
Appendices529

A Proofs530

Proposition A.1 (Proposition 3.1 in the main text). Suppose fk := Lk ◦ hk is an infinitely differen-531

tiable real-valued function, and let us callGk = ∇Zfk(Z) its derivative with respect to Z, for every532

k = 1, 2, . . . ,K. If cos_sim(Gi,Gj) > −1/(K−1) pairwise; then there exists a small-enough step533

size ε > 0 such that, for all k, we have that Lk(hk(Z−ε·C
∑

kUk;φk);Yk) < Lk(hk(Z;φk);Yk),534

where Uk := Gk/||Gk|| and C ≥ 0.535

Proof. Since fk is infinitely differentiable, we can take the first-order Taylor expansion of fk around536

Z, for any k, evaluated at Z − εV for a given vector V :537

fk(Z − εV) = fk(Z)− ε〈Gk,V 〉+ o(ε). (7)

In our case, V = C
∑

kUk with C ≥ 0, then:538

fk(Z − εV)− fk(Z) = −ε · C||Gk||
∑
i

〈Uk,Ui〉+ o(ε) (8)

= −ε · C||Gk||

1 +
∑
i 6=j

〈Uk,Ui〉

 + o(ε). (9)

Since ||Uk|| = 1 for all k = 1, 2, . . . ,K, it holds that −1 ≤ cos_sim(Uk,Ui) = 〈Uk,Ui〉 ≤ 1.539

If cos_sim(Gk,Gi) > −1/(K − 1) for all i 6= k, then we have that 1 +
∑

i 6=j〈Uk,Ui〉 > 0 and540

fk(Z − εV) < fk(V) for a small enough ε > 0.541

Q.E.D.542

B Stackelberg games and RotoGrad543

In game theory, a Stackelberg game [10] is an asymmetric game where two players play alternately.544

One of the players—whose objective is to blindly minimize their loss function—is known as the545

follower, F . The other player is known as the leader, L. In contrast to the follower, the leader546

attempts to minimize their own loss function, but it does so with the advantage of knowing which547

will be the best response to their move by the follower. The problem can be written as548

Leader: min
xl∈Xl

{L(xl, xf) |xf ∈ argmin
y∈Xf

F(xl, y)},

Follower: min
xf∈Xf

F(xl, xf),
(10)

where xl ∈ Xl and xf ∈ Xf are the actions taken by the leader and follower, respectively.549

While traditionally one assumes that players make perfect alternate moves in each step of problem 10,550

gradient-play Stackelberg games assume instead that players perform simultaneous gradient updates,551

xt+1
l = xtl − αt

l ∇xl
L(xl, xf),

xt+1
f = xtf − αt

f ∇xf
L(xl, xf), (11)

where αl and αf are the learning rates of the leader and follower, respectively.552

An important concept in game theory is that of an equilibrium point, that is, a point in which553

both players are satisfied with their situation, meaning that there is no available move immediately554

improving any of the players’ scores, so that none of the players is willing to perform additional555

actions/updates. Specifically, we focus on the following definition introduced by Fiez et al. [10]:556

14

Definition B.1 (differential Stackelberg equilibrium). A pair of points x∗l ∈ Xl, x∗f ∈ Xf , where557

x∗f = r(x∗l) is implicitly defined by ∇xf
F(x∗l , x

∗
f) = 0, is a differential Stackelberg equilibrium558

point if∇xl
L(x∗l , r(x

∗
l)) = 0, and ∇2

xl
L(x∗l , r(x

∗
l)) is positive definite.559

Note that, when the players manage to reach such an equilibrium point, both of them are in a local560

optimum. Here, we make use of the following result, introduced by Fiez et al. [10], to provide561

theoretical convergence guarantees to an equilibrium point:562

Proposition B.1. In the given setting, if the leader’s learning rate goes to zero at a faster rate than563

the follower’s, that is, αl(t) = o(αf (t)), where αi(t) denotes the learning rate of player i at step t,564

then they will asymptotically converge to a differential Stackelberg equilibrium point almost surely.565

In other words, as long as the follower learns faster than the leader, they will end up in a situation566

where both are satisfied. Even more, Fiez et al. [10] extended this result to the finite-time case,567

showing that the game will end close to an equilibrium point with high probability.568

As we can observe, the Stackelberg formulation in Equation (10) is really similar to RotoGrad’s569

formulation in Equation (4). Even more, the update rule in Equation (11) is quite similar to that570

one shown in Algorithm 1. Therefore, it is sensible to cast RotoGrad as a Stackelberg game. One571

important but subtle bit about this link regards the extra information used by the leader. In our case,572

this extra knowledge explicitly appears in Equation 3 in the form of the follower’s gradient, gi,k,573

which is the direction the follower will follow and, as it is performing first-order optimization by574

assumption, this gradient directly encodes the follower’s response.575

Thanks to the Stackelberg formulation in Equation 4 we can make use of Prop. B.1 and, thus, draw576

theoretical guarantees on the training stability and convergence. In other words, we can say that577

performing training steps as those described in Algorithm 1 will stably converge as long as the leader578

is asymptotically the slow learner, that is αt
l = o(αt

f), where o denotes the little-o notation.579

C Experiments580

C.1 Experimental setups581

Here we discuss common settings across all experiments. Refer to specific sections further below for582

details concerning single experiments.583

Computational resources. All experiments were performed on a shared cluster system with two584

NVIDIA DGX-A100. Therefore, all experiments were run with (up to) 4 cores of AMD EPYC 7742585

CPUs and, for those trained on GPU (CIFAR10, CelebA, and NYUv2), a single NVIDIA A100 GPU.586

All experiments were restricted to 12 GB of RAM.587

Loss normalization. Similar as in the gradient case studied in this work, magnitude differences588

between losses can make the model overlook some tasks. To overcome this issue, here we perform589

loss normalization, that is, we normalize all losses by their value at the first training iteration (so that590

they are all 1 in the first iteration). To account for some losses that may quickly decrease at the start,591

after the 20th iteration we instead normalize losses dividing by their value at that iteration.592

Checkpoints. For the single training of a model, we select the parameters of the model by taking593

those that obtained the best validation error after each training epoch. That is, after each epoch we594

evaluate the linearly-scalarized validation loss,
∑

k Lk, and use the parameters that obtained the best595

error during training. This can be seen as an extension of early-stopping where, instead of stopping,596

we keep training until reaching the maximum number of epochs hoping to keep improving.597

Hyperparameter tuning. Model-specific hyperparameters were mostly selected by a combination598

of: i) using values described in prior works; and ii) empirical validation on the vanilla case (without599

any gradient-modifiers) to verify that the combinations of hyperparameters work. To select method-600

specific hyper-parameters we performed a grid search, choosing those combinations of values that601

performed the best with respect to validation error.602

Specifically, we took α ∈ {0, 0.5, 1, 2} andRk ∈ Rm×m with m ∈ {0.25d, 0.5d, 0.75d, d} (restrict-603

ing ourselves to m ≤ 1500) for RotoGrad. Regarding the learning rate of RotoGrad (GradNorm),604

we performed a grid search considering ηroto ∈ {0.05η, 0.1η, 0.5η, η, 2η}, where ηroto and η are the605

learning rates of RotoGrad (GradNorm) and the network, respectively.606

15

Notation. Let us also use along this section the following notation to describe different architectures:607

[CONV-F -C] denotes a convolutional layer with filter size F and C number of channels; [MAX]608

denotes a max-pool layer of filter size and stride 2, and [DENSE-H] a dense layer with output size H .609

C.1.1 Illustrative examples610

Losses and metrics. Both illustrative experiments use MSE as both loss and metric. Regarding the611

specific form of ϕ in Equation (5), the avocado-shaped experiments uses612

ϕ((x, y), s) = (x− s)2 + 25y2, (12)

while the non-convex second experiment uses613

ϕ((x, y), s) = − sin(3x+ 4.5s)

x+ 1.5s
− sin(3y + 4.5s)

y + 1.5s
+ |x+ 1.5s|+ |y + 1.5s| (13)

Model. As described in the main manuscript, we use a single input x ∈ R2 picked at random from a614

standard normal distribution, and drop all task-specific network parameters (that is, hk(rk) = rk).615

As backbone, we take a simple network of the form z = W2 max(W1x + b1, 0) + b2 with616

b1 ∈ R10, b2 ∈ R2, andW1,W
>
2 ∈ R10×2.617

Hyper-parameters, convex-case. We train the model for one hundred epochs. As network optimizer618

we use stochastic gradient descent (SGD) with a learning rate of 0.01. For the rotations we use619

RAdam [21] with a learning rate of 0.5 (for visualization purposes we need a high learning rate, in620

such a simple scenario it still converges) and exponential decay with decaying factor 0.999 99.621

Hyper-parameter, non-convex case. For the second experiment, we train the model for 400 epochs622

and, once again, use SGD as the network optimizer with a learning rate of 0.015. For the rotations,623

we use RAdam [21] with a learning rate of 0.1 and an exponential decay of 0.999 99.624

C.1.2 MNIST/SVHN625

Datasets. We use two modified versions of MNIST [18] and SVHN [29] in which each image has two626

digits, one on each side of the image. In the case of MNIST, both of them are merged such that they627

form an overlapped image of 28× 28, as shown in Figure 5a. Since SVHN contains backgrounds, we628

simply paste two images together without overlapping, obtaining images of size 32× 64, as shown in629

Figure 5b. Moreover, we transform all SVHN samples to grayscale.630

(a) Multi-MNIST. (b) Multi-SVHN.

Figure 5: Samples extracted from the modified MNIST and SVHN datasets.

Tasks, losses, and metrics. In order to further clarify the setup used, here we describe in detail each631

task. Specifically, we have:632

16

• Left digit classification. Loss: negative log-likelihod (NLL). Metric: accuracy (ACC).633

• Right digit classification. Loss: NLL. Metric: ACC.634

• Parity of the product of digits, that is, whether the product of both digits gives an odd635

number (binary-classification). Loss: binary cross entropy (BCE). Metric: f1-score (F1).636

• Sum of both digits (regression). Loss: MSE. Metric: MSE.637

• Active pixels in the image, that is, predict the number of pixels with values higher than 0.5,638

where we use pixels lying in the unit interval (regression). Loss: MSE. Metric: MSE.639

Model. Our backbone is an adaption from the original LeNet [19] model. Specifically, we use:640

• MNIST. [CONV-5-10][MAX][RELU][CONV-5-20][MAX][DENSE-50][RELU][BN],641

• SVHN. [CONV-5-10][MAX][RELU][CONV-5-20][MAX][CONV-5-20][DENSE-50][RELU][BN],642

where [BN] refers to Batch Normalization [14]. Depending on the type of task, we use a different643

head. Specifically, we use:644

• Regression. [DENSE-50][RELU][DENSE-1],645

• Classification. [DENSE-50][RELU][DENSE-10][LOG-SOFTMAX],646

• Binary-classification. [DENSE-1][SIGMOID].647

Model hyper-parameters. For both datasets, we train the model for 300 epochs using a batch size648

of 1024. For the network parameters, we use RAdam [21] with a learning rate of 1e−3.649

Methods hyper-parameters. In Tables 2 and 5 we show the results of GradNorm with α = 1 and650

α = 0 for MNIST and SVHN, respectively. We train RotoGrad with full-size rotation matrices651

(m = d). Both methods use RAdam with learning rate 5e−4 and exponential decay of 0.9999.652

C.1.3 CIFAR10653

Dataset. We use CIFAR10 [17] as dataset, with 40 000 instances as training data and the rest as654

testing data. Additionally, every time we get a sample from the dataset we: i) crop the image655

by a randomly selected square of size 3 × 32 × 32; ii) randomly flip the image horizontally; and656

iii) standardize the image channel-wise using the mean and standard deviation estimators obtained on657

the training data.658

Model. We take as backbone ResNet18 [13] without pre-training, where we remove the last linear659

and pool layers. In addition, we add a Batch Normalization layer. For each task-specific head, we660

simply use a linear layer followed by a sigmoid function, that is, [DENSE-1][SIGMOID].661

Losses and metrics. We treat each class (out of ten) as a binary-classification task where we use662

BCE and F1 as loss and metric, respectively.663

Model hyper-parameters. We use a batch size of 128 and train the model for 500 epochs. For the664

network parameters, we use as optimizer SGD with learning rate of 0.01, Nesterov momentum of 0.9,665

and a weight decay of 5e−4. Additionally, we use for the network parameters a cosine learning-rate666

scheduler with a period of 200 iterations.667

Methods hyper-parameters. Results shown in Tables 1 and 6 use α = 2 for GradNorm and, as668

optimizer, we use RAdam [21] with learning rate 0.001 and an exponential decay factor of 0.999 95669

for both GradNorm and RotoGrad.670

C.1.4 NYUv2671

Setup. In contrast with the rest of experiments, for the NYUv2 experiments shown in Section 6,672

instead of writing our own implementation, we slightly modified the open-source code provided by673

Liu et al. [22] at https://github.com/lorenmt/mtan (commit 268c5c1). We therefore use the674

exact same setting as Liu et al. [22]—and refer to their paper and code for further details, with the675

addition of using data augmentation for the experiments which, although not described in the paper,676

is included in the repository as a command-line argument. We will provide along this work a diff file677

to include all gradient-modifier methods into the aforementioned code.678

17

https://github.com/lorenmt/mtan

Methods hyper-parameters. For the results shown in Table 3 we use GradNorm with α = 1 and679

RotoGrad with rotations Rk of size 1024. We use a similar optimization strategy as the rest of680

parameters, using Adam [16] with learning rate 5e−5 (half the one of the network parameters) and681

where we halve this learning rate every 100 iterations.682

C.1.5 CelebA683

Dataset. We use CelebA [23] as dataset with usual splits. We resize each sample image so that they684

have size 3× 64× 64.685

Losses and metrics. We treat each class (out of forty) as a binary-classification task where we use686

BCE and F1 as loss and metric, respectively.687

ResNet model. As with CIFAR10, we use as backbone ResNet18 [13] without pre-training, where688

we remove the last linear and pool layers. In addition, we add a Batch Normalization layer. For each689

task-specific head, we use a linear layer followed by a sigmoid function, that is, [DENSE-1][SIGMOID].690

ResNet hyper-parameters. We use a batch size of 256 and train the model for 100 epochs. For the691

network parameters, we use Radam [21] as optimizer with learning rate 0.001 and exponential decay692

of 0.999 95 applied every 2400 iterations.693

Convolutional model. For the second architecture we use a convolutional network as back-694

bone, [CONV-3-64][BN][MAX][CONV-3-128][BN][CONV-3-128][BN][MAX][CONV-3-256][BN][CONV-695

3-256][BN][MAX][CONV-3-512][BN][DENSE-512][BN]. For the task-specific heads, we take a simple696

network of the form [DENSE-128][BN][DENSE-1][SIGMOID].697

Convolutional hyper-parameters. We use a batch size of 8 and train the model for 20 epochs. For698

the network parameters, we use Radam [21] as optimizer with learning rate 0.001 and exponential699

decay of 0.96 applied every 2400 iterations.700

Methods hyper-parameters. Results shown in Tables 4 and 7 use GradNorm with α = 1 and α = 2701

for the convolutional and residual models, respectively. For RotoGrad, we rotate 256 and 1536702

elements of z for the convolutional and residual networks. As optimizer, we use RAdam [21] with703

learning rate 5e−6 and an exponential decay factor of 0.999 95 for both GradNorm and RotoGrad.704

C.2 Additional results705

C.2.1 Illustrative examples706

Figure 6: Level plots showing the illustrative examples
of Figure 1 for RotoGrad. Top: Convex case. Bot-
tom: Non-convex case. Left: Active transformation
(trajectories of rk and the level plot of L1 + L2. Right:
Passive transformation (trajectory of z and level plot of
(L1 ◦R1) + (L2 ◦R2).

We complement the illustrative figures707

shown in Figure 1 by providing, for each708

example, an illustration of the effect of709

RotoGrad shown as an active and passive710

transformation. In an active transformation711

(Figure 6 left), points in the space are the712

ones modified. In our case, this means that713

we rotate feature z, obtaining r1 and r2,714

while the loss functions remain the same.715

In other words, for each z we obtain a task-716

specific feature rk that optimizes its loss717

function. In contrast, a passive transforma-718

tion (Figure 6 right) keeps the points unal-719

tered while applying the transformation to720

the space itself. In our case, this translates721

to rotating the optimization landscape of722

each loss function (now we have Lk ◦Rk723

instead of LK), so that our single feature z724

has an easier job at optimizing both tasks.725

In the case of RotoGrad, we can observe726

in both right figures that both optima lie727

in the same point, as we are aligning task728

gradients.729

18

Accuracy
Vanilla MTL
Rotograd 87.57%

84.93%
73.14%
28.50%

Task 1 Task 2

RotoGrad

Figure 7: Logistic regression for opposite classifica-
tion tasks. Test data is plotted scattered as gray dots.
RotoGrad learns both opposite rotationsR1 = R>2 .

Besides the two regression experiments730

shown in Section 4, we include here an731

additional experiment where we test Ro-732

toGrad in the worst-case scenario of gra-733

dient conflict, that is, one in which task734

gradients are opposite to each other. To735

this end, we solve a 2-task binary classifi-736

cation problem where, as dataset, we take737

1000 samples from a 2D Gaussian mix-738

ture model with two clusters; yn,k = 1739

if xn was sampled from cluster k; and740

yn,k = 0 otherwise. We use as model741

a logistic regression model of the form742

yk = W2 max(W1x + b1, 0) + b2 with743

b1 ∈ R2, b2 ∈ R, W1 ∈ R2×2, and744

W2 ∈ R1×2. Because rotations in 1D are745

ill-posed (there is a unique proper rotation),746

here we add task parameters to increase the dimensionality of z and make all parameters shared, so747

that there is still no task-specific parameters. To avoid a complete conflict where∇zL1 +∇zL2 = 0,748

we randomly flip the labels for the second tasks with 5 % probability. Figure 7 shows that, in this749

extreme scenario, RotoGrad is able to learn both tasks by aligning gradients, that is, by learning that750

one rotation is the inverse of the otherR1 = R>2 .751

C.2.2 Training stability752

While we showed in Section 6.1 only the results for the sum-of-digits task as they were nice and clear,753

here we show in Figure 8 the results of those same experiments in Section 6.1 for all the different754

tasks. The same discussion from the main manuscript can be carried out for all metrics. Additionally,755

we can observe that the vanilla case (learning rate zero) completely overlooks the image-related task756

(Active pixels) while performing the best in the parity task.757

Additionally, let us clarify what we mean here with stability, as in the main manuscript we mainly758

talked about convergence guarantees. In these experiments we measure the convergence guarantees759

of the experiments in terms of ‘training stability’, meaning the variance of the obtained results across760

different runs. The intuition here is that, since the model does not converge, we should expect some761

wriggling learning curves during training and, as we take the model with the best validation error, the762

individual task metrics should have bigger variance (that is, less stability) across runs.763

C.2.3 MNIST/SVHN764

Since we present in Section 6 grouped results in MNIST and SVHN in terms of digit-related and765

image-related tasks, here we provide the complete results table for all metrics in Table 5. In the case766

of MNIST, we can observe that both regression tasks tend to be quite disruptive. GradNorm, IMTL-G,767

and RotoGrad manage to improve over all tasks while maintaining good performance on the rest of768

tasks. MGDA, however, focuses on the image-related task too much and overlooks other tasks. In769

SVHN we observe a similar behavior. This time, all methods are able to leverage positive transfer770

and improve their results on the parity and sum tasks, obtaining similar task improvement results. Yet,771

the image-related task is more disruptive than before, showing bigger differences between methods.772

As before, MGDA completely focuses on this task, but now is able to not overlook any task while773

doing so. Regarding the rest of the methods, all of them improved their results with respect to the774

vanilla case, with RotoGrad and GradNorm obtaining the second-best results.775

C.2.4 CIFAR10 and CelebA776

For the sake of completeness, we present in Table 6 and Table 7 the same tables as in Section 6,777

but with more statistics of the results. For Cifar10, we now included in Table 6 the minimum task778

improvement across tasks and, while noisier, we can still observe that RotoGrad also improve this779

statistic. The standard deviation of the task improvement across tasks is, however, not too informative.780

In the case of CelebA, we added in Table 7 the maximum f1-score across tasks and, similar to the last781

case, it is not too informative, as all methods achieve almost perfect f1-score in one of the classes.782

19

Table 5: Complete results (median and standard deviation) of different competing methods on
MNIST/SVHN on all tasks, see Section 6 and Appendix C.2.

Left digit Right digit Product parity Sum digits Act. Pix.
Method Acc. ↑ Acc. ↑ f1 ↑ MSE. ↓ avgk ∆k ↑ MSE ↓

M
N

IS
T

Single 95.77± 0.19 94.04± 0.18 92.30± 0.72 1.91± 0.13 - 0.01± 0.01
Vanilla 94.94± 0.19 93.27± 0.26 93.08± 0.45 2.18± 0.16 −2.51± 3.01 0.11± 0.01
GradDrop 95.44± 0.37 93.59± 0.27 93.33± 0.53 2.17± 0.08 −2.51± 1.73 0.13± 0.02
PCGrad 95.03± 0.36 93.30± 0.17 93.25± 0.49 2.13± 0.18 −3.12± 3.88 0.12± 0.02
MGDA 94.31± 1.11 92.02± 2.06 83.85± 2.04 2.52± 0.61 −12.57± 9.97 0.06± 0.02
GradNorm 95.45± 0.29 93.84± 0.34 93.51± 0.59 1.85± 0.12 0.75± 2.85 0.08± 0.01
IMTL-G 95.25± 0.33 93.88± 0.21 93.28± 0.48 1.85± 0.09 1.17± 2.77 0.07± 0.01
RotoGrad 95.56± 0.21 93.76± 0.29 93.32± 0.28 1.81± 0.10 2.20± 1.92 0.07± 0.03

SV
H

N

Single 85.05± 0.45 84.58± 0.24 77.47± 1.13 5.84± 0.14 - 0.17± 0.06
Vanilla 84.18± 0.30 84.18± 0.38 80.11± 0.85 4.81± 0.06 5.14± 0.83 2.75± 3.17
GradDrop 84.38± 0.29 84.48± 0.41 80.11± 0.69 4.69± 0.12 5.68± 1.05 1.91± 0.86
PCGrad 84.22± 0.31 84.23± 0.21 79.92± 0.79 4.69± 0.09 5.50± 0.75 2.26± 0.85
MGDA 84.61± 0.75 84.38± 0.45 77.44± 1.44 4.47± 0.18 5.99± 1.48 0.66± 0.75
GradNorm 84.61± 0.42 84.45± 0.40 80.03± 0.75 4.42± 0.15 6.67± 1.02 1.41± 0.74
IMTL-G 84.60± 0.45 84.39± 0.37 79.63± 1.10 4.57± 0.13 5.81± 0.85 2.47± 1.65
RotoGrad 83.89± 0.40 83.91± 0.47 79.43± 0.79 4.54± 0.12 5.61± 0.84 1.44± 0.68

Table 6: Complete task-improvement statistics in CIFAR10 for all competing methods and RotoGrad
with different dimensionality forRk, see Section 6.

Method mink ∆k ↑ medk ∆k ↑ avgk ∆k ↑ stdk ∆k ↓ maxk ∆k ↑
Vanilla −0.81± 0.37 2.73± 1.37 2.58± 0.54 3.38± 0.94 11.14± 3.35

GradDrop −0.81± 0.54 3.18± 1.07 3.07± 0.48 4.00± 0.65 14.03± 2.83
PCGrad −1.52± 0.98 3.33± 1.68 2.86± 0.81 3.74± 0.69 12.01± 3.19
MGDA −7.27± 1.36 −4.48± 2.35 −1.75± 0.43 3.24± 0.55 3.67± 0.98
GradNorm −3.75± 0.67 0.09± 2.23 −0.08± 0.95 3.78± 0.80 8.82± 3.41
IMTL-G −0.39± 0.82 1.95± 2.21 2.73± 0.27 3.25± 0.75 10.20± 2.98
IMTL-G+Rk −1.29± 0.52 4.38± 1.11 3.02± 0.69 3.81± 0.21 12.76± 1.77

RotoGrad 64 −1.70± 0.81 3.44± 1.51 2.90± 0.49 3.98± 0.62 13.16± 2.40
RotoGrad 128 −1.12± 0.36 3.73± 2.14 2.97± 1.08 3.84± 0.87 12.64± 3.56
RotoGrad 256 0.17 ± 1.01 3.29± 2.18 3.68± 0.68 3.83± 0.74 14.01± 3.22
RotoGrad 512 −0.43± 0.76 4.72 ± 2.84 4.48 ± 0.99 4.23± 0.82 15.57 ± 3.99

Table 7: Complete f1-score statistics and training hours in CelebA for all competing methods and
two different architectures/settings, see Section 6.

Convolutional (d = 512) ResNet18 (d = 2048)
task f1-scores (%) ↑ task f1-scores (%) ↑

Method mink medk avgk stdk ↓ maxk Hours mink medk avgk stdk ↓ maxk Hours

Vanilla 1.62 54.74 58.69 24.18 97.04 4.06 15.45 61.52 61.25 22.09 96.61 1.49

GradDrop 3.94 55.80 58.62 23.98 97.19 4.42 4.46 63.52 63.61 21.79 96.59 1.60
PCGrad 2.69 60.30 59.83 23.85 97.04 17.03 17.23 61.82 62.74 20.84 96.43 5.90
GradNorm 1.83 52.17 54.68 24.94 96.88 11.02 14.43 64.10 63.51 21.20 96.50 3.59
IMTL-G 3.31 53.05 56.05 26.92 96.50 4.90 21.52 62.12 61.98 21.62 96.46 1.72
RotoGrad 9.11 62.31 62.45 22.14 96.83 11.00 25.72 63.84 65.17 18.99 96.49 6.90

20

91.0 91.5 92.0 92.5 93.0 93.5 94.0
Acc(%)

0
1e-4
5-e4
1e-3
5e-3
1e-2
5e-2
1e-1

Le
ar

ni
ng

 ra
te

Left digit

87 88 89 90 91 92
Acc(%)

0
1e-4
5-e4
1e-3
5e-3
1e-2
5e-2
1e-1

Right digit

2.5 3.0 3.5 4.0 4.5 5.0
MSE

0
1e-4
5-e4
1e-3
5e-3
1e-2
5e-2
1e-1

Le
ar

ni
ng

 ra
te

Sum of digits

0.1 0.2 0.3 0.4
MSE

0
1e-4
5-e4
1e-3
5e-3
1e-2
5e-2
1e-1

Active pixels

75 80 85 90
F1-score(%)

0
1e-4
5-e4
1e-3
5e-3
1e-2
5e-2
1e-1

Le
ar

ni
ng

 ra
te

Product of digits is odd

30 25 20 15 10 5
avgk k

0
1e-4
5-e4
1e-3
5e-3
1e-2
5e-2
1e-1

Digit-related tasks

Figure 8: RotoGrad’s performance on all tasks for the experiments in Section 6.1 for all metrics. We
can observe training instabilities/stiffness on all tasks as we highly increase/decrease RotoGrad’s
learning rate, as discussed in the main manuscript.

C.2.5 NYUv2783

Complementing the results shown in Section 6, here we show in Table 8 and Table 9 the results784

obtained for two other different random initializations, showing that the results discussed in the main785

text are consistent across runs. In other words, results in these two new tables further demonstrate786

that RotoGrad is capable to perform as well as the best of the competing methods while staying on787

par in training time.788

Table 8: Results for different methods on the NYUv2 dataset with a SegNet model (with random
seed two), see Section 6. RotoGrad obtains top performance in all tasks.

Semantic
Segmenation ↑

Depth
Estimation ↓

Surface Normal
Angle Distance ↓ Within t◦ ↑

Method mIoU Pix Acc avgk ∆k ↑ Abs Err Rel Err avgk ∆k ↑ Mean Median 11.25 22.5 30 avgk ∆k ↑ Hours

Single 0.39 0.65 - 0.74 0.30 - 25.09 19.18 30.01 57.33 69.30 - 8.90
Vanilla 0.37 0.64 −3.58 0.58 0.22 24.40 29.93 25.89 19.85 43.92 57.39 −25.74 3.48

GradDrop 0.39 0.65 0.60 0.56 0.22 24.39 29.64 25.50 20.31 44.62 58.09 −24.36 3.56
PCGrad 0.40 0.66 2.41 0.53 0.22 28.02 29.17 24.94 21.14 45.72 59.14 −22.15 3.51
MGDA 0.21 0.51 −33.78 0.73 0.27 4.94 24.48 18.72 30.77 58.51 70.39 2.20 3.52
GradNorm 0.40 0.67 2.25 0.54 0.21 27.58 25.91 20.75 27.36 54.09 66.71 −5.94 3.50
IMTL-G 0.40 0.66 2.68 0.52 0.20 30.42 26.00 20.92 26.77 53.79 66.59 −6.71 3.62
RotoGrad 0.41 0.66 3.79 0.53 0.20 29.77 25.83 20.73 27.30 54.14 66.90 −5.82 3.89

21

Table 9: Results for different methods on the NYUv2 dataset with a SegNet model (with random
seed three), see Section 6. RotoGrad obtains top performance in all tasks.

Semantic
Segmenation ↑

Depth
Estimation ↓

Surface Normal
Angle Distance ↓ Within t◦ ↑

Method mIoU Pix Acc avgk ∆k ↑ Abs Err Rel Err avgk ∆k ↑ Mean Median 11.25 22.5 30 avgk ∆k ↑ Hours

Single 0.37 0.63 - 0.71 0.28 - 25.14 19.25 29.92 57.23 69.12 - 8.91
Vanilla 0.38 0.64 2.20 0.63 0.23 15.28 29.40 25.31 20.94 45.02 58.35 −23.08 3.47

GradDrop 0.37 0.62 −0.63 0.61 0.23 15.38 30.47 26.63 19.01 42.61 56.06 −28.10 3.53
PCGrad 0.37 0.64 −0.51 0.57 0.22 19.97 29.79 25.77 20.61 44.22 57.47 −24.63 3.50
MGDA 0.20 0.51 −31.94 0.81 0.28 −8.22 24.70 18.92 30.38 57.95 69.99 1.50 3.51
GradNorm 0.40 0.65 6.09 0.57 0.22 20.03 26.12 20.92 27.08 53.69 66.33 −6.46 3.50
IMTL-G 0.40 0.66 5.63 0.57 0.21 22.48 26.23 21.14 26.38 53.25 66.22 −7.43 3.60
RotoGrad 0.39 0.66 5.45 0.53 0.21 24.04 25.90 20.59 27.44 54.35 67.02 −5.28 3.83

22

	Introduction
	Multi-task learning and negative transfer
	RotoGrad
	Gradient-magnitude homogenization
	Gradient-direction homogenization
	RotoGrad: the full picture
	Practical considerations

	Illustrative examples
	Related Work
	Experiments
	Training stability
	Rotating a subspace
	Methods comparison

	Conclusions
	Appendices
	Proofs
	Stackelberg games and RotoGrad
	Experiments
	Experimental setups
	Illustrative examples
	MNIST/SVHN
	CIFAR10
	NYUv2
	CelebA

	Additional results
	Illustrative examples
	Training stability
	MNIST/SVHN
	CIFAR10 and CelebA
	NYUv2

