529

530

531
532
533
534
535

536
537

538

539

540
541

542

543

544
545
546
547
548

549

550
551

552

553

555
556

Appendices

A Proofs

Proposition A.1 (Proposition 3.1 in the main text). Suppose fr := Ly o hy is an infinitely differen-
tiable real-valued function, and let us call Gy, = V z fi.(Z) its derivative with respect to Z, for every
k=1,2,...,K. Ifcos_sim(G;, G;) > —1/(K — 1) pairwise; then there exists a small-enough step
size € > 0 such that, for all k, we have that Ly (hy(Z —¢-C Y, Uk; ¢1); Yi) < Li(hi(Z; d1); Yi),
where Uy, = Gy /||Gkl|| and C > 0.

Proof. Since fj, is infinitely differentiable, we can take the first-order Taylor expansion of f; around
Z, for any k, evaluated at Z — £V for a given vector V:

fe(Z —eV) = fi(Z) — e(Gk, V) + o(e). 7

Inour case, V = C')_, Uy with C' > 0, then:

fi(Z —eV) = fu(Z) = —¢ - C\|Gk||ZUk,) + o(e) (8)
=—c-Cl|Gi|| [14D (U Ui) | +o(e). 9)
i#]

Since ||Ug|| = 1 forall k = 1,2,..., K, it holds that —1 < cos_sim(Uy, U;) = (Ui, U;) < 1.

If cos_sim(Gy, Gi) > —1/(K — 1) forall i # k, then we have that 1 + 3, ,(Uk,U;) > 0 and
f(Z — V) < fr,(V) for a small enough € > 0.

Q.E.D.

B Stackelberg games and RotoGrad

In game theory, a Stackelberg game [10] is an asymmetric game where two players play alternately.
One of the players—whose objective is to blindly minimize their loss function—is known as the
follower, F. The other player is known as the leader, £. In contrast to the follower, the leader
attempts to minimize their own loss function, but it does so with the advantage of knowing which
will be the best response to their move by the follower. The problem can be written as

Leader: min {L(x;,xy) |z, € argmin F(z;,y)},
T €X) yeXy (10)
Follower: min F(zy,xy),
zrEXy
where x; € X; and xy € X are the actions taken by the leader and follower, respectively.

While traditionally one assumes that players make perfect alternate moves in each step of problem 10,
gradient-play Stackelberg games assume instead that players perform simultaneous gradient updates,

t+1 _ it t
=T — 0 sz/:(ml,xf),

?'foscfozfv JL(zy,wp), (11)

where «; and oy are the learning rates of the leader and follower, respectively.

An important concept in game theory is that of an equilibrium point, that is, a point in which
both players are satisfied with their situation, meaning that there is no available move immediately
improving any of the players’ scores, so that none of the players is willing to perform additional
actions/updates. Specifically, we focus on the following definition introduced by Fiez et al. [10]:

14

557
558
559

560
561
562

563
564
565

566
567
568

569
570
571
572

574
575

576
577
578
579

580

581

582
583

584
585
586

588
589
590
591
592

593
594
595
596
597

598
599
600
601
602

603

605
606

Definition B.1 (differential Stackelberg equilibrium). A pair of points 2} € X, 2} € Xy, where
x} = r(z;) is implicitly defined by V, F(z},2}) = 0, is a differential Stackelberg equilibrium
point if V, L(x},7(x})) = 0,and VZ L(x},r(x])) is positive definite.

Note that, when the players manage to reach such an equilibrium point, both of them are in a local
optimum. Here, we make use of the following result, introduced by Fiez et al. [10], to provide
theoretical convergence guarantees to an equilibrium point:

Proposition B.1. In the given setting, if the leader’s learning rate goes to zero at a faster rate than
the follower’s, that is, oy(t) = o(as(t)), where ;(t) denotes the learning rate of player i at step t,
then they will asymptotically converge to a differential Stackelberg equilibrium point almost surely.

In other words, as long as the follower learns faster than the leader, they will end up in a situation
where both are satisfied. Even more, Fiez et al. [10] extended this result to the finite-time case,
showing that the game will end close to an equilibrium point with high probability.

As we can observe, the Stackelberg formulation in Equation (10) is really similar to RotoGrad’s
formulation in Equation (4). Even more, the update rule in Equation (11) is quite similar to that
one shown in Algorithm 1. Therefore, it is sensible to cast RotoGrad as a Stackelberg game. One
important but subtle bit about this link regards the extra information used by the leader. In our case,
this extra knowledge explicitly appears in Equation 3 in the form of the follower’s gradient, g; .,
which is the direction the follower will follow and, as it is performing first-order optimization by
assumption, this gradient directly encodes the follower’s response.

Thanks to the Stackelberg formulation in Equation 4 we can make use of Prop. B.1 and, thus, draw
theoretical guarantees on the training stability and convergence. In other words, we can say that
performing training steps as those described in Algorithm 1 will stably converge as long as the leader
is asymptotically the slow learner, that is o = o(a’}), where o denotes the little-o notation.

C Experiments

C.1 Experimental setups

Here we discuss common settings across all experiments. Refer to specific sections further below for
details concerning single experiments.

Computational resources. All experiments were performed on a shared cluster system with two
NVIDIA DGX-A100. Therefore, all experiments were run with (up to) 4 cores of AMD EPYC 7742
CPUs and, for those trained on GPU (CIFAR10, CelebA, and NYUv2), a single NVIDIA A100 GPU.
All experiments were restricted to 12 GB of RAM.

Loss normalization. Similar as in the gradient case studied in this work, magnitude differences
between losses can make the model overlook some tasks. To overcome this issue, here we perform
loss normalization, that is, we normalize all losses by their value at the first training iteration (so that
they are all 1 in the first iteration). To account for some losses that may quickly decrease at the start,
after the 20th iteration we instead normalize losses dividing by their value at that iteration.

Checkpoints. For the single training of a model, we select the parameters of the model by taking
those that obtained the best validation error after each training epoch. That is, after each epoch we
evaluate the linearly-scalarized validation loss, « L, and use the parameters that obtained the best
error during training. This can be seen as an extension of early-stopping where, instead of stopping,
we keep training until reaching the maximum number of epochs hoping to keep improving.

Hyperparameter tuning. Model-specific hyperparameters were mostly selected by a combination
of: 1) using values described in prior works; and ii) empirical validation on the vanilla case (without
any gradient-modifiers) to verify that the combinations of hyperparameters work. To select method-
specific hyper-parameters we performed a grid search, choosing those combinations of values that
performed the best with respect to validation error.

Specifically, we took o € {0,0.5,1,2} and Ry, € R™*™ with m € {0.25d,0.5d,0.75d, d} (restrict-
ing ourselves to m < 1500) for RotoGrad. Regarding the learning rate of RotoGrad (GradNorm),
we performed a grid search considering 7;0t, € {0.057, 0.1, 0.51, 7, 2n}, where 1,010 and 7 are the
learning rates of RotoGrad (GradNorm) and the network, respectively.

15

607
608
609

610

611
612

613

614
615
616
617

618
619
620
621

622
623
624

625

626
627
628
629
630

631
632

Notation. Let us also use along this section the following notation to describe different architectures:
[CONV-F-C] denotes a convolutional layer with filter size F' and C' number of channels; [MAX]
denotes a max-pool layer of filter size and stride 2, and [DENSE-H] a dense layer with output size H.

C.1.1 Illustrative examples

Losses and metrics. Both illustrative experiments use MSE as both loss and metric. Regarding the
specific form of ¢ in Equation (5), the avocado-shaped experiments uses

o((z,y),s) = (x — 5)* + 2597, (12)
while the non-convex second experiment uses
sin(3x +4.5s) sin(3y + 4.5s)
x+ 1.5s y+ 1.5s

o((z,y),s) = + |& + 1.5s| + |y + 1.55] (13)

Model. As described in the main manuscript, we use a single input = € R? picked at random from a
standard normal distribution, and drop all task-specific network parameters (that is, hy (7x) = 7).
As backbone, we take a simple network of the form z = Wymax(Wix + by,0) + by with
by € R19 b, € R?, and Wi, W, € R10x2,

Hyper-parameters, convex-case. We train the model for one hundred epochs. As network optimizer
we use stochastic gradient descent (SGD) with a learning rate of 0.01. For the rotations we use
RAdam [21] with a learning rate of 0.5 (for visualization purposes we need a high learning rate, in
such a simple scenario it still converges) and exponential decay with decaying factor 0.999 99.

Hyper-parameter, non-convex case. For the second experiment, we train the model for 400 epochs
and, once again, use SGD as the network optimizer with a learning rate of 0.015. For the rotations,
we use RAdam [21] with a learning rate of 0.1 and an exponential decay of 0.999 99.

C.1.2 MNIST/SVHN

Datasets. We use two modified versions of MNIST [18] and SVHN [29] in which each image has two
digits, one on each side of the image. In the case of MNIST, both of them are merged such that they
form an overlapped image of 28 x 28, as shown in Figure 5a. Since SVHN contains backgrounds, we
simply paste two images together without overlapping, obtaining images of size 32 x 64, as shown in
Figure 5b. Moreover, we transform all SVHN samples to grayscale.

MNIST SVHN

\S.S’kﬁ\-‘l‘)s&\d:?$‘w

(a) Multi-MNIST. (b) Multi-SVHN.
Figure 5: Samples extracted from the modified MNIST and SVHN datasets.

Tasks, losses, and metrics. In order to further clarify the setup used, here we describe in detail each
task. Specifically, we have:

16

633

634

635
636

637

638
639

640

641

642

643
644

645

647

648
649

650
651

653

654
655
656
657
658

659
660
661

662
663

664
665
666
667

668
669
670

671

672
673
674
675

677
678

* Left digit classification. Loss: negative log-likelihod (NLL). Metric: accuracy (ACC).
» Right digit classification. Loss: NLL. Metric: ACC.

* Parity of the product of digits, that is, whether the product of both digits gives an odd
number (binary-classification). Loss: binary cross entropy (BCE). Metric: f1-score (F1).

* Sum of both digits (regression). Loss: MSE. Metric: MSE.

* Active pixels in the image, that is, predict the number of pixels with values higher than 0.5,
where we use pixels lying in the unit interval (regression). Loss: MSE. Metric: MSE.

Model. Our backbone is an adaption from the original LeNet [19] model. Specifically, we use:

o MNIST. [CONV-5-10][MAX][RELU][CONV-5-20][MAX][DENSE-50][RELU][BN],
« SVHN. [CONV-5-10][MAX][RELU][CONV-5-20][MAX][CONV-5-20][DENSE-50][RELU][BN],

where [BN] refers to Batch Normalization [14]. Depending on the type of task, we use a different
head. Specifically, we use:

* Regression. [DENSE-50][RELU][DENSE-1],
¢ Classification. [DENSE-50][RELU][DENSE-10][LOG-SOFTMAX],
 Binary-classification. [DENSE-1][SIGMOID].

Model hyper-parameters. For both datasets, we train the model for 300 epochs using a batch size
of 1024. For the network parameters, we use RAdam [21] with a learning rate of le—3.

Methods hyper-parameters. In Tables 2 and 5 we show the results of GradNorm with & = 1 and
a = 0 for MNIST and SVHN, respectively. We train RotoGrad with full-size rotation matrices
(m = d). Both methods use RAdam with learning rate 5e—4 and exponential decay of 0.9999.

C.1.3 CIFAR10

Dataset. We use CIFAR10 [17] as dataset, with 40 000 instances as training data and the rest as
testing data. Additionally, every time we get a sample from the dataset we: i) crop the image
by a randomly selected square of size 3 x 32 x 32; ii) randomly flip the image horizontally; and
iii) standardize the image channel-wise using the mean and standard deviation estimators obtained on
the training data.

Model. We take as backbone ResNet18 [13] without pre-training, where we remove the last linear
and pool layers. In addition, we add a Batch Normalization layer. For each task-specific head, we
simply use a linear layer followed by a sigmoid function, that is, [DENSE-1][SIGMOID].

Losses and metrics. We treat each class (out of ten) as a binary-classification task where we use
BCE and F1 as loss and metric, respectively.

Model hyper-parameters. We use a batch size of 128 and train the model for 500 epochs. For the
network parameters, we use as optimizer SGD with learning rate of 0.01, Nesterov momentum of 0.9,
and a weight decay of be—4. Additionally, we use for the network parameters a cosine learning-rate
scheduler with a period of 200 iterations.

Methods hyper-parameters. Results shown in Tables 1 and 6 use o = 2 for GradNorm and, as
optimizer, we use RAdam [21] with learning rate 0.001 and an exponential decay factor of 0.999 95
for both GradNorm and RotoGrad.

C.14 NYUv2

Setup. In contrast with the rest of experiments, for the NYUv2 experiments shown in Section 6,
instead of writing our own implementation, we slightly modified the open-source code provided by
Liuetal. [22] at https://github.com/lorenmt/mtan (commit 268c5cl). We therefore use the
exact same setting as Liu et al. [22]—and refer to their paper and code for further details, with the
addition of using data augmentation for the experiments which, although not described in the paper,
is included in the repository as a command-line argument. We will provide along this work a diff file
to include all gradient-modifier methods into the aforementioned code.

17

https://github.com/lorenmt/mtan

679
680
681
682

683

685

686
687

688
689
690

691
692
693

695
696
697

698
699
700

701
702
703
704

705

706

707
708
709
710
71
712
713
714
715
716
77
718
719
720
721
722
723
724
725
726
727
728
729

Methods hyper-parameters. For the results shown in Table 3 we use GradNorm with o = 1 and
RotoGrad with rotations Ry, of size 1024. We use a similar optimization strategy as the rest of
parameters, using Adam [16] with learning rate 5e—>5 (half the one of the network parameters) and
where we halve this learning rate every 100 iterations.

C.1.5 CelebA

Dataset. We use CelebA [23] as dataset with usual splits. We resize each sample image so that they
have size 3 x 64 x 64.

Losses and metrics. We treat each class (out of forty) as a binary-classification task where we use
BCE and F1 as loss and metric, respectively.

ResNet model. As with CIFAR10, we use as backbone ResNet18 [13] without pre-training, where
we remove the last linear and pool layers. In addition, we add a Batch Normalization layer. For each
task-specific head, we use a linear layer followed by a sigmoid function, that is, [DENSE-1][SIGMOID].

ResNet hyper-parameters. We use a batch size of 256 and train the model for 100 epochs. For the
network parameters, we use Radam [21] as optimizer with learning rate 0.001 and exponential decay
of 0.999 95 applied every 2400 iterations.

Convolutional model. For the second architecture we use a convolutional network as back-
bone, [CONV-3-64][BN][MAX][CONV-3-128][BN][CONV-3-128][BN][MAX][CONV-3-256][BN][CON V-
3-256][BN][MAX][CONV-3-512][BN][DENSE-512][BN]. For the task-specific heads, we take a simple
network of the form [DENSE-128][BN][DENSE-1][SIGMOID].

Convolutional hyper-parameters. We use a batch size of 8 and train the model for 20 epochs. For
the network parameters, we use Radam [21] as optimizer with learning rate 0.001 and exponential
decay of 0.96 applied every 2400 iterations.

Methods hyper-parameters. Results shown in Tables 4 and 7 use GradNorm with @ = 1 and a = 2
for the convolutional and residual models, respectively. For RotoGrad, we rotate 256 and 1536
elements of z for the convolutional and residual networks. As optimizer, we use RAdam [21] with
learning rate 5e—6 and an exponential decay factor of 0.999 95 for both GradNorm and RotoGrad.

C.2 Additional results

C.2.1 [Illustrative examples

We complement the illustrative figures
shown in Figure 1 by providing, for each
example, an illustration of the effect of
RotoGrad shown as an active and passive
transformation. In an active transformation
(Figure 6 left), points in the space are the
ones modified. In our case, this means that
we rotate feature z, obtaining r; and 7o,
while the loss functions remain the same.
In other words, for each z we obtain a task-
specific feature 7y, that optimizes its loss
function. In contrast, a passive transforma-
tion (Figure 6 right) keeps the points unal-
tered while applying the transformation to
the space itself. In our case, this translates
to rotating the optimization landscape of
each loss function (now we have Lj, o R,
instead of L), so that our single feature z
has an easier job at optimizing both tasks.
In the case of RotoGrad, we can observe
in both right figures that both optima lie
in the same point, as we are aligning task
gradients.

Figure 6: Level plots showing the illustrative examples
of Figure 1 for RotoGrad. Top: Convex case. Bot-
tom: Non-convex case. Left: Active transformation
(trajectories of rj, and the level plot of L; + Ls. Right:
Passive transformation (trajectory of z and level plot of
(Ll e} Rl) + (L2 e} Rg)

18

730
731
732
733
734
735

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

752

753
754
755
756
757

758
759
760
761
762

764

774

776

777
778
779

781
782

Besides the two regression experiments Accuracy Task L Task 2
shown in Section 4, we include here an = \anila B 2850
additional experiment where we test Ro-

toGrad in the worst-case scenario of gra- o — I ————
dient conflict, that is, one in which task / /
gradients are opposite to each other. To ,’ L ,'
this end, we solve a 2-task binary classifi- g ¢ 5 06 '
cation problem where, as dataset, we take ‘_§ 04 ‘_§ 04 "
1000 samples from a 2D Gaussian mix- I . I
ture model with two clusters; ¢, = 1 ' // ' //

if x,, was sampled from cluster k; and 00 00 ===

Yn,x = 0 otherwise. We use as model
a logistic regression model of the form
yr = Womax(Wix + by, 0) + bs with
by € R2by, € R, Wi € R?*2 and
W, € R1*2. Because rotations in 1D are
ill-posed (there is a unique proper rotation),
here we add task parameters to increase the dimensionality of z and make all parameters shared, so
that there is still no task-specific parameters. To avoid a complete conflict where VL1 + V Ly = 0,
we randomly flip the labels for the second tasks with 5 % probability. Figure 7 shows that, in this
extreme scenario, RotoGrad is able to learn both tasks by aligning gradients, that is, by learning that
one rotation is the inverse of the other R, = RQT .

Figure 7: Logistic regression for opposite classifica-
tion tasks. Test data is plotted scattered as gray dots.
RotoGrad learns both opposite rotations Ry = R, .

C.2.2 Training stability

While we showed in Section 6.1 only the results for the sum-of-digits task as they were nice and clear,
here we show in Figure 8 the results of those same experiments in Section 6.1 for all the different
tasks. The same discussion from the main manuscript can be carried out for all metrics. Additionally,
we can observe that the vanilla case (learning rate zero) completely overlooks the image-related task
(Active pixels) while performing the best in the parity task.

Additionally, let us clarify what we mean here with stability, as in the main manuscript we mainly
talked about convergence guarantees. In these experiments we measure the convergence guarantees
of the experiments in terms of ‘training stability’, meaning the variance of the obtained results across
different runs. The intuition here is that, since the model does not converge, we should expect some
wriggling learning curves during training and, as we take the model with the best validation error, the
individual task metrics should have bigger variance (that is, less stability) across runs.

C.2.3 MNIST/SVHN

Since we present in Section 6 grouped results in MNIST and SVHN in terms of digit-related and
image-related tasks, here we provide the complete results table for all metrics in Table 5. In the case
of MNIST, we can observe that both regression tasks tend to be quite disruptive. GradNorm, IMTL-G,
and RotoGrad manage to improve over all tasks while maintaining good performance on the rest of
tasks. MGDA, however, focuses on the image-related task too much and overlooks other tasks. In
SVHN we observe a similar behavior. This time, all methods are able to leverage positive transfer
and improve their results on the parity and sum tasks, obtaining similar task improvement results. Yet,
the image-related task is more disruptive than before, showing bigger differences between methods.
As before, MGDA completely focuses on this task, but now is able to not overlook any task while
doing so. Regarding the rest of the methods, all of them improved their results with respect to the
vanilla case, with RotoGrad and GradNorm obtaining the second-best results.

C.2.4 CIFAR10 and CelebA

For the sake of completeness, we present in Table 6 and Table 7 the same tables as in Section 6,
but with more statistics of the results. For Cifar10, we now included in Table 6 the minimum task
improvement across tasks and, while noisier, we can still observe that RotoGrad also improve this
statistic. The standard deviation of the task improvement across tasks is, however, not too informative.
In the case of CelebA, we added in Table 7 the maximum f1-score across tasks and, similar to the last
case, it is not too informative, as all methods achieve almost perfect f1-score in one of the classes.

19

Table 5: Complete results (median and standard deviation) of different competing methods on
MNIST/SVHN on all tasks, see Section 6 and Appendix C.2.

Left digit Right digit Product parity ~ Sum digits Act. Pix.
Method Acc. T Acc. T f1 1 MSE. | avg, Ak T MSE |
Single 95.77+£0.19 94.04+£0.18 92.30 £0.72 1.91£0.13 - 0.01 £0.01
Vanilla 9494 £0.19 9327+026 93.08 £0.45 218+£0.16 -2.51+3.01] 0.11+0.01
. GradDrop | 95.44+037 93.59+027 9333+£053 2.17+£0.08 -251+173 | 0.13£0.02
v2 PCGrad 95.03£0.36 93304+0.17 93.25+0.49 213+0.18 -3.12+3.88 | 0.124+0.02
Z MGDA 9431 £1.11 92.024+2.06 83.85+£2.04 252+£0.61 -12.574+9.97 | 0.06 £0.02
= GradNorm | 9545+029 93.84+034 93.51 %059 1.85+0.12 0.75+£2.85 | 0.08=+0.01
IMTL-G 9525+£0.33 93.88+0.21 93.284+0.48 1.85+0.09 1.17£2.77 | 0.07£0.01
RotoGrad | 9556 £0.21 93.76 +0.29 93.324+0.28 1.81+£0.10 2204192 | 0.07+0.03
Single 85.05+045 8458+024 77.47+1.13 5.84 £0.14 - 0.17 £ 0.06
Vanilla 84.18 £0.30 84.18 £0.38 80.I1 £0.85 481£0.06 514x£083] 2.75£3.17
GradDrop | 84.38 £0.29 84484041 80.11 £0.69 469+0.12 5.68+1.05 1.91 £0.86
% PCGrad 84.22+0.31 84.23+0.21 79.92+0.79 469+£0.09 550+£0.75 | 2.26=£0.85
% MGDA 84.61 £0.75 8438+045 77.44+1.44 447+0.18 599+148 | 0.6640.75
GradNorm | 84.61 £0.42 84.45+0.40 80.03 +£0.75 442+0.15 6.67+£1.02 | 141+0.74
IMTL-G 84.60+0.45 84.39+0.37 79.63+£1.10 457+£0.13 581085 | 247=£1.65
RotoGrad | 83.89 £0.40 83914047 79.43£0.79 454+012 561+084 | 14440.68

Table 6: Complete task-improvement statistics in CIFAR10 for all competing methods and RotoGrad
with different dimensionality for Ry, see Section 6.

Method ‘ mink Ak T medk Ak T avg,. Ak T Stdk Ak \L maxpg Ak T

Vanilla | -0.81£0.37 273 +1.37 258+054 338+£094 11.14+3.35
GradDrop —0.81 +£0.54 3.18 £1.07 307+048 4.00£0.65 14.03+2.83
PCGrad -1.52£0.98 333+£1.68 2.86 £0.81 374£0.69 12.01 £3.19
MGDA -727+136 -448+235 -1.75+043 3.24+0.55 3.67+0.98
GradNorm -3.75 £0.67 0.09+2.23 -0.08 £0.95 378 +£0.80 8.82£341
IMTL-G -0.39 £ 0.82 1.95+2.21 273 +£0.27 325+£0.75 10.20 £2.98
IMTL-G+R;, | -1.29+0.52 438 +£1.11 3.02 £0.69 381+£021 1276 £1.77
RotoGrad 64 | —1.70 £ 0.81 344 +£1.51 2.90 +0.49 398+£0.62 13.16 £2.40
RotoGrad 128 | —1.12+0.36 373 +£2.14 297 +1.08 3.84+£0.87 12.64£3.56
RotoGrad 256 | 0.17 +=1.01 3.29+2.18 3.68+£0.68 3.83+£0.74 14.01+3.22
RotoGrad 512 | -043+0.76 472 +2.84 448+0.99 423+082 15.57+3.99

Table 7: Complete fl-score statistics and training hours in CelebA for all competing methods and
two different architectures/settings, see Section 6.

Convolutional (d = 512) ResNetl8 (d = 2048)

task f1-scores (%) 1 task f1-scores (%) 1
Method min; med; avg, stdy | max, |Hours| ming med; avg, stdy | max; |Hours
Vanilla | 1.62 54.74 58.69 24.18 97.04 | 4.06|15.45 61.52 61.25 22.09 96.61 | 1.49
GradDrop | 3.94 55.80 58.62 23.98 97.19| 4.42| 4.46 63.52 63.61 21.79 96.59| 1.60
PCGrad 2.69 60.30 59.83 23.85 97.04 [17.03| 17.23 61.82 62.74 20.84 96.43 | 5.90
GradNorm| 1.83 52.17 54.68 24.94 96.88 | 11.02| 14.43 64.10 63.51 21.20 96.50 | 3.59
IMTL-G 3.31 53.05 56.05 26.92 96.50 | 4.90|21.52 62.12 61.98 21.62 96.46 | 1.72
RotoGrad | 9.11 62.31 62.45 22.14 96.83 | 11.00|25.72 63.84 65.17 18.99 96.49 | 6.90

20

783

784
785

787
788

Left digit Right digit
0- — ¢ — -0
) le-4- —— —El— -1le-4
© 5-e4- ¢ H T+ ——I—— -5-e4
2 1le-3- HTH o —TH ¢+ -le3
€ 5e-3- ¢« HIH . H 1+ -5e-3
© le-2- —— —IT -le-2
— 5e-2- —— —— -5e-2
le-1- — ‘ —— . -le-1
910 915 920 925 93.0 935 94.0 g7 88 89 90 91 92
Acc(%) T Acc(%) T
Sum of digits Active pixels
0- . —— - -0
g le-d- HEE— LIy -le-4
© 5-e4- ¢ —I}— L/g] -5-e4
@ le-3- L -] I+ -le-3
‘€5e3- —ITH L -5e-3
$le2- ——ITH e -1le2
— 5e-2- — HIH ¢ -5e-2
le-1- — I ——— HlH -le-l
25 30 35 4.0 4.5 5.0 01 02 0.3 04
MSE { MSE !
Product of digits is odd Digit-related tasks
0- —— —— -0
) le-4- = v o I -1le4
© 5-e4- HOIH ¢ HI— -5-e4
o le-3- HI+— —{T 1+~ -1e3
€ 5e-3- —{ T — T H -5e3
© le-2- —T— — -le-2
—1 5e-2- ‘. — T} . — T }+— -5e-2
le-1- —— — I ——— -le-1
75 80 85 90 30 -25 -20 ~-15 -10 -5
Fl-score(%) 1t avgr A T

Figure 8: RotoGrad’s performance on all tasks for the experiments in Section 6.1 for all metrics. We
can observe training instabilities/stiffness on all tasks as we highly increase/decrease RotoGrad’s
learning rate, as discussed in the main manuscript.

C.2.5 NYUv2

Complementing the results shown in Section 6, here we show in Table 8 and Table 9 the results
obtained for two other different random initializations, showing that the results discussed in the main
text are consistent across runs. In other words, results in these two new tables further demonstrate
that RotoGrad is capable to perform as well as the best of the competing methods while staying on
par in training time.

Table 8: Results for different methods on the NYUv2 dataset with a SegNet model (with random
seed two), see Section 6. RotoGrad obtains top performance in all tasks.

Semantic Depth Surface Normal
Segmenation T Estimation |, Angle Distance | Within ¢° 1
Method mloU Pix Acc avg, Ag 1 \ Abs Err Rel Err avg, Ay T\ Mean Median 11.25 22.5 30 avg, Ay T|Hours
Single 0.39 0.65 - 0.74 0.30 - 25.09 19.18 30.01 57.33 69.30 - 8.90
Vanilla 0.37 0.64 | —3.58 0.58 0.22 24.40 129.93 25.89 19.85 43.92 57.39 | —25.74 3.48

GradDrop | 0.39 0.65 0.60 0.56 0.22 24.39]29.64 25.50 20.31 44.62 58.09 | —24.36 3.56
PCGrad 0.40 0.66 2.41 0.53 0.22 28.02 |29.17 2494 21.14 45.72 59.14 | —22.15 3.51
MGDA 0.21 0.51 | —33.78 0.73 0.27 4.94 |24.48 18.72 30.77 58.51 70.39 2.20 3.52
GradNorm| 0.40 0.67 2.25 0.54 0.21 27.58 12591 20.75 27.36 54.09 66.71| —5.94 3.50
IMTL-G 0.40 0.66 2.68 0.52 0.20| 30.42 |26.00 20.92 26.77 53.79 66.59 | —6.71 3.62
RotoGrad | 0.41 0.66 3.79 0.53 0.20 29.77 12583 20.73 2730 54.14 66.90 | —5.82 3.89

21

Table 9: Results for different methods on the NYUv2 dataset with a SegNet model (with random
seed three), see Section 6. RotoGrad obtains top performance in all tasks.

Semantic Depth Surface Normal
Segmenation Estimation | Angle Distance | Within #° 1
Method mloU Pix Acc avgy, Ay 1|Abs Err Rel Err avgy, Ay, 1| Mean Median 11.25 22.5 30 avgy, Ay T|Hours
Single 0.37 0.63 - 0.71 0.28 - 25.14 19.25 29.92 57.23 69.12 - 8.91
Vanilla 0.38 0.64 2.20 0.63 0.23 15.28 2940 25.31 20.94 45.02 58.35| —23.08 3.47

GradDrop | 0.37 0.62 | —0.63 0.61 0.23 15.38 | 30.47 26.63 19.01 42.61 56.06 | —28.10 3.53
PCGrad 037 0.64 | —0.51 0.57 0.22 1997 |29.79 25.77 20.61 44.22 57.47| —24.63 3.50
MGDA 0.20 0.51 | —31.94 0.81 0.28 | —8.22 |24.70 18.92 30.38 57.95 69.99 1.50 3.51
GradNorm| 0.40 0.65 6.09 0.57 0.22 20.03 |26.12 20.92 27.08 53.69 66.33| —6.46 3.50
IMTL-G 0.40 0.66 5.63 0.57 0.21 2248 126.23 21.14 26.38 53.25 66.22| —7.43 3.60
RotoGrad | 0.39 0.66 5.45 0.53 0.21| 24.04 |2590 20.59 2744 54.35 67.02| —-5.28 3.83

22

	Introduction
	Multi-task learning and negative transfer
	RotoGrad
	Gradient-magnitude homogenization
	Gradient-direction homogenization
	RotoGrad: the full picture
	Practical considerations

	Illustrative examples
	Related Work
	Experiments
	Training stability
	Rotating a subspace
	Methods comparison

	Conclusions
	Appendices
	Proofs
	Stackelberg games and RotoGrad
	Experiments
	Experimental setups
	Illustrative examples
	MNIST/SVHN
	CIFAR10
	NYUv2
	CelebA

	Additional results
	Illustrative examples
	Training stability
	MNIST/SVHN
	CIFAR10 and CelebA
	NYUv2

