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ABSTRACT

Many inverse problems are ill-posed and need to be complemented by prior in-
formation that restricts the class of admissible models. Bayesian approaches en-
code this information as prior distributions that impose generic properties on the
model such as sparsity, non-negativity or smoothness. However, in case of com-
plex structured models such as images, graphs or three-dimensional (3D) objects,
generic prior distributions tend to favor models that differ largely from those ob-
served in the real world. Here we explore the use of diffusion models as priors
that are combined with experimental data within a Bayesian framework. We use
3D point clouds to represent 3D objects such as household items or biomolecu-
lar complexes formed from proteins and nucleic acids. We train diffusion models
that generate coarse-grained 3D structures at a medium resolution and integrate
these with incomplete and noisy experimental data. To demonstrate the power of
our approach, we focus on the reconstruction of biomolecular assemblies from
cryo-electron microscopy (cryo-EM) images, which is an important inverse prob-
lem in structural biology. We find that posterior sampling with diffusion model
priors allows for 3D reconstruction from very sparse, low-resolution and partial
observations.

1 INTRODUCTION

Inverse problems are encountered in many different scientific fields. The basic setting is that we
observe noisy and incomplete data y and seek to find a model x that predicts mock data via a
forward model A such that y ≈ A(x). An important subclass are linear models where A is a linear
operator. Well-known inverse problems are deconvolution or tomography.

The challenge in solving inverse problems stems from the fact that they tend to be ill-posed mean-
ing that many models can produce highly similar data and/or the reconstructed model can be very
sensitive to noise. The remedy is to combine a reconstruction loss with a regularizer. Well-studied
regularizers are Tikhonov regularization (aka ridge regression), sparsity, and non-negativity.

Bayesian inference offers a powerful framework to tackle inverse problems. The conditional prob-
ability p(y |x), the likelihood, relates the data y to the mock data A(x) via a noise model. A
common assumption is independent Gaussian noise resulting in the likelihood

p(y |x) ∝ exp

�
−∥y −A(x)∥2

2σ2

�
. (1)

Maximizing the likelihood is then equivalent to standard least-squares fitting.

The prior probability p(x) encodes data-independent knowledge about a particular model x; its
negative logarithm − log p(x) can be viewed as a regularizer. The posterior of the model is

p(x |y) = p(y |x) p(x)
p(y)

(2)

with model evidence p(y) =
R
p(y |x) p(x) dx. In case of a Gaussian likelihood, maximization of

log p(x |y) is equivalent to regularized least-squares fitting.

Often detailed knowledge about reasonable solutions is available but difficult to capture by the stan-
dard priors that are typically used to tackle inverse problems. For example, cryo-electron microscopy
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(cryo-EM) aims to reconstruct the three-dimensional structure of macromolecular complexes from
two-dimensional (2D) projections. Cryo-EM images are typically very noisy with signal-to-noise
ratios (SNR) far below one. On the other hand, a large body of knowledge has been accumulated
over the past six decades, including hundreds of thousands of experimentally determined biomolec-
ular structures that are stored in the Protein Data Bank (PDB) (Berman et al., 2000). Experimentally
determined structures exhibit recurrent features such as alpha-helices and beta-strands and prefer-
ences for the proximity and packing of amino acids and entire subunits. This detailed information is
not captured by standard priors used in cryo-EM reconstruction packages such as cryoSPARC (Pun-
jani et al., 2017) or RELION (Scheres, 2012). These approaches represent the structure as voxel grid
and use generic priors enforcing non-negativity or penalizing high-frequency contributions. If one
were to sample volumes from the corresponding prior, the sampled structures would not resemble
any of the known biomolecular structures. Here we try to encode the rich knowledge available in the
PDB as a diffusion model prior. We test 3D reconstruction from sparse, low-resolution and partial
measurements by posterior sampling with diffusion models as priors.

1.1 CONTRIBUTION

Our contributions are as follows: We propose a method to reconstruct 3D structures from 2D pro-
jections that utilizes diffusion models as priors. Using diffusion priors has previously not been
explored to solve the 3D reconstruction problem in cryo-EM. The combination of the diffusion
model prior with a likelihood allows us to reconstruct 3D structures from very sparse observations
such as 2D projections, low-resolution structures and known structures of subunits. This is achieved
with diffusion-based posterior sampling (DPS) (Chung et al., 2023) a method that has not yet been
investigated in the context of 3D data. We combine DPS with optimized diffusion schedules and
second-order correction steps with adaptable noise injection (Karras et al., 2022) to improve sample
quality and runtime. We demonstrate the fidelity and flexibility of our method on highly complex
and diverse datasets of 3D point clouds from ShapeNet and the PDB.

We emphasize that the reconstruction problem which we solve differs from the problem of recon-
structing a 3D surface from a 2D surface color image, which is tackled by, for example, Point-E
(Nichol et al., 2022), Shape-E (Jun & Nichol, 2023), PC2 (Melas-Kyriazi et al., 2023), One-2-3-45
(Liu et al., 2023) and BDM (Xu et al., 2024). The main difference is that in our work the 2D ob-
servations are projections that provide information about the density across the full volume rather
than only information about the surface. In addition, our approach is also capable of conditioning
on coarse-grained or partial observations of the 3D structure. Moreover, the reconstruction problem
in cryo-EM aims to reconstruct the internal structure not only the surface.

2 BACKGROUND ON DIFFUSION MODELS

Diffusion models have gained wide recognition in the field of generative modeling (Sohl-Dickstein
et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021), particularly in image synthesis,
where diffusion models have demonstrated their capability by surpassing former leading models in
key metrics (Dhariwal & Nichol, 2021) and continue to set new records (Karras et al., 2024). In
generative modeling, the main goal is to learn a sampler for an unknown distribution p0 from i.i.d.
samples x(0)i ∼ p0 that serve as training data. A diffusion model tries to achieve this goal by
approximating a probability flow from a latent Gaussian distribution pT to the unknown target p0.

For this purpose, a forward process from the target distribution p0 to the latent distribution pT is
defined in terms of a stochastic differential equations (SDE) of the form

dx = f(x, t) dt+ g(t) dwt, (3)

where wt is a Wiener process, f(·, t) : Rd → Rd is the drift of x(t) and g : R → R is the diffusion
coefficient (Song et al., 2021). Starting at time t = 0 with samples x(0) ∼ p0 from the target
distribution, process (3) is designed such that it gradually destroys the information content of the
samples x(0) by transforming them into samples x(T ) from an isotropic Gaussian.

A diffusion model aims to represent the reverse process from pT to p0 such that we can draw noise
from a Gaussian distribution and slowly transform it into samples from the data distribution p0.
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Anderson (1982) showed that the forward process (3) has a reverse process of the form

dx =
�
f(x, t)− g(t)2∇x log pt(x)

�
dt+ g(t) dwt (4)

with pt(x(t)) =
R
p0t(x(t) |x(0)) p0(x(0)) dx(0) being the marginal distribution of x(t) where

p0t is the perturbation kernel from time 0 to t. The score ∇x log pt(x) of the marginals is unknown
and has to be approximated with a parametric score model sθ(x(t), t).

Diffusion model training works by applying gradient descent to the denoising score matching
(DSM) objective to train sθ:

min
θ

Et,x(0),x(t)

h
λ(t)

����∇x(t) log p0t(x(t) |x(0))− sθ(x(t), t)
����2

i
(5)

where t ∼ ptrain, x(t) ∼ pt, x(0) ∼ p0 and x(t) ∼ p0t(· |x(0)) with the loss weighting λ : R+ →
R+. In DSM, we only need to evaluate the score of the perturbation kernel p0t, which is easy
to calculate for suitable choices of the drift and diffusion coefficient (consider, for instance, the
variance exploding or variance preserving schedules in Song et al. (2021)). More background on
the training process can be found in Appendix A.2. After training, the score model sθ can be
used as a replacement for ∇x log pt(x) to generate new data by sampling the latent model pT and
simulating the reverse SDE in equation (4) backward in time. The reverse SDE can be simulated
with numerical methods such as Euler-Maruyama, starting from T and ending shortly before 0 to
avoid numerical errors.

2.1 DIFFUSION MODELS IN 3D

Apart from the 2D image domain, diffusion models have been employed to estimate the distribution
of 3D objects. Various representations have been used including point clouds (Luo & Hu, 2021; Vah-
dat et al., 2022; Nichol et al., 2022; Zhou et al., 2021), meshes and implicit neural representations
(Jain et al., 2021; Jun & Nichol, 2023; Erkoç et al., 2023) such as neural radiance fields (Mildenhall
et al., 2021). Here, we employ a point cloud representation and adopt the point transformer archi-
tecture from Nichol et al. (2022). This representation allows us to model 3D volume densities such
as cryo-EM maps efficiently, unlike meshes, which only model the surface. Furthermore, the point
cloud representation simplifies the process of developing likelihoods for the cryo-EM reconstruction
problem. In addition, we avoid any kind of latent diffusion (as, for example, proposed by Vahdat
et al. (2022)) for which likelihood guidance is more difficult (Song et al., 2024).

2.2 DIFFUSION POSTERIOR SAMPLING

In many practical applications such as text-to-image or class-to-image generation, the focus is on
sampling from the posterior x(0) ∼ p0(· |y) given some input y. In this case, our unconditional
score ∇x(t) log pt(x(t)) will be extended to

∇x(t) log pt(x(t) |y)
Bayes rule

= ∇x(t) log pt(y |x(t)) +∇x(t) log pt(x(t)) . (6)

Given pairs of training data {(x(0)i,yi)}, we could train a diffusion prior plus a classifier
pt(y |x(t)) and use its score ∇x(t) log pt(y |x(t)) during inference for classifier guidance (Dhari-
wal & Nichol, 2021). Another popular option is to perform classifier-free guidance and directly
train ∇x(t) log pt(x(t) |y) (Ho & Salimans, 2022). For example, Zhou et al. (2021) used this ap-
proach for 3D shape completion and 3D shape reconstruction from a single depth map.

Another line of work attempts to avoid task-specific training and instead uses the known forward
model to guide the generation process (Chung et al., 2023; 2022; Ho et al., 2022; Lugmayr et al.,
2022; Song et al., 2021; Trippe et al., 2023a;b; Dou & Song, 2024; Cardoso et al., 2023). In tasks
with known forward model like inpainting, shape completion or colorization, we have access to
a likelihood p0(y |x(0)) based on the noiseless data x(0). Chung et al. (2023) make use of this
likelihood by approximating the score of the posterior by

∇x(t) log pt(x(t) |y) ≈ ζ∇x(t) log p0(y |Dθ(x(t), t)) +∇x(t) log pt(x(t)) (7)

with weighting ζ > 0 and denoising function Dθ , which is an estimator of D(x(t), t) :=
Ex(0)∼p(·|x(t))[x(0)] that is learnt during the training of the diffusion model (see Section 3.1 and
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Appendix A.2). This approximation approach, called reconstruction guidance in Ho et al. (2022),
has been applied across multiple contexts with prominent results in ill-posed inverse problems of
2D images (Chung et al., 2023; 2022; Ho et al., 2022; Trippe et al., 2023a). Simpler approaches
such as the replacement method of Song et al. (2021) are computationally cheaper because they
do not need additional backpropagation. However, the replacement method sometimes suffers from
severe artifacts (Lugmayr et al., 2022; Chung et al., 2023). Most recently, several approaches used
reweighing schemes within the Sequential Monte Carlo (SMC) framework to derive exact methods
for diffusion posterior sampling (Trippe et al., 2023a;b; Cardoso et al., 2023; Dou & Song, 2024).
However, the guarantee of exactness is not of practical relevance in our case, because the required
number of particles in SMC tends to be excessively large (Gupta et al., 2024).

3 THEORETICAL FRAMEWORK

Our theoretical framework is inspired by existing diffusion models and uses reconstruction guidance
provided by forward models for 3D reconstruction from sparse observations in 2D and 3D.

3.1 3D DIFFUSION PRIOR TRAINING AND SAMPLING

We follow the design choice recommendations of Karras et al. (2022) using f(x, t) = 0 and
g(t) =

√
2t which yield the forward diffusion SDE dx =

√
2t dwt and the perturbation kernel

p0t(x(t) |x(0)) = N (x(t);x(0), t2I). For the loss weighting λ(t), ptrain(t) and the score model
parameterization sθ(x(t), t) = (Dθ(x(t), t)−x(t))/t2 we also followed Karras et al. (2022) (more
details can be found in the Appendix A.2).

During inference time, we utilize the more general version of the reverse SDE presented by Karras
et al. (2022) which has the same marginals as dx =

√
2t dwt and gives us more flexibility in

choosing favorable sampling schemes:

dx = −[t+ β(t)t2]∇x log pt(x)dt+
p
2β(t)t2 dwt (8)

where β : R+ → R+ is a function that controls how noisy the trajectory behaves. The choice
β(t) = 1/t results in Eq. (4) as a special case, whereas β(t) = 0 yields an ordinary differential
equation (ODE) called the flowODE. In practice, the score of the marginals ∇x log pt(x) is replaced
by the score estimator (Dθ(x, t)− x)/t2 and the differential equation must be solved backward in
time by a numerical integrator such as Euler-Maruyama for a specific time interval t ∈ [tmin, tmax]
where tmin > 0. The time interval must be discretized into N time steps {tmax = t0 > . . . >
tN−1 = tmin > tN = 0}. More time steps result in a more accurate simulation of the SDE,
but also increase the number of network function evaluations (NFE). Accurate simulation of the
SDE can be especially difficult in areas with a high curvature in the trajectory, which is typically
prominent at smaller t. We therefore adopt the time step heuristic of Karras et al. (2022): ti =

(t
1/ρ
max +

i
N−1 (t

1/ρ
min − t

1/ρ
max))ρ with i < N , ρ ≥ 1 and tN = 0 where an increase in ρ leads to more

time steps in the lower part of the time frame. We found that ρ = 3 works well for sampling 3D
point clouds. Algorithm 1 with ∇ log p̃t(x |y) = (Dθ(x, t)−x)/t2 implements unguided diffusion
prior sampling using Euler-Maruyama with correction step.

3.2 DIFFUSION POSTERIOR SAMPLING FOR 3D RECONSTRUCTION

To sample the trained diffusion prior in the light of observations y originating from a known for-
ward process, we use reconstruction guidance (Chung et al., 2023). In contrast to Chung et al.
(2023), we apply a more advanced diffusion schedule (EDM (Karras et al., 2022) instead of VP-
SDE (Song et al., 2021)) to enhance the capabilities of the proposed guidance strategy. We supple-
ment the schedule with a stochastic Euler-Maruyama integrator that uses a second-order correction
step, because both the use of stochasticity (solving an SDE rather than an ODE) and second-order
samplers have been shown to improve image generation performance in the unconditional setting
(Karras et al., 2022). We observed that this also holds for our conditional setting in 3D (see Ta-
ble 2). For conditional generation, we extend the score of the marginals from the diffusion prior
∇x(t) log pt(x(t)) with an approximate score of the perturbed likelihoods:

∇x(t) log pt(x(t)) + ζ∇x(t) log p0(y |Dθ(x(t), t)) =: ∇x(t) log p̃t(x(t) |y) (9)
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with ζ = α(t)/
p
log p0(y |Dθ(x(t), t)) following Chung et al. (2023). Algorithm 1 illustrates our

method for conditional generation with reconstruction guidance. In order to apply this methodology
to reconstruct partially observed 3D volumes represented as point clouds, we now list the subsequent
forward processes.

Single 2D projection to 3D. In the simplest version of the reconstruction problem, we partially
observe a single 2D projection of a 3D object in a known orientation. Here we represent the structure
of an object as a 3D point cloud x(0) ∈ RN×3 with N points and the corresponding 2D projection
y1 ∈ RM×2 as a 2D point cloud consisting of M points. We define the likelihood of observing the
projection y1 given x(0) as p0(y1 |x(0)) ∝ exp (−E1(x(0))) where the energy is defined as

Ek(x(0)) := min
P∈PN×N

����PUyk − (x(0)Rk):,(1,2)
����2

F (10)

for k = 1 with permutation matrices PN×N ⊂ {0, 1}N×N , orthogonal matrix Rk ∈ O(3), Frobe-
nius norm || · ||F and the linear operator U ∈ {0, 1}N×M that upsamples1 yk by randomly redrawing
points. The permutation matrix P assigns each point in Uyk to a single point in the rotated and
projected object (x(0)Rk):,(1,2). The introduction of P arises from the assumption of a hidden
one-to-one correspondence between the upsampled points Uyk and the points in x(0). The inner
optimization problem is a linear assignment problem (Crouse, 2016) that can be solved exactly in
polynomial time by using the Hungarian method (Kuhn, 1955). We stress that due to the miss-
ing correspondence information, the 3D reconstruction problem from 2D projections with known
orientations is non-trivial and severely ill-posed.

Multiple 2D projections to 3D. To generalize the above forward process, we consider the case
of observing K projections y = {y1, . . . ,yK} of an object x(0) from known orientations R =
{R1, . . . ,RK}. Then the likelihood of observing the set of projections y from orientations R given
x(0) is the product of all independent observations:

p0(y |x(0)) =
Y

k

p(yk |x(0)) ∝ exp

�
−
X

k

Ek(x(0))

�
(11)

Coarse to fine grained. We can also guide the diffusion prior by a 3D point cloud with fewer
points M < N representing a low-resolution version ycg ∈ RM×3 of x(0) ∈ RN×3. From this
coarser observation, we want to infer a higher resolution structure. In order to characterize the rela-
tion between different resolutions, we employ a likelihood similar to the one used for 2D projections,
p0(ycg |x(0)) ∝ exp (−E∗(x(0))) where the energy is defined as

Ecg(x(0)) := min
P∈PN×N

||PUycg − x(0)||2F . (12)

From subunit to full 3D reconstruction. If available we can further update our prior knowledge
encoded in the diffusion model by utilizing information about parts or subunits of the unknown 3D
structure. Thus we define the energy for the likelihood p0(ysu |x) ∝ exp(−Esu(x(0))) of observing
the subunit ysu ∈ RL×3 given x(0) ∈ RN×3 by

Esu(x(0)) := min
P∈PL×N

||Px(0)− ysu||2F (13)

with partial permutation matrices PL×N ⊂ {0, 1}L×N that pick L out of N points in x(0) to create
a one-to-one correspondence to the L points in ysu.

We can also combine likelihoods for all possible observations y = {ysu,ycg,y1, . . . ,yK} of the 3D
structure to update the prior knowledge encoded in the diffusion prior. To enable the assignment of
importance or uncertainty to each dataset, we can weight the corresponding energies:

p0(y |x(0)) ∝ exp

�
−wsuEsu(x(0))− wcgEcg(x(0))−

X

k

wkEk(x(0))

�
(14)

with weights wsu, wcg, wk ≥ 0, coarse-grained structure ycg, subunit ysu, 2D observations
{y1, . . . ,yK}, orientations R and 3D structure x(0). In the experiments of this work, we apply
equal weighting of 1/|y| to all the observations. The likelihood guidance of the diffusion prior
allows us to flexibly incorporate all this information with varying shapes, thereby avoiding task-
specific retraining.

1Here we look at the case M ≤ N , however this formulation can also be used to downsample yk if M > N .
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Algorithm 1 Approximate posterior sampling with correction step

1: Input: Noise control function β, time steps {t0 > t1 > . . . > tN = 0}, observations y
2: Output: Approximate sample from p0(x(0) |y)
3: x(t0) ∼ N (0, t20I)

4: for i ∈ {0, . . . , N − 1} do
5: ∆t ← (ti − ti+1)

6: x(ti+1) ← x(ti) + ti∇ log p̃t(x(ti) |y)∆t

7: if ti+1 ̸= 0 then ▷ correction step + noise injection
8: d ← (ti + β(ti)t

2
i ) [∇ log p̃t(x(ti) |y) +∇ log p̃t(x(ti+1) |y)]∆t/2

9: n ∼ N
�
0, 2β(ti)t

2
i∆tI

�

10: x(ti+1) ← x(ti) + d+ n

11: end if
12: end for
13: return x

4 EXPERIMENTS

To demonstrate the fidelity and flexibility of our approach, we conducted multiple experiments. For
this, we performed training on multiple different 3D datasets and tested their usefulness on a variety
of 3D reconstruction tasks.

4.1 DIFFUSION PRIOR TRAINING

We trained diffusion priors for each of the three datasets from multiple domains each differing in
their level of complexity.

(A) ShapeNet-Chair: 2658 point clouds from the training split of the ShapeNet dataset in the cate-
gory ”Chair” accessed via PyTorch Geometric (Chang et al., 2015; Fey & Lenssen, 2019). During
training, we randomly subsampled 1024 points from each point cloud and applied random orthogo-
nal transformations to augment the dataset.

(B) ShapeNet-Mixed: 10693 point clouds from the training split of the ShapeNet dataset in the
categories ”Airplane”, ”Bag”, ”Cap”, ”Car”, ”Chair”, ”Guitar”, ”Laptop”, ”Motorbike”, ”Mug”,
”Pistol”, ”Rocket”, ”Skateboard” and ”Table” (all categories from ShapeNet with point clouds larger
than or equal to 1024) accessed via PyTorch Geometric (Chang et al., 2015; Fey & Lenssen, 2019).
Again, we applied subsampling and augmentation with random orthogonal transformations to the
training data.

(C) CryoStruct: 6629 point clouds representing mixture models of size 1024 constructed from
the 3D atom positions of biomolecular complexes from the PDB contained in the train split of the
curated Cryo2StructDataset (Giri et al., 2024). The mixture models were created using the scikit-
learn GaussianMixture method with covariance matrix shared among the components (Pedregosa
et al., 2011). We also augmented the dataset by randomly rotating the biomolecular complexes.

The point clouds in all three datasets are centered and scaled so as to fit into the [−1, 1] cube.
Figures 3, 4, and 5 in the appendix present images of unconditional samples from the diffusion
priors. Following the methodology of Yang et al. (2019), we present the 1-nearest neighbor accuracy
(1-NNA), coverage (COV), and minimum matching distance (MMD) in Table 3 in the appendix to
quantify the performance of the diffusion model.

4.2 3D RECONSTRUCTION ON SHAPENET

To demonstrate the performance and flexibility of our method on the widely used ShapeNet bench-
mark (Chang et al., 2015), we conducted experiments across nine different configurations. An ad-
vantage of the ShapeNet reconstruction tasks is that it is easier to visually judge the quality of the

6
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Figure 1: Results for five different reconstruction tasks. In all examples, the ML reconstruction
has a higher likelihood of observing the input data than the models obtained with approximate DPS.
However, the ML-based models show a higher reconstruction error than those from DPS. The results
are also part of the tests presented in Table 1 and correspond to rows 9, 8, 1, 8 and 2 (from left to
right).

reconstructions than for the CryoStruct reconstruction tasks. In each setting, we took the first 100
instances from both the ShapeNet-Chair and ShapeNet-Mixed test set as ground truth and created
sparse observations y. These observations include 2D projections, coarse-grained point clouds, or
subunits. The 2D projections are constructed by sampling points from the ground truth and applying
a random orthogonal transformation to the sub-sampled points before projecting them onto the xy-
plane. The coarse-grained point clouds are constructed by taking the means from a mixture model
fitted to the ground truth point cloud. A subunit, i.e. a partial structure, corresponds to a single
k-means cluster selected randomly from the ground truth.

We applied our version of approximate DPS (see Algorithm 1) to generate ten 3D reconstructions per
instance using only 40 time steps (additional details on the parameters can be found in Section A.3
of the Appendix). We compared our method to the ML approach obtained by maximizing the same
log-likelihood that was also used to guide the diffusion prior during approximate DPS. Starting from
10 different random clouds with points uniformly distributed in [−1, 1]3, we performed gradient
descent for 100 steps using the Adam optimizer with a learning rate of 0.01 (Kingma & Ba, 2014).
By using the same likelihoods without the diffusion model, we can assess how much we gain in
3D reconstruction performance by utilizing a diffusion prior. Similar to the approach of Yang et al.
(2019), we measure the 3D reconstruction error between a reconstructed point cloud and the ground
truth with the Chamfer Distance (CD) and the Earth Movers Distance (EMD). The values in Table
1 are the means and standard deviations of all 100 × 10 reconstruction errors measured in CD and
EMD as well as the negative log-likelihood (energy E) of the corresponding forward model.

Table 1 shows that, as expected, in most cases the maximum likelihood approach creates 3D re-
constructions with a higher likelihood (lower energy E) of observing the input data y than DPS.
However, in the face of the ill-posedness of the reconstruction tasks, it is not sufficient to simply
optimize the likelihood. This explains why the incorporation of the diffusion prior consistently re-
sults in better reconstruction errors in all test cases for both EMD and CD, although for most test
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Table 1: Results from the 3D reconstruction task from sparse data. Tests were conducted on the test
partition of the ShapeNet (Mixed, Chair) datasets under various configurations, altering the number
of points per projection, coarse-grained structure and subunit. We compared our variant of approx-
imate diffusion posterior sampling (DPS) to the maximum likelihood (ML) approach. To quantify
the error between the reconstructions and the ground truth point clouds we calculated the mean
Chamfer Distance (CD) and mean Earth Movers Distance (EMD) over in total 1k reconstructions
(10 samples for each of the 100 test instances). For further analysis we also show the energy of the
forward model (E).

ShapeNet Method Projection Number of Coarse grained Subunit CD([×102], ↓) EMD([×102], ↓) E([×103], ↓)category points projections points points

Chair DPS 200 5 - - 9.98± 2.38 8.32± 1.77 3.80± 1.02
ML 13.30± 2.00 11.03± 1.69 3.68± 0.88

Chair DPS 200 6 - - 9.71± 1.81 7.78± 1.35 3.98± 0.87
ML 12.53± 1.53 10.04± 1.30 3.87± 0.79

Mixed DPS 400 4 - - 10.56± 4.09 8.18± 3.40 2.41± 1.01
ML 12.37± 2.34 10.21± 2.09 2.38± 0.79

Mixed DPS 400 5 - - 9.29± 2.65 7.00± 2.22 2.30± 0.89
ML 11.78± 1.88 9.39± 1.77 2.72± 1.27

Chair DPS 300 1 30 - 10.38± 2.24 10.66± 3.23 6.21± 1.76
ML 12.40± 2.16 11.89± 2.84 5.04± 1.52

Mixed DPS 300 1 30 - 9.36± 2.23 9.21± 2.47 5.57± 2.11
ML 11.99± 1.89 11.08± 2.01 5.13± 1.69

Chair DPS 200 2 - ≈ 256
13.21± 5.69 12.86± 5.62 2.51± 0.66

ML 16.98± 4.58 16.63± 4.85 1.84± 0.63

Mixed DPS 200 2 - ≈ 256
11.11± 4.13 11.19± 5.09 2.47± 0.86

ML 18.14± 6.28 17.99± 6.59 2.22± 1.05

Mixed DPS 200 1 30 ≈ 128
8.55± 1.97 9.38± 1.96 4.17± 1.64

ML 11.19± 1.82 10.90± 1.88 3.80± 1.49

Table 2: Evaluation of the improvement we obtain by switching from integrating the flowODE
(β(t) = 0) using Euler’s method in A to the integration of the SDE (β(t) = 1/t if t > 0.15 and
else 0) using the Euler–Maruyama method in B. In C, we observe that the reconstruction error is
lowered further by adding a second-order correction step. The test errors have been studied on the
ShapeNet-Mixed reconstruction task given a subunit with ≈ 256 points and two projection images
with 200 points each (row 8 in Table 1). In all three schedules, we used 79 NFE which accounts to
79 time steps in A and B and 40 time steps in C.

CD([×102], ↓) EMD([×102], ↓) E([×103], ↓)
A Euler ODE 14.38± 5.64 13.98± 5.94 3.09± 1.19
B + noise 11.80± 3.94 11.71± 5.03 2.61± 0.85
C + correction step 11.11± 4.13 11.19± 5.09 2.47± 0.86

cases the likelihoods obtained with DPS are worse than those obtained with ML. Prominent example
reconstructions that demonstrate the superior performance of DPS are shown in Figure 1. The diffu-
sion prior helps navigate the space of possible 3D reconstructions with high likelihood toward those
with typical ShapeNet structures, information that is not sufficiently provided by the observations y
themselves. The structural models obtained with DPS are also visually much closer to the ground
truth and show a lower degree of heterogeneity

4.3 DIFFUSION POSTERIOR SAMPLING FOR CRYO-EM

We also benchmark posterior sampling with diffusion priors on various reconstruction tasks arising
in the context of cryo-EM reconstruction. We are mostly interested in sparse data scenarios. This
might appear to be at odds with the fact that cryo-EM tends to produce many hundreds of thousands
of images. Our interest is in reconstructing intermediate resolution structures from very few images,
with the goal of elucidating structural differences between individual copies of the biomolecule.
These structural variations are expected to occur, because biomolecular complexes are flexible and
undergo conformational changes. Conformational heterogeneity is often linked to the biological

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 2: Outcomes for five cryo-EM reconstruction tasks. The top row shows the sparse input mea-
surements. The second row shows all ten point clouds generated with DPS. The third row shows the
1024 component means of a mixture model fitted to the atomic models (last row). (A) Nucleosome-
CHD4 from five projections (PDB code 6ryr). (B) F-ATP Synthase from four projections (PDB
code 6rdm). (C) RNA polymerase transcription open promoter complex with Sorangicin from three
projections (PDB code 6vvy). (D) Human spliceosome after Prp43 loaded from one projection and a
low-resolution structure consisting of 40 particles (PDB code 6id1). (E) 26S proteasome from three
projections and a known 20S structure (PDB code 6fvt).

function of a macromolecular complex and of particular interest to the structural biologist (Toader
et al., 2023).

We designed various benchmarks based on a held-out set of 100 structures from Cryo2StructDataset
that were not used in the training of the diffusion prior. The reconstruction tasks involve sparse
2D and/or 3D information. Again, as a baseline we used ML models obtained by maximizing
the likelihood without the diffusion prior (a detailed presentation of the results can be found in
the Supplementary Material, Sections A.4.1 to A.4.7). We generated ten models with and without
diffusion model per reconstruction task. To assess the accuracy of the model structures, we compare
them against the atomic structure deposited in the PDB and the point cloud obtained by fitting a
1024-component mixture of Gaussians used for the generation of the input measurements. The 3D
points generated by ML and DPS tend to concentrate in [−1, 1]3. Before a meaningful comparison
between the ground truth and model structures can be made, we first need to scale the model points
so as to match the physical units of the coordinates in the PDB file (which are in Å). We achieve this
by matching the radii of gyration. However, there could still be a mismatch between the ground truth
and the scaled model resulting from a relative rotation and translation (rigid transformation) between
the two point clouds. We estimate the optimal alignment of both point clouds by maximizing the
kernel correlation (Tsin & Kanade, 2004).

After scaling and superposition, we can meaningfully compare model point clouds against the
atomic and coarse-grained ground truth structures. We assess the accuracy of the models with
the root mean square deviation (RMSD) which is commonly used to compare biomolecular struc-
tures. Since there is no one-to-one correspondence between the points in the cloud representing the
ground truth (all heavy atoms in the PDB file or component means of the Gaussian mixture) and
the models computed with ML or DPS, we compute RMSD = ( 1

N

PN
n=1 ∥xn − x′

ℓn
∥2)1/2 where

ℓn ∈ {1, . . . , 1024} encodes the correspondence between points xn representing the ground truth
and points x′

m representing the model (where m ∈ {1, . . . , 1024}). In case the ground truth is rep-
resented by all heavy atoms, we set ℓn = argmin∥xn − x′

m∥ (where ”argmin” runs over all m) and
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N is the total number of heavy atoms in the PDB file. The 100 PDB structures in the test set vary
largely in the number of heavy atoms from N = 2178 to N = 110541. In case the ground truth is
represented by the 1024 component means of the Gaussian mixture (also referred to as ”subsampled
structure” in the following), we compute ℓn by solving the linear assignment problem that matches
the 1024 points representing the ground truth against the 1024 in the model (in this case N = 1024).

Figure 2 shows representative cryo-EM reconstructions for five different sparse data scenarios. Fig-
ure 2A shows the results for a nucleosome-CHD4 complex (PDB code 6ryr, 17820 heavy atoms).
Five 2D projections served as input for DPS reconstruction. The RMSD between the ten DPS mod-
els and the ground truth is 3.56±0.04 Å (atomic structure) and 2.05±0.09 Å (subsampled structure).
We also inferred the structure of F-ATP synthase (PDB code 6rdm, 33891 heavy atoms) from 4 pro-
jections (Fig. 2B). The RMSDs between the DPS models and the ground truth is 4.46 ± 0.02 Å
(atomic structure) and 2.83 ± 0.03 Å (subsampled structure). RNA polymerase transcription open
promoter complex with Sorangicin (PDB code 6vvy, 30033 heavy atoms) was inferred from three
projections (Fig. 2C). The RMSDs between the DPS models and the ground truth is 4.87 ± 0.77
Å (atomic structure) and 3.39 ± 1.21 Å (subsampled structure). These tests show that intermediate
resolution structures can be computed from very few 2D projections.

A common scenario in cryo-EM is that a low-resolution structure is already known and the goal of
a cryo-EM study is to furnish structural details at higher resolution. This scenario was tested on the
human intron lariat spliceosome (PDB code 6id1, 79882 heavy atoms). The structural models were
computed from a single projection and a low-resolution structure represented by only 40 points (Fig.
2D). The RMSD between DPS models and the ground truth is 10.35±0.20 Å (atomic structure) and
9.82±0.15 Å (1024 component means). Because the structure is huge and the input data for DPS are
very sparse, the RMSD is worse than in the previous examples. Nevertheless, it is remarkable that
such sparse information allows us to refine the coarse-grained spliceosome structure to a medium
resolution.

The final example shows the power of DPS for 3D reconstruction from few projections and a subunit
structure. This is a common scenario in structural biology where many partial structures have been
determined and the challenge is to determine the full structure. To test this scenario, we model the
26S proteasome (PDB code 6fvt, 110541 heavy atoms). Historically, a huge part of the 26S protea-
some, the 20S proteasome, was determined before the complete 26S structure could be elucidated
by cryo-EM. In our tests, we use three projections and the structure of the 20S proteasome as input
(Fig. 2E). The RMSD between the models obtained with DSP and the ground truth is 8.14± 0.12 Å
(atomic structure) and 5.66± 0.19 Å (subsampled structure).

4.4 LIMITATIONS

A major limitation of the proposed method concerns its runtime. In each approximate DPS step
with correction, we have to evaluate the gradient of the energy from our forward model twice.
Overall, this means that we need 2× #timesteps− 1 network function evaluations and have to solve
(2×#timesteps−1)×#observations linear assignment problems to obtain a single 3D reconstruction.
However, the time to reconstruct a 3D structure in the case of 6 input projections and 40 timesteps
within a batch of 10 still takes ≈ 1.2 min per sample on a A100 GPU in combination with an Intel
Xeon Platinum 8360Y 2.40 GHz CPU.

5 CONCLUSION

We propose a Bayesian approach for 3D reconstruction from sparse measurements such as 2D pro-
jections, coarse-grained structures, and/or substructures, using diffusion models as priors. Diffusion
models are capable of encoding rich prior information about 3D structures and enable us to re-
construct meaningful 3D models from very sparse input data via approximate diffusion posterior
sampling. Diffusion priors can distill rich data sources and thereby complement existing regulariza-
tion techniques whenever such training data are available. The goal of future research is to improve
the resolution of the 3D reconstructions.
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