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A Details of Semantic Decomposition Module

There is a robot doing a task, which can be 
divided into multi steps:
{task subgoals}
The following pictures were taken during this 
process sequentially, output index of the most 
relevance picture for each step.
. . .

Output should be formatted as a python list of 
pictures' index.
. . .

Inference rules:

Task definition prompt:

Expert Demonstration: 

Key state selection

. . .

1. Shots are divided as few as possible.
2. These endings should be static physical states, 
not dynamic ones.
. . .

Inference rules:

For example, a task that pick up a cube and move 
it to a goal position, the output can be as follows :
[ "1": "Gripper grasps the cube.",
  "2": ...... ]
. . .

In-context exemplar:

Suppose you are an observer, watching robot do 
a task. You should divide your observation into 
multi shots based on observed robot's actions, 
but just describe what the ending of each shot 
looks like.
. . .

{task description}

Task definition prompt:

Task description: 

Task decomposition

Figure 1: The pre-defined prompt in our Semantic Decomposition Module. Some keywords can
enhance the quality of decomposition and selection.

In the Semantic Decomposition Module (SDM), we employ GPT-4v to extract the semantic key
states from expert demonstrations, whose rich world knowledge and strong generalization capabili-
ties have been proven in various visual-language tasks [1, 2]. The process of extraction includes two
stages: task decomposition and key state selection.

The first stage takes the description of the task as input, decomposing the manipulation process into
multiple subgoals. Concretely, we use the name of the task as the task description. These subgoals
will be the criteria for selecting key states from expert demonstrations.

The key state selection stage would take the observation queries and subgoal descriptions into GPT-
4v, and get the key state indexs. The prompts for the two stages are shown in Figure 1. Due to the
API and context length restrictions, we select states from an expert demonstration every T step to
form the query expert observation sets. In our experiment, T is assigned as 10. Empirically, we
found that there will be chronological confusion if only one subgoal is passed in each query, e.g.,
selecting the fifth frame for the first subgoal while the third frame for the second subgoal. Passing
all subgoals in one go solves this problem effectively.
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B Additional Experimental Results in Meta-World

In addition to the results provided in Section 4.2, Figure 2 shows the performance of KOI on 3
tasks from the Meta-World suite [3]. On all tasks, KOI has shown its sample efficiency compared to
other reward estimation methods [4, 5, 6]. However, the “door unlock” task, as shown in Figure 4,
requires the robot arm to rotate the handle to unlock the door. However, during online exploration,
the agent could complete this task by using its body instead of its gripper to rotate the handle, due
to the imprecise physical simulation. The tricky policy can complete the task without imitating the
expert’s trajectory, resulting in the degradation of performance during online finetuning with any
reward estimation method as compared to the pretrained policy.

BC ROT OursUVD RoboCLIP

Figure 2: The experiment results on 3 tasks from Meta-World environments. The shaded region
represents ± 1 standard deviation across 3 seeds. We notice that KOI method excels in exploration
sample efficiency compared to prior work.

C Experiment Details

C.1 Hyperparameters

The complete list of hyperparameters is provided in Table 1. As shown, all the methods differ only
in reward estimation, i.e., components like encoder and RL backbone are the same. When modeling
the importance weight of expert demonstration, we apply distinct weights and standard deviations
for semantic and motion key states, respectively. The weight assigned to the ultimate goal of the task
is set higher than that of the subgoals, thereby enhancing the agent’s awareness of task completion.

C.2 Environments

Considering the complex scenarios, large action spaces and long task sequences of LIBERO
suite [7], proprioceptive information is utilized as input. Besides, 50 expert demonstrations are
borrowed from their open-source release for BC training, while the estimation of the agent’s explo-
ration reward is only based on 5 of them, which reduces the time cost of computation reward. In
addition, when the task is finished, each state of the successful exploration will gain a task-finish
reward, to promote policy learning. More details can be found in Table 2. For a fair comparison to
ROT [4], we train the policy using a stack of 3 consecutive RGB frames in Meta-World suite, and
each action in the environment is repeated 2 times.

D Real-World Experiments

In this work, we conduct 3 real-world robotic manipulation tasks, as shown in Figure 4.

D.1 Implementaion Details

For each task, we gather five human expert demonstrations to train the BC policy and estimate
online imitation rewards. To facilitate efficient policy learning, we limit the robot’s action space to
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four dimensions (x, y, z, gripper) and utilize both image and proprioceptive inputs for the policy. To
ensure the safety during real-world exploration, we restrict the end-effector’s position to a predefined
target area.

As mentioned in the limitation, the mismatch between pretrained BC policy and initial critic would
negatively impact early exploration learning. Consequently, to ensure both safety and efficiency
during real-world exploration, we substitute the adaptive function λ in Equation 1 with a constant
value of 0.9 and provide a sparse reward to indicate whether the task has been completed.

πe = argmax
π

[
(1− λ(π))E(oe,ae)∼Te

[Qθ(oe, ae)]− αλ(πe)E(od,ad)∼Td
∥ad − π(sd)∥

]
. (1)

In real-world scenarios, we first deploy the BC policy to evaluate the performance and collect a few
interaction trajectories as an initial replay buffer. As shown in Figure 3(a), the BC policy fails to
complete the task when objects are placed in different initial positions.

Further, we start online imitation learning using our hybrid key-state-guided imitation reward. Dur-
ing exploration, the agent explores action spaces not encountered in the expert trajectories. In such
cases, our key-state-guided reward effectively corrects these deviations and guides the agent for
task-aware exploration.

After 10 interaction trajectories, totaling nearly 4,000 timesteps, our agent can successfully complete
the task even when objects are placed in different positions.

Please refer to the one-take video in the supplementary video for specific details.
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Method Parameter Value

Common Replay buffer size 150000

Learning rate 1e−4

Discount γ 0.99

n-step returns 3

Mini-batch size 256

Agent update frequency 2

Critic soft-update rate 0.01

Feature dim 50

Hidden dim 1024

Optimizer Adam

Exploration steps 0

DDPG exploration schedule 0.1

Target feature processor update frequency(steps) 20000

Reward scale factor 10

Fixed weight α 0.03

Linear decay schedule for λ(π) linear(1,0.1,20000)

KOI Weight of semantic key states As
i (i < Ns − 1) 0.15

Weight of the last semantic key state As
Ns

0.35

Weight of motion key states Am 0.05

Standard deviation of semantic key states σ1 10

Standard deviation of motion key states σ2 25

Table 1: List of hyperparameters.
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Suite Parameter Value

Meta-World Use proprioceptive False

Image size 84 × 84

Action shape 4

Frame stack 3

Action repeat 2

Seed frames 12000

Task finish reward 0

Demonstration(s) for BC 1

Demonstration(s) for online finetuning 1

LIBERO Use proprioceptive True

Image size 128 × 128

Action shape 7

Frame stack 1

Action repeat 1

Seed frames 24000

Task finish reward 5

Demonstration(s) for BC 50

Demonstration(s) for online finetuning 5

Table 2: Details of environment settings.
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Figure 3: Overview of our real-world experiment on “take the rag off” task. KOI significantly
accelerates the online finetuning, guiding the agent to complete the task even when objects are
placed in different positions.

6



Put
cube
on
scale

Bin
picking

Button
press

Drawer
open

Door
open

Drawer
close

Door
unlock

Put
bowl
to
plate

Put
bowl
to

stove

Put
wine
to

cabinet

Put
tape
in
box

Take
rag
off

Figure 4: Example trajectories for 6 tasks from Meta-World suite, 3 tasks from LIBERO suite, and
3 real robot tasks, sequentially.
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