK A
Vi vt 2 t
O

Our second lemma shows the difference between the output of the sampled and vanilla transformer
when the input is the same.

Lemma B.4. Let a; be defined as in (). Define b; as

oy ~ TT
) exp (V- 3WoWia))
i E t,j L5 vWo b > f:} exp (1/t - W ;jo>

Jj=1

®

Assume that ||z;||, = 1 for all j € [t]. Then we have
la: —bell, < Avdo Y Br;

J#Se
Proof. A direction computation yields
t—1
G — b= | Y (G — Brj) & | WyWo
j=1
Thus, ||@; — b¢||, can be bounded as
t—1 i—1
ld: = belly < Avro Y (dry = Biy) 1351l = Avro Y (e — Bry)
Jj=1 j=1

since ||Z;||, = 1 for all j € [t]. Now we analyze & ; — 3 ;. Let S; = S; \ {t}. Thenmy ; = 1if
and only if j € S’t. For convenience, let ry ; = 1/t - &4 WQW}I icJT Thus, 3 can be written as
exp (re,5)
> ics, €XP (1) + Xz, €Xp (Tei)
Furthermore, for all j ¢ St, we have &, ; = 0. Forall j € S't, we have

exp (rt,5)

Brj =

Gy = =0
" Ziegt exp (Tt,z’)
Therefore, for all j € S’t, we have
- Zz 5, €Xp (Tt,i)
ﬁt,j — Q5 = €Xp (Tt,j) : £5:
(Sics, 0 (r00)) (Sics, exb (o) + Ligs, xp (i)
exp (7¢,5) ) Zig{é‘t exp (74,:)

2ies, P (i) Ve, P (rei) + Ligs, exp (i)

=a; > B
i¢S,
Therefore, the bound of ||a; — b;||, can be written as

t—1
lar —billy S Avdo | D duy D Bii— Y By | =20ro Y Bij
J€S, i¢S, ¢S 5.
where the last equality follows from Zj eg, Gy =L O

18



520 Our last lemma shows the Lipschitzness of the MLP in (6).

521 Lemma B.5. Let \1, A2 denote the largest singular values of W1, Ws in (E). For all t1,x2 € RY,
522 we have

[F(z1) = F(x2)|| < (14 AA2) |1 — 22|,

523 Proof. Direct computation yields

[F(21) = F(z2)[| = [[(z1 + Warelu (Wiz1)) — (v2 + Warelu (Wizs))||
< |z — 2|y + [|Worelu (Wiz:) — Worelu (Wizs)|
<|lz1 — x2l|y + A2 [|relu (Wizy) — relu (Wizs)||
< oy = @l + A2 [Wh (21 — 22) ]l
< ler = w2lly + A f|lz1 — 22l
= (14 Ax2) [lzn — 2],

524 where in the third inequality we use the fact that relu(-) is 1-Lipschitz. O

525 Now we turn to the proof of our main theorem. Combining all of the results, we have

t—1 t—1
a; — CNlt = E Qt 55 WVWO - E ONZt’j.’Z'j WVWO
j=1 j=1
t—1 t—1
= E th_’jil'j vao - E Oztyj.fj vao
Jj=1 Jj=1
T
t—1 t—1
+ E Oft,ji‘j vao - E ﬁtyj.fj vao
j=1 j=1
T2
t—1 t—1
+ Zﬁt,ji’j WVWO - Zdt*ji.j W\/WO
j=1 i=1
Ts

s26 Therefore, by triangle inequality, we have
lar = ailly < I Tilly + 1 T2llz + 15l (10)

527 To start, the magnitude of 7; can be bounded as

t—1
I Tilly = ||| D s, — &) | WyWo
i=1 )
t—1

<AV |D sy — Frg)
=1
t—1

<MY an e — &l
Jj=1
t—1

< AvAoA¢ Z ayj

J=1

= Av Aol

19



s28 where in the third inequality we use |lz;; — Z; ||, = A; and in the last equality we use
529 Z;: ot; = 1. To bound the magnitude of 73, we apply Lemma which shows that

530 ||y — Bl < Q—Vttfl)\Q)\KAt to get that

t—1
12l = ||| D_(aws = Bey)E; | WvWo
j=0 2
t—1
< Ao | D (= Biy)i,
j=0 )
t—1
< Avdo Z ;= Bl 11Tl
=0

< Avo llew — Belly

<VEt=1 v Ao llar — Bl
1
<2 (1 — t) AQAK AV A0 A
531 Lastly, to bound the magnitude of 73, we use Lemma[B.4/to get that
[ Tslly < 2\ A0 Y Brj
i¢ 5t

532 Putting things together for (I0), we have

lae = dell, < Avdo [ 2D Brj+ (2AAk +1) A
725

533 By Lemma[B.5 we can further show that

Zi41 — Zegally < (1 +MA2)AvAo | 2 Z Bej + (2AoAr +1) Ay
3¢5
= Ho=E

53¢ By Theorem we have that with probability at least 1 — Ti, . €xp (7 EQbQ(Tminfl)) —

535  Tinax €XP (— 2(T"““7(11)(_1523 [Timax)” ) , it holds for all ¢ € [Tinin, Tinax) that

1 — B/Thax 1—¢€ =

sl mex
ss6  Given that E [||x; — Z4]|] < 2Amax, We have

Ell|lzir1 — Zer1lls] < (1 4+ AA2)Av Ao (2Amax + 2 (2AQAk + 1) Amax)
S 4AVAO(1 + A1A2)(1 + )\QAK)Amax

537 Thus, as long as Ay Ao (1 + A1 A2)(1 + AgAk) < %, we can guarantee that
E[[|zt41 — jt+1||2] < 2Amax

sss  Thus, for all t € [Tin, Tmax], We have that

Pl =l = 21((11_86/;) (k (k-1 <1E> “)
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540
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544
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550

551

552

B.3 Budgeted Cache

Theorem B.3. Let 3; ; be sampled from some power-law distribution f(x) = c(x+b) ™7 with support
on [0,u —b) for some k > 2 and u > 5b. Let Sy be defined in Theorem!lZZ, and define Sy = Sy \ {t}.

Then with probability at least 1 — Ty oy €Xp (—%) — Tmax €XP (_%) it
holds for all t € T that
1
(1 — B/Thax) 1—e¢ F-T
E < k—-(k-1) =— 11
%;ﬁ“ = 0.98(1 —¢)? (k=1) BT — € (an
J t

We consider the case of maintaining a budget of B by dropping the smallest 3; ;’s. Assume that v;
has pdf f(z) = c(x + b)~* with support on [0, u — b). To make things precise, we first compute ¢

u—>b
k—1
_ —k _
c-(/o (x+b) dx) I N ——
To start, we notice that

x 1-k — 1)z
/:Jc(:v+b)_k:—( 0 (k= Do +) = g(z)

(k—1)(k—2)
LetC = Z;;ll v;, then the expectation of C'is
k—1 0 k
E[C]=(-DE[vn]= (- 1)@ ; z(x+b) "dx

= (0~ 1 (9() — (0)

k-1 b2k u =F((k — Du— (k — 2)b)
(t‘”bl—k—ul—k((k—l)(k—m‘ RIS )

t—1 7% —(k—Du*F 4 (k- 2)bu!*

T k-2 ik — 1=k
bR (k=1 u? P (k—2)bul F s .
Let A = e . By Hoeffding’s inequality, we have that
2¢2E [C]?
P(C<(1-eE[C] < -
This implies that with probability at least 1 — exp (—%) we have
t—1
>(1—-eA——
Cz(1-9h—

Now, we proceed to bound ) s [ ; where S;={jelt—1:8,> &} Equivalently, we can
bound C 1 Zz;ll I{v; <~} v;. Its expectation is given by

t—1 t—1
_ k—2
j=1 j=1
k-2 k-1 g .
:Al—e).blf’“—ulfk/o x(x+b) "dx
(k—1)(k—2)

- A(l _ 6) (bl—k _ ul—k) (g() — 9(0))

We pause here and study how small can we choose . Notice that

t—1
bl—k _ ’7+b 1-k
E [ 1{y, <9} = (- P <) = (- 1) LS 0D
Jj=1
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554
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556

557

558

559

560

561

By Hoeffding’s inequality again, we have that

t—1
blfk _ ’y-i—b 1—k
P ZH{UJ' <z (-gt-1)- bl—k-(_ ul—)k
j=1

< oxp (_2(1& I G O b)l—k)2>

(b1 — ul—k)2

Enforcing 22;11 I{v; <~} > Tmax — B gives (v + b)1=%F < p1=F — %(bl_k —ul=k),

—€

1—e

_1
which can be satisfied as long as v > ((B/T“‘a"_e> - 1) b. Therefore

We further notice that

pl—k _ 1 — B/Thax (b1F — k) > B /T — E(blsz )

1—e¢ - 1—e

This gives

= b1 = B/Toax) (k= 1)(B/Tmax — €)7
E|C ;H{vjév}vj STA0—o? Al —e)2

b(1 — BT l—¢ \FT
< (A(1 _/T€)2> (k(kl) (B/me_6> )

u\1-k b—u

A

Notice that if « > 5b, we have

Therefore
E|c1ST U= B/Te) (4 _1-e VT
- < < — (k-1
; {U] = ’Y} Vil = 0.98(1 — 6)2 ( ) <B/Tmax — €>

holds with probability at least 1 — exp (—(ki’;(%) — exp (—%) Taking a

union bound gives the desired result.
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